氧化锌掺钇透明导电膜的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电产业的快速发展,各种光电材料不断被开发,透明导电薄膜是其中之一。由于在可见光区域内的高透过率和高导电性,透明导电薄膜被广泛应用。目前,应用较为广泛且制备技术比较成熟的是氧化铟掺锡(ITO)薄膜和氧化锡掺氟(FTO)薄膜,其中ITO应用最为广泛。但是,ITO薄膜价格高、且高温时铟易扩散而出现薄膜性能退化现象。相比而言,氧化锌(ZnO)具有成本低、资源丰富、无毒、稳定性强的优点,因此受到广泛的关注。
     本文采用射频磁控溅射法,首次在室温下以玻璃为衬底制备出钇掺杂的氧化锌透明导电薄膜(YZO)。系统地研究了制备参数(溅射气压、溅射功率)和薄膜厚度对YZO薄膜的结构和光电特性的影响;利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、霍尔测试仪以及紫外-可见光分光光度计对YZO薄膜的结构、表面形貌、光学和电学性质进行了测量。
     1、厚度对薄膜性质的影响
     当溅射气压为2.0 Pa,功率为100 W时,分别制备了厚度为200 nm,400 nm,500 nm,600 nm,800 nm的五个样品,它们的生长速率约为52 nm/min,基本不随时间变化。随着薄膜厚度的增加,YZO薄膜的结晶变好,ZnO(002)峰强度增强,薄膜晶粒尺寸从30.4nm增加到了34.6 nm,晶粒较大,但是晶粒随薄膜厚度变化不明显;由于载流子浓度变化不大,随着结晶变好,晶界散射减小,霍尔迁移率增大,电阻率持续下降,可获得的最低电阻率为8.36×10-4Ω·cm,此时迁移率为15.3 cm2V-1s-1,载流子浓度为4.88×1020cm-3。在波长为500 nm-800nm的可见光范围内,所有样品的平均透过率均在90%以上。
     2、溅射气压对薄膜性质的影响
     薄膜厚度均为600 nm,溅射功率为100 W,溅射气压分别为:0.8 Pa,1.0 Pa,1.6 Pa,2.0 Pa,3.0 Pa。随着溅射气压的提高,薄膜生长速率呈下降趋势,当0.8 Pa时的56 nm/min降至3.0 Pa时43 nm/min,晶粒尺寸由47.4 nm减小到31.5nm,薄膜的结晶质量变差。在1.0 Pa时,溅射速率快,薄膜中氧空位多,载流子浓度高可达5.2×1020 cm-3,由于电离杂质散射的影响,霍耳迁移率降低为10.8cm2V-1s-1。溅射气压为2.0 Pa时,可获得最低的电阻率8.9×10-4Q·cm,此时载流子浓度降至4.92×1020 cm-3,霍尔迁移率变为14.2 cm2V-1s-1。随着溅射气压的增加,薄膜的透过率有所降低,但是所有样品在可见光区域内的平均透过率均超过了89%。
     3、溅射功率对YZO薄膜性质的影响
     薄膜厚度为600 nm,溅射气压2.0 Pa,衬底不加热,溅射功率分别为:40 W,50 W,60 W,90 W,110 W。随着溅射功率由40 W增加到110 W,溅射速率明显增大,从15 nm/min增加到56 nm/min。总体来看,晶粒尺寸变化不大,基本在33 nm-38 nm之间。当溅射功率为90 W时,载流子浓度达到最大为4.99×1020cm-3,霍耳迁移率只有14 cm2V-1s-1。最佳功率为50 W,其电阻率为8.71×10-4Ω·cm,载流子浓度为4.25×1020 cm-3,霍尔迁移率为16.8 cm2V-1s-1。随着溅射功率的增加,高能粒子对薄膜造成损伤,结晶质量变差,导致光子的散射和吸收增加,薄膜在可见光波段的平均透过率降低,但是平均透过率均在90%以上,说明YZO具有良好的透光性。从带隙来看,随着溅射功率的增加,带隙呈增大趋势,从40 W时的3.54 eV增大到了11OW时的3.64 eV。
As the optoelectronics industry develops fast, various optoelectronic materials have been found. Because of its good conductivity and high transparency in the visible light range, the transparent conducting films have been widely used. At present, Indium-Tin Oxide (ITO) film manufactured by mature technologies is the most widely used. However, ITO is expensive, and the Indium can diffuses easily under high temperature, so ITO performance deteriorates. Compared with ITO, zinc oxide has been gained much attention due to its unique advantages, such as low costs, rich resources, non-poisonous, high thermal and chemical stabilities in the field of transparent conducting films.
     In this dissertation, YZO film has been prepared on the glass substrate by RF magnetron sputtering for the first time. The influence of deposition parameters (sputtering pressure, RF power) and film thickness on the structure, optical, and electrical properties of the YZO film was studied systematically. The structure, surface morphology, and electrical and the optical properties of YZO film have been measured with XRD, SEM, Hall Effect, and UV-Vis Spectrophotometer.
     1. The influence of film thickness on the properties of the film
     Five samples have been prepared with a pressure of 2.0 Pa, power of 100W and unheated substrate. Theirs thickness is 200 nm,400 nm,600 nm, and 800 nm. The growth rate of these five samples is about 52 nm/min, and it will not change as time goes on. As the thickness of the film increases, the crystallization becomes better and the intensity of the (002) peak rises, so the size of the grain has increased from 30.4 nm to 34.6 nm. The grain size is bigger than other grain size of transparent conducting films, but its increasing is unobvious. For the YZO films, with the crystallization of films changing better, Hall mobility increases, the resistivity continue to decline, and the minimum resistivity of 8.36×10-4Ω·cm is available, with a Hall mobility of 15.3 cm2V-1s-1and a carrier concentration of 4.88×1020 cm-3. As the thickness of the film increases, the average transparency of the film decreases, but the average transparency of all the samples is above 90% in the wavelength range of 500 nm to 800 nm.
     2. The influence of the sputtering pressure on the properties of the YZO film
     Under the condition, the thickness of all films is 600 nm, the sputtering power is 100W, and the substrate is unheated. When the sputtering pressure is 0.8 Pa,1.0 Pa, 1.6 Pa,2.0 Pa and 3.0 Pa, respectively, and YZO films have been prepared. As the sputtering pressure increases from 0.8Pa to 3.0 Pa, the growth rate of the film decreases from 56 nm/min to 43 nm/min yet the size of the grains decreases from 47.4 nm to 31.5 nm, which shows that the crystal quality of the films has deteriorated. When the pressure is 1.0 Pa, the growth rate of the films is faster, more oxygen vacancies exist in the films, and the carrier concentration is 5.2×1020 cm-3., Hall mobility decreases due to ionized impurity scattering, it is 10.8 cm2V-1s-1. When the sputtering pressure is 2.0 Pa, the films with resistivity of 8.9×10-4Ω·cm, a carrier concentration of 4.92×1020 cm-3 and a Hall mobility of 14.2 cm2V"1s"1, has been obtained. With the sputtering pressure increasing, the transmittance of the films decreases. But the average transmittance of all films exceeds 89% in the visible range.
     3. The influence of the sputtering power on the properties of the YZO film
     The average thickness of the films is about 600 nm, the sputtering pressure is 2.0 Pa, the substrate is unheated, and the sputtering power is 40 W,50 W,60 W,90 W and 110W, respectively. As the sputtering power increasing from 40 W to 110 W, the growth rate increases from 15 nm/min to 56 nm/min obviously, but the grain size changes little between 33 nm and 38 nm. When the sputtering power is 90W, the maximum carrier concentration is 4.99×1020 cm-3, with a Hall mobility of 14 cm2V-1s-1. The optimum power is 50 W, and the resistivity of 8.71×10"4Ω·cm is available with a carrier concentration of 4.25×1020 cm-3 and a Hall mobility of 16.8 cm2V-1s-1. With sputtering power increasing, the crystal quality degenerates. That causes increasing of light scattered by the surface and the photon absorbtion so that the average transparency decreases. The point of view from band gap, as the sputtering power increases, band gap tends to rise. The band gap increases from 3.54 eV to 3.64 eV when the sputtering power increases from 40 W to 110 W.
引文
[1]王夏.积极发展可再生能源[J],求是,2004,(8):51-53.
    [2]张正敏,王革华,高虎.中国可再生能源发展战略与政策研究[J].经济研究参考,2004,(84):26-32.
    [3]中国能源发展报告(2008),2008,中国社会科学院.
    [4]K.Badeker. Concerning the electricity conductibility and thermoelectric energy of several heavy metal bonds [J]. Ann. Phys. (Leipzig),1907,22:749.
    [5]公衍生,王传彬,沈强,等.氧化物功能薄膜材料的研究新进展[J].中国表面工程,2004,(4):10-14.
    [6]J. Hupkes, B. Rech, S. Calnan, et al. Material study on reactively sputtered zinc oxide for thin film silicon solar cells [J].Thin Solid Films,2006,502:286-291.
    [7]Zhong Zhi You, Jiang Ya Dong. Surface modifications of ITO electrodes for polymer light-emitting devices [J]. Applied Surface Science,2006,253:2102-2107.
    [8]Ryu. H; Kang. J, Han. Y, et al. Indium-tin oxide/Si contacts with In-and Sn-diffusion barriers in polycrystalline Si thin-film transistor liquid-crystal displays [J]. Journal of Electronic Materials,2003,32:919-924.
    [9]Sang Kyu Lee, Nam Sung Cho, Joong Hwak, et al. New low band-gap alternating polyfluorene derivatives for photovoltaic cells [J]. Thin Solid Films,2006, 511-512:157-162.
    [10]Hideki Tannka, Takahiro Shimakawa, Toshihiro Miyata, et al. Electrical and optical properties of TCO-Cu2O heterojunction devices [J]. Thin Solid Films,2004, 469-470:80-85.
    [11]Keiji Ishibashi, Kazufumi Watabe, Takehiro Sakurai, et al. Large area deposition of ITO films by cluster type sputtering system [J]. Journal of Non-Crystalline Solids,1997,218:354-359.
    [12]Masayuki Okuya, Nobuyuki Ito, Katsuyuki Shiozaki. ITO thin films prepared by a microwave heating [J]. Thin Solid Films,2007,515:8656-8659.
    [13]Chihay Adachi, Kazukiyo Nagai, Nozomu Tamoto. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes [J]. Applied Physics Letter,1995,66:2679-2681.
    [14]S.Besbes, H. Ben Ouada, J. Davenas, et al. Effect of surface treatment and functionalization on the ITO properties for OLEDs [J]. Materials Science and Engineering C,2006,26:505-510.
    [15]D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperatre [J]. Applied Physics Letter,1997,70(17):2230-2232.
    [16]吴景辉.含银AZO透明导电薄膜及AZO@Au奈米粉体之研究.国立成功大学化学工程学系硕士论文[D],2007.
    [17]贺永宁,朱长纯,侯洵.ZnO宽带隙半导体及其基本特性[J].功能材料与器件学报,2008,14(3):566-574.
    [18]方俊,杨万莉.n型透明导电氧化物薄膜的研究新进展[J].陶瓷,2006,(5):12-14.
    [19]傅竹西,林碧霞.氧化锌薄膜光电功能材料研究的关键问题[J].发光学报,2004,25(2):117-121.
    [20]A. El Manouni,F. J. Manjon, M. Mollar, et al. Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis [J]. Superlattices and Microstructures, 2006,3.9:185-192.
    [21]V. Musat, B. Teixeira, E. Fortunato, et al. Al-doped ZnO thin films by so-gel method [J]. Surface and Coatings Technology,2004,180-181:659-662.
    [22]H. J. Ko, Y. F. Chen, S. K. Hong, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy [J]. Applied Physics Letters, 2000,77(23):3761-3763.
    [23]Ching-Hsuang Cheng, Jyh-Ming Ting. Transparent conducting GZO, Pt/GZO, and GZO/Pt/GZO thin films [J]. Thin Solid Films,2007,516:203-207.
    [24]Do-Hoon Shin, Yun-Hae Kim, Joong-Won Han, et al. Effect of process parameters on electrical, optical properties of IZO films produced by inclination opposite target type DC magnetron sputtering [J]. Trans. Nonferrous Met. Soc. China, 2009,19:997-1000.
    [25]Saliha Ilican, Yasemin Caglar, Mujdat Caglar, et al. Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol-gel process [J]. Applied Surface Science,2008,255:2353-2359.
    [26]Xueqiang Liu, Weihong Bi, Zhaolun Liu. Influence of post-annealing on the properties of Sc-doped ZnO transparent onductive films deposited by radio-frequency sputtering, Applied Surface Science,2009,255:7942-7945.
    [27]Meifu Jiang, Zhenning Wang, Zhaoyuan Ning. Study of structural and optical properties of Ge doped ZnO films [J]. Thin Solid Films,2009,517:6717-6720.
    [28]Maoshui Lv, Xianwu Xiu, Zhiyong Pang, et al. Structural, eletrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering [J]. Thin Solid Films,2008,516:2017-2021.
    [29]W. S. Lau, S. J. Fonash. Highly transparent and conducting zinc oxidefilms deposited by activated reactive evaporation [J]. Journal of Electronic Materials,1987, 16:141-149.
    [30]李红霞,刘宏,王继扬,等.氧化物透明导电膜的研究进展[J].功能材料,2004,35:1091-1093.
    [31]Young-Sung Kim, Weon-Pil Tai. Electrical and optical properties of Al-doped ZnO thin films by sol-gel process [J]. Applied Surface Science,2007,253: 4911-4916
    [32]T. Znotins. Thomas Industrial Applications of Excimer Lasers. Excimer Lasers and Optics, T. S. Luk, Proc. SPIE 1986,710,55-62.
    [33]唐亚陆,杜泽民.脉冲激光沉积原理及其应用[J].桂林电子工业学院学报,2006,26(1):24-27.
    [34]S. Agouram, J. A. Bastos-Segura, V. Munoz-Sanjose. Study of the MOCVD gorwhth of ZnO on GaAs substrates:Influence of the molar ratio of the precursors on structural and morphological properties [J]. Superlattices and Microstructures, 2007,42:140-144.
    [35]A. Ohtomo, M. Kawasaki, Y. Sakurai, et al. Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE [J]. Materials Science and Engineering,1998, B54:24-28.
    [36]R..Al Asmar, S. Juillaguet, M. Ramonda, et al. Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam co-evaporation technique [J]. Journal of Crystal Growth,2005,275,512-520.
    [37]季振国:,赵丽娜,何作鹏,等.喷雾热解法制备p型铟锡氧化物透明导电薄膜[J].无机材料学报,2006,21(1):211-216.
    [38]陈兆权,刘明海,刘玉萍,等.PECVD制备AZO(ZnO:Al)透明导电薄膜[J].物理学报,2009,58(6):4260-4266.
    [39]J. J. Robbins, J. Harvey, J. Leaf, et al. Transport phenomena in high performance nanocrystalline ZnO: Ga films deposited by plasma-enhanced chemical vapor deposition [J]. Thin Solid Films,2005,473:35-40.
    [40]H. Kim, A. Pique, J.S. Horwitz, et al. Indium tin oxide thin films for organic light-emitting devices [J]. Applied Physics Letter,1999,74(23):3444-3446.
    [41]C. Coutal, A. Azema, J. C. Roustan. Fabrication and characterization of ITO thin films deposited by excimer laser evaporation [J]. Thin Solid Films,1996,288: 248-253.
    [42]M. Chen, X. Wang, Y. H. YU, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films [J]. Applied Surface Science, 2000,158:134-140.
    [43]D, C. Look, D. C. Reynolds, J. W. Hemsky, et al. Production and annealing of electron irration damage in ZnO [J]. Applied Physics Letters,1999,75(6):811-813.
    [44]张菲,谌家军,王秩伟.ZnO薄膜的研究现状[J].重庆文理学院学报,2008,27(2):40-43.
    [45]J. J. Chen, Y. Gao, F. Zeng, et al. Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films [J]. Applied Surface Science,2004,223:318-329:
    [46]S.H.Jeong, J.H.Boo. Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering [J]. Thin Solid Films,2004, 447-448:105-110.
    [47]K.J. Chen, F.Y. Hung, S.J.Chang, et al. Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol-gel method [J]. Applied Surface Science,2009,255:6308-6312.
    [48]G.K.Paul, S.Bandyopadhyay, S.K.Sen, et al. Structural, optical and electrical studies on sol-gel deposited Zr doped ZnO films [J]. Materials Chemistry and Physics,2003,79:71-75.
    [49]Songqing Zhao, Yueliang Zhou, Yuzi Liu, et al. Enhanced hardness in B-doped ZnO thin films on fused quartz substrates by pulsed-laser deposition [J]. Applied Surface Science,253:726-729.
    [50]Xianwu Xiu, Zhiyong Pang, Maoshui Lv, et al. Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering [J]. Applied Surface Science,2007,253:3345-3348.
    [51]Tadatsugu Minami, Takashi Yamamoto, Toshihiro Miyata. Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering [J]. Thin Solid Films,2000,366:63-68.
    [52]http://en.wikipedia.org/wiki/Yttrium
    [53]金开圣.氧化锌薄膜分析与发光二极体元件制作.中华技术学院,2007.6
    [54]www.gxut.edu.cn/jpkc/dxwlsy/studyonline/jindaizonghe/wordtoweb/he.htm
    [55]沈伟东,刘旭,朱勇,等.用透过率测试曲线确定半导体薄膜的光学常数和厚度[J].半导体学报,2005,26(2):335-340.
    [56]袁景梅,汤兆胜,齐红基,等.几种紫外薄膜材料的光学常数和性能分析[J].发光学报,2003,23(8):984-988.
    [57]H. Kim, J. S. Horwitz, G. Kushto, et al. Effect of film thickness on the properties of indium tin oxide thin films [J] Journal of Applied Physics,2000,88 (10):6021-6025.
    [58]Xiaotao Hao, Jin Ma, Deheng zhang, et al. Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates [J]. Applied Surface Science,2001,183:137-142.
    [59]Maoshui Lv, Xianwu Xiu, Zhiyong Pang, et al. Influence of the deposition pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering [J]. Applied Surface Science,2006,252: 5687-5692..
    [60]T.L.Yang, D.H.Zhang, J.Ma, et al. Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron-sputtering [J]. Thin Solid Films,1998,326:60-62.
    [61]Xuhu Yu, Jin Ma, Feng Ji, Yuheng Wang, et al. Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature [J]. Applied Surface Science,2005,239:222-226.
    [62]Jing-Chie Lin, Kun-Cheng Peng, Hsueh-Lung Liao, et al. Transparent conducting Sc-codoped AZO film prepared from ZnO:Al-Sc by RF-DC sputtering [J]. Thin Solid Films,2008,516:5349-5354.
    [63]H. Kim, J.S. Horwitz, S.B.Qadri, et al. Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition [J]. Thin Solid Films,2002,420-421: 107-111.
    [64]Shumei Song, Tianlin Yang, Yanqing Xin, et al. Effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of GZO/Ag/GZO sandwich films [J]. Current Applied Physics,2010,10:452-456.
    [65]Min-jung Lee, Jinhyong Lim, Jungsik Bang, et al. Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films [J]. Applied Surface Science,2008,255:3195-3200.
    [66]Yutaka Ohhata, Fujitoshi Shinoki, Sadafumi Yoshida. Optical properties of r.f. reactive sputtered tin-doped In2O3 films [J]. Thin Solid Films,1979,59:255-261.
    [67]Lata Gupta, Abhai Mansingh, P.K. Srivastava. Band gap narrowing and the band structure of tin-doped indium oxide films [J]. Thin Solid Films,1989,176: 33-44.
    [68]V. Assuncao, E. Fortunato, A. Marques, et al. Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature [J]. Thin Solid Films,2003,427:401-405.
    [69]Klaus Ellmer. Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties [J]. Journal of Physics D:Applied Physics,2000,33:R17-R32.
    [70]S.Ben Amor, B.Rogier, G. Baud, et al. Characterization of zirconia films deposited by r.f. magnetron sputtering [J]. Materials Science and Engineering B, 1998,57:28-39.
    [71]Yuantao Zhang, Guotong Du, Dali Liu, et al. Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions [J]. Journal of Crystal Growth,2002,243:439-443.
    [72]E. M. Bachari, G. Baud, S. Ben Amor, et al. Structural and optical properties of sputtered ZnO films [J]. Thin Solid Films,1999,348:165-172.
    [73]黄裕铭.ZnO薄膜使用射频磁控溅射法成长之参数研究与探讨.南台科技大学电子工程研究所硕士论文.2005年6月.
    [74]Xiao-Tao Hao, Jin Ma, De-Heng Zhang, et al. Comparison of the properties for ZnO:Al films deposited on polyimide and glass substrates [J]. Materials Science and Engineering B,2002,90:50-54.
    [75]张德恒.透明导电薄膜中光吸收边的移动[J].半导体杂志,1998,23(3):34-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700