单级升压逆变器及其应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的电压源逆变器(VSI)是降压型变换器。在输入电压较低或变化范围较大的场合,如新能源发电系统,通常需要在其前级加入DC-DC升压电路,将母线电压升到足够大的值,以输出期望的交流电压。该方案不仅增加了系统的复杂性,也降低了可靠性。另一方面,常规的电压源逆变器需要防止桥臂直通而导致开关管过流损坏。通常采用插入死区的方法,但会引起输出谐波电压的增大。在此背景下,本文提出并研究了新颖的单级升压逆变器,并对其电路特点和应用方面的优势和问题进行探讨和研究。全文主要内容如下:
     研究了提出的耦合电感单级升压逆变器(CL-SSBI)。它在逆变桥的前端引入了一个包括耦合电感的无源网络,通过调节逆变桥臂的直通时间和合理设计耦合电感的匝比,提升母线电压,以输出期望的交流电压。本文对CL-SSBI的工作原理和升压性能,参数设计,建模分析,电路损耗等进行了详细的分析和验证。之后又提出了开关耦合电感(准)Z源逆变器(SCL-(q)ZSI),同样对SCL-ZSI和SCL-qZSI的工作原理和升压性能,参数设计,器件应力等进行了详细的分析、比较和验证。
     研究了CL-SSBI光伏并网发电系统,在一级变换中实现升压、逆变、单位功率因数并网和最大功率跟踪的功能,并对控制器进行了分析和设计。为了进一步降低CL-SSBI光伏并网发电系统的体积、重量和成本,提高变换效率,进一步研究了CL-SSBI非隔离光伏并网发电系统漏电流抑制措施。为了不增加有源器件,提出了改进的CL-SSBI拓扑——CL-SSBI-D,并采用无传统零矢量的NSPWM调制方法,使漏电流满足VDE0126-1-1标准的要求。
     为了提高能量的传输效率、减小电感的电流应力并简化电路结构,本文又提出了抽头电感型单级升压逆变器,包括抽头电感准Z源逆变器(TL-qZSI)、抽头电感单级升压逆变器(TL-SSBI)和双抽头电感单级升压逆变器(DTL-SSBI)。TL-qZSI具有高升压能力,电容电压应力低,输入和母线共地,输入电流连续等优势,相比于ZSI,更适合应用于新能源发电的场合。而TL-SSBI则更为简洁实用且升压比更高。
     为了讨论无电解电容TL-qZSI的可行性,研究了TL-qZSI在一个直通周期内所有可能的运行状态,通过合理设计电感和电容值可避免给电路带来危害的运行状态,同时估计了电感和电容的极限值。得到TL-qZSI采用高寿命、低容值的薄膜电容同样可以实现电路正常工作的结论。
     本文最后将无电解电容的TL-qZSI应用于单相输入的交流调速系统。系统中的电容都为无极性电容,提高了系统的可靠性并减小了体积。由于母线上没有大容量的电解电容,母线上会耦合与输入电源频率相关的功率脉动,本文提出在直通占空比上注入谐波的方式实现脉动抑制和在调制比上注入谐波的方式来改善输入功率因数。实验证明在带大惯性电机负载的交流调速场合,可以同时实现抗输入电压跌落、高输入功率因数和对转速的控制等功能。
Traditional voltage-source inverter (VSI) is buck-type converter. On the one hand, of low or wideinput voltage, such as renewable power system, a boost converter should be added in front of theinverter bridge to step up the dc input voltage to a higher level to output a desired ac voltage. On theother hand, the conventional VSI should avoid the shoot-through issue in case of overcurrent damage.Therefore, dead-time is always used. While it will casuse output voltage distortion. Under thebackground, the thesis proposes novel single-stage boost inverters, and researches the circuitcharacteristics and their advantages and problems in applications. The contents are shown as follow:
     The thesis researches a novel coupled-inductor single-stage boost inverter (CL-SSBI). Byintroducing a unique impedance network with coupled inductor and previously forbiddenshoot-through zero states, this converter can output ac voltage much higher than the dc input. Thesteady-state performance and boost characteristics of CL-SSBI, the design procedures of the keycomponents, the influence of impedance network to dynamic performance and the losses of the circuitare analyzed in detail and verified. By introducing the concept of swithed coupled inductor to ZSI andquasi-ZSI, the paper proposes swithed-coupled-inductor ZSI (SCL-ZSI) and swithed-coupled-inductorquasi-ZSI (SCL-qZSI). The steady-state performance and boost characteristics, the design proceduresand stresses of the key components are analyzed and verified.
     Then CL-SSBI is applied to grid-connected phovoltanic power system to realize boost, inversion,fed to the gird with unity power factor and maximum power tracking in one conversion stage. Itscontroller is analyzed and designed. In order to further decrease the volumn, weight and cost of thesystem, and increase the conversion efficiency, the transformerless photovoltaic power system basedCL-SSBI is also analyzed. To eliminate the leakage current and keep the advantages of impedancenetwork, only a diode is added in the front of the topology compare to the original topology, to blockthe leakage current loop when in the active vector and open-zero vector. Meanwhile, the near-statePWM technique is applied with shoot-through zero vectors is used. By using this modulation method,the VDE0126-1-1standard can be satisfied.
     In order to improve the conversion effierency, decrease the current stress of coupled inductor andsimplify the circuit structure, single-stage boost inverters with tapped inductor networks are proposed,including tapped-inductor quasi-Z-source inverter (TL-qZSI), tapped-inductor single-stage boostinverter (TL-SSBI) and double-tapped-inductor single-stage boost inverter (DTL-SSBI). Compared to ZSI, TL-qZSI not only improves the boost ability, decreases the capacitances and their voltagestresses, but also has common ground between input source and dc-link and continuous input current,which is suitable for renewable power system. TheTL-SSBI is more concise and practical, and hashigher boost ability.
     To discuss the realization of electrolytic-less TL-qZSI, the paper presents all the possible steadystates of the TL-qZSI proposed. It is shown that, the abnormal states can be avoided by selectingsuitable value of the capacitors and inductors. The paper also presents guidelines to design theimpedance network accurately and predicts the critical values of inductance and capacitance. It is alsofind that smaller capacitance can be used to process power conversion, which means film capacitorwith high reliability and low capacitance can be used to maintain the nomal operation.
     The TL-qZSI without electrolytic capacitor is used to adjustable speed system with single-phaseac input. By introducing film capacitors, system reliability is improved and volumn and weight arereduced. Without large electrolytic capacitors, the dc-link would couple ripple related to input acsource. Then harmonic is injected into shoot-through dudy cycle and modulation index to suppressbus voltage ripple and improve input power factor, respectively. Experimental results are carried outto verify that the in the condition of adjustable speed system with large inertia load, the performancesof riding through input voltage sag, high input power factor and speed control can be realized.
引文
[1]. Frede Blaabjerg,Zhe Chen,Soeren Baekhoej Kjaer.Power electronics as efficient interface indispersed power generation systems.IEEE Transactions on Power Electronics,2004,19(5):1184~1194.
    [2]. Welchko, B. A.,Lipo, T. A.,Jahns, T. M.,Schulz, S. E..Fault tolerant three-phase AC motordrive topologies: a comparison of features, cost, and limitations.IEEE Transactions on PowerElectronics,2004,19(5):1108~1116.
    [3]. Guerreo, J. M.,Vasquez, J. C.,Matas, J.,et al.Control strategy for flexible microgrid based onparallel line-interactive UPS systems.IEEE Transactions on Industrial Electronics,2009,56(3):726~736.
    [4]. Junggi Lee,Sunkyoung Lim,Kwanghee Nam,Dongik Choi.An optimal selection ofinduction-heater capacitance considering dissipation loss caused by ESR.IEEE Transactions onIndustry Application.2007,43(4):1117~1125.
    [5]. Bhattacharya, A.,Chakraborty, C.,Bhattacharya, S..Parallel-connected shunt hybrid activepower filters operating at different switching frequencies for improved performance.IEEETransactions on Industrial Electronics,2012,59(11):4007~4019.
    [6]. Pourbeik, P.,Bostrom, A.,Ray, B..Modeling and application studies for a modern static VARsystem installation.IEEE Transactions on Power Delivery.2006,21(1):368~377.
    [7]. F. Z. Peng,Z-source inverter.IEEE Transactions on Industry Application.2003,39(2):504~510.
    [8]. Bose, B..Global warming: energy, environmental pollution, and the impact of powerelectronics.IEEE Transactions on Industrial Electronics,2010,4(1):6~17.
    [9].刘向阳.逆变器——优化光伏发电的装置.电器工业,2009,12:46~49.
    [10].Bo, Yang,Wuhua, Li,Yi, Zhao,Xiangning, He.Design and analysis of a grid-connectedphotovoltaic power system. power electronics.IEEE Transactions on Power Electronics,2010,25(4):992-1000.
    [11].Sang-Hoon, P.,Gil-Ro, Cha,Yong-Chae, Jung,et al..Design and application for PV generationsystem using a soft-switching boost converter with SARC.IEEE Transactions on IndustrialElectronics,2010,57(2):515-522.
    [12].Rong-Jong, W. and W. Wen-Hung.Grid-connected photovoltaic generation system.IEEETransactions on Circuits and Systems I,2008,55(3):953-964.
    [13].蒋燕君.单相两级式光伏并网功率变换器的研究,[硕士学位论文],杭州,浙江大学,2006.
    [14].Mazumder, S.K.,Burra, R.K.,Rongjun Huang,et al..A universal grid-connected fuel-cellinverter for residential application.IEEE Transactions on Industrial Electronics,2010,57(10):3431-3447.
    [15].Mohr, M.,Franke, W. T.,Wittig, B.,et al..Converter systems for fuel cells in the medium powerrange—a comparative study.IEEE Transactions on Industrial Electronics,2010,57(6):2024-2032.
    [16].杨奇.新型单级可升压逆变器拓扑及控制策略研究,[硕士学位论文],南京,南京航空航天大学,2010.
    [17].Von Jouanne A.,Enjeti P. N.,Banerjee B..Assessment of ride-through alternatives foradjustable-speed drives.IEEE Transactions on Industrial Application,1999,35(4):908-916.
    [18].M. H. J.Bollen.Understanding power quality problem: voltage sags and interruptions.New York:McGraw-Hill,1996:18,174-198.
    [19].张军,沈国芳,徐京,黄志刚.电网电压波动对电气传动设备的影响及对策.变频器世界,2005:77~80.
    [20].Peng F. Z..Z source inverter for motor drives.IEEE PESC,2004:249-254.
    [21].丁新平,钱照明,崔彬,彭方正.具有承受电网电压跌落能力的交流调速系统的策略.电气传动,2007,37(4):3~8.
    [22].M. T. Madigan,R. W. Erickson,and E. H. Ismail.Integrated high-qualityrectifier-regulators.IEEE Transactions on Industrial Electronics,1999,46(4):749-758.
    [23].Yan-Cun Li,Chern-Lin Chen.A novel single-stage high-power-factor AC-to-AC LED drivingcircuit with leakage inductance energy recycling.IEEE Transactions on Industrial Electronics,2012,59(2):793-802.
    [24].H. L. Cheng,Y. C. Hsieh,and C. S. Lin.A novel single-stage high-power factor AC/DCconverter featring high circuit efficiency.IEEE Transactions on Industrial Electronics,2011,58(2):524-532.
    [25].J. M. Alonso,J. Vina,D. G. Vaquero,et al..Analysis and design of the integrated doublebuck-boost converter as a high-power-factor drive for power-LED Lamps.IEEE Transactions onIndustrial Electronics,2012,59(4):1689-1697.
    [26].Z. Li,Y. Park,J. M. Kwon,et al..High-power-factor single-stage LCC resonant inverter forliquid crystal display backlight.IEEE Transactions on Industrial Electronics,2011,58(3):1008-1015.
    [27].R.-L. Lin,Chih Lo.Design an implementation of novel single-stage change-pumppower-factor-correction electronic ballast for metal halide lamp.IEEE Transactions on IndustrialElectronics,2012,59(4):1789-1798.
    [28].Robert W. Erickson,Dragan Maksimovic.Fundamentals of Power Electronics (secondedition).Netherlands:Kluwer Academic Publishers Group,2001:65~72.
    [29].彭方正,房绪鹏,顾斌.Z源逆变器.电工技术学报,2004,19(2):47~51.
    [30].吴茂刚,赵荣祥,汤新舟.正弦和空间矢量PWM逆变器死区效应分析与补偿.中国电机工程学报,2006,26(12):101~105.
    [31].孙向东,钟彦儒,任碧莹,等.一种新颖的死区补偿时间测量方法.中国电机工程学报,2003,23(2):103~107.
    [32].Miaosen, S.,and Fangzheng, P..Operation modes and characteristics of the Z-source inverterwith small inductance or low power factor.IEEE Transactions on Industrial Electronics,2008,55(1):89-96.
    [33].Miaosen, S.,Joseph, A.,Jin, Wang,et al..Comparison of traditional inverters and Z-sourceinverter.36th IEEE Power Electronics Specialists Conference,2005:1692-1698.
    [34].Poh Chiang Loh,Feng Gao,Frede Blaabjerg,et al..Buck-boost impendance networks.EuropeanConference on Power Electronics and Applications,2007:1-10.
    [35].Florescu, A.,Stocklosa, O.,Teodorescu, M.,et al..The advantages, limitations and disadvantagesof Z-source inverter.International Semiconductor Conference (CAS),2010:483-486.
    [36].Yi Huang,Miaosen Shen,F. Z. Peng,et al..Z-source inverter for residential photovoltaicsystems.IEEE Transactions on Power Electronics,2006,21(6):1776-1782.
    [37].U. Supatti,F. Z. Peng.Z-source inverter based wind power generation system.IEEEInternational Conference on Sustainable Energy Technologies,Singapore,2008.
    [38].Fang Zheng Peng,Miaosen Shen,and Kent Holland.Application of z-source inverter for tractiondrive of fuel cell—battery hybrid electric vehicles.IEEE Transactions on Power Electronics,2007,22(3):1054-1060.
    [39].Haiping Xu,Peng Fangzheng,Lihua Chen,et al.Analysis and design of Bi-directional Z-sourceinverter for electrical vehicles.Applied Power Electronics Conference and Exposition,2008:1252~1257.
    [40].Jin Wang.Practical Design Considerations of Power Electronics in Hybrid and Fuel CellVehicles.IEEE Vehicle Power and Propulsion Conference (VPPC),2008:1~6.
    [41].Yoon-Ho Kim,Hyun-Wook Moon,Soo-Hong Kim,et al.A fuel cell system with Z-sourceinverters and ultracapacitors.The4th International Power Electronics and Motion ControlConference,2004:1587~1591.
    [42].Shen, M.,Joseph, A,Yi Huang,et al.Design and development of a50kW Z-source inverter forfuel cell vehicles.CES/IEEE5th International Power Electronics and Motion Control Conference,2006,2(2):1076~1080.
    [43].Fang Zheng Peng,Miaosen Shen,et al.Maximum boost control of the Z-source inverter.IEEETransactions on Power Electronics,2005,20(4):833-838.
    [44].Zhou Keliang,Wang Danwei.Relationship between space-vector modulation and three-phasecarrier-based PWM:a comprehensive analysis.IEEE Transactions on Industrial Electronics,2002,49(1):186-196.
    [45].Shen Miaosen,Wang Jin,Joseph A,et al.Constant Boost control of the Z-source inverter tominimize current ripple and voltage stress.IEEE Transactions on Industry Applications,2006,42(3):770-778.
    [46].Anderson J,Peng F Z.Four quasi-Z-source inverters.IEEE Power Electronics SpecialistsConference.Greece,2008:2743-2749.
    [47].Anderson, J. and F.Z. Peng,A class of quasi-Z-source inverters.IEEE Industry ApplicationsSociety Annual Meeting,IAS '08.2008:1-7.
    [48].李杰.Quasi-Z源逆变器的分析与设计,[硕士学位论文],北京,北京交通大学,2009.
    [49].Dong, C. and F.Z. Peng.A family of Z-source and quasi-Z-source DC-DCconverters.Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition,2009:1097-1101.
    [50].Vinnikov, D. and I. Roasto.Quasi-Z-source-based isolated DC/DC converters for distributedpower generation.IEEE Transactions on Industrial Electronics,2011,58(1):192-201.
    [51].Xinping, D.,et al..A novel ZVS Z-source rectifier.Twenty-First Annual IEEE Applied PowerElectronics Conference and Exposition,2006.
    [52].Xinping, D.,et al..Transient modeling and control of the novel ZVS Z-source rectifier.37thIEEE Power Electronics Specialists Conference,2006:1-5.
    [53].Boldea, I.,R. Antal and N. Muntean.Modified Z-source single-phase inverter with twoswitches.IEEE International Symposium on Industrial Electronics,2008:257-263.
    [54].Dong Cao,Shuai Jiang,Xianhao Yu,et al..Low cost semi-Z-source inverter for single-phasephotovoltaic systems.IEEE Transactions on Power Electronics,2011,26(12):3514-3523.
    [55].Qian, W.,F.Z. Peng and H. Cha.Trans-Z-source inverters.IEEE Transactions on PowerElectronics,2011,26(12):3453-3463.
    [56].Miao, Z.,et al..Tapped-inductor Z-source inverters with enhanced voltage boost inversionabilities.IEEE International Conference on Sustainable Energy Technologies (ICSET),2010:1-6.
    [57].Gajanayake C. J.,Luo F. L.,Gooi H. B.,et al.Extended boost Z-source inverters.IEEE EnergyConversion Congress and Exposition,2009:3845-3852.
    [58].Nguyen, M.,Y. Lim and Y. Kim.A modified single-phase quasi-Z-source AC-ACconverter.IEEE Transactions on Power Electronics,2012,27(1):201-210.
    [59].Minh-Khai, N.,J. Young-Gook and L.Young-Cheol, Single-phase AC–AC converter based onquasi-Z-source topology.IEEE Transactions on Power Electronics,2010,25(8):2200-2210.
    [60].Poh Chiang Loh,Sok Wei Lim,Feng Gao,et al..Three-level Z-source inverters using a singleLC impedance network.IEEE Transactions on Power Electronics,2007,22(2):706-711.
    [61].Poh Chiang Loh,Feng Gao,Frede Blaabjerg,et al..Operational analysis and modulation controlof three-level Z-source inverters with enhanced output waveform quality,IEEE Transactions onPower Electronics,2009,24(7):1767-1775.
    [62].Poh Chiang Loh,Vilathgamuwa, D. M.,Gajanayake, C. J.,et al..Transient modeling andanalysis of pulse-width modulated Z-source inverter.IEEE Transactions on Power Electronics,2007,22(2):498-507.
    [63].Jingbo, L.,H. Jiangang and X. Longya..Dynamic modeling and analysis of Z-sourceconverter—derivation of AC small signal model and design-oriented analysis..IEEE Transactions onPower Electronics,2007,22(5):1786-1796.
    [64].Miaosen, S.,T. Qingsong and F.Z. Peng.Modeling and controller design of the Z-source inverterwith inductive load.IEEE Power Electronics Specialists Conference,2007:1804-1809.
    [65].Sen, G. and M.E. Elbuluk.Voltage and current-programmed modes in control of the Z-sourceconverter.IEEE Transactions on Industry Applications,2010,46(2):680-686.
    [66].Ellabban, Omar,Van Mierlo, Joeri,Lataire, Philippe.A DSP-based dual-loop peak dc-linkvoltage control strategy of the Z-source-inverter.IEEE Transactions on Power Electronics,2012,27(9):4088-4097.
    [67].Gajanayake, C.J.,D.M. Vilathgamuwa and C.L. Poh.Modeling and design of multi-loop closedloop controller for Z-source inverter for distributed generation.37th IEEE Power ElectronicsSpecialists Conference,2006:1-7.
    [68].Das, A.,D. Lahiri and A.K. Dhakar.Residential solar power systems using Z-sourceinverter.IEEE Region10Conference TENCON2008,2008:1-6.
    [69].Badin, R.,et al..Grid interconnected Z-source PV system.IEEE Power Electronics SpecialistsConference,2007:2328-2333.
    [70].Dehghan, S.M.,M. Mohamadian and A.Y. Varjani.A new variable-speed wind energyconversion system using permanent-magnet synchronous generator and Z-source inverter.IEEETransactions on Energy Conversion,2009,24(3):714-724.
    [71].Supatti, U.,and F.Z. Peng.Z-source inverter based wind power generation system.IEEEInternational Conference on Sustainable Energy Technologies,ICSET2008,2008:634-638.
    [72].Vilathgamuwa, D.M.,X. Wang and C.J. Gajanayake.Z-source converter based grid-interface forvariable-speed permanent magnet wind turbine generators.IEEE Power Electronics SpecialistsConference,2008:4545-4550.
    [73].Das, A.,et al..Performance analysis of Z-source inverter based ASD system with reducedharmonics.IEEE Power and Energy Society General Meeting-Conversion and Delivery of ElectricalEnergy in the21st Century,2008:1-7.
    [74].Fang, Z.P.,et al..Z-source inverter for motor drives.IEEE Transactions on Power Electronics,2005,20(4):857-863.
    [75].You, K. and M.F. Rahman.Constructing a novel power converter by matrix converter theory andZ-source inverter concepts for ISA42V PowerNet system.41st IEEE IAS Annual Meeting IndustryApplications Conference,2006:2101-2108.
    [76].Keping, Y. and M. F. Rahman.A matrix-Z-source converter with AC-DC bidirectional powerflow for an integrated starter alternator system.IEEE Transactions on Industry Applications,2009,45(1):239-248.
    [77].Yu Tang,Shaojun Xie,Chaohua Zhang,Zegang Xu.Improved Z-source inverter with reducedZ-source capacitor voltage stress and soft-start capability.IEEE Trans. on Power Electronics,2009,24(2):409-415.
    [78].Gajanayake C. J.,Luo F. L.,Gooi H. B.,et al.Extended-boost Z-source inverters.IEEETransactions on Power Electronics,2010,25(10):2642-2652.
    [79].Strzelecki R.,Adamowicz M.,Strzelecka N.,and W. Bury.New type T-Source inverter.IEEEProceedings of Compatibility and Power Electronics,2009:191-195.
    [80].Qian W.,Peng F. Z.,and Cha Honnyong.Trans-Z-source inverters.IEEE Transactions on PowerElectronics,2011,26(12):3453-3463.
    [81].Zhu M.,Yu K.,and Luo F. L..Switched inductor Z-Source inverter.IEEE Transactions on PowerElectronics,2010,25(8):2150-2158.
    [82].Nguyen M.,Lim Y.,and Cho G..Switched-inductor quasi-Z-source inverter.IEEE Transactionson Power Electronics,2011,26(11):3183-3191.
    [83].Ding Li,Poh Chiang Loh,Miao Zhu,et al.Generalized multicell switched-inductor andswitched-capacitor Z-source inverters.IEEE Transactions on Power Electronics,2013,28(2):837-848.
    [84].Li D.,Loh P. C.,Zhu M.,and et. al..Cascaded switched-inductor and tapped-inductor z-sourceinverters.IEEE Proceedings of APEC,2011:1661-1666.
    [85].房绪鹏.Z源逆变器研究,[博士学位论文],杭州,浙江大学,2005.
    [86].许颇.基于Z源型逆变器的光伏并网发电系统的研究,[博士学位论文],合肥,合肥工业大学,2006.
    [87].丁新平.Z_源变流器关键技术的研究,[博士学位论文],杭州,浙江大学,2007.
    [88].汤雨.Z源逆变器研究,[博士学位论文],南京,南京航空航天大学,2008.
    [89].黄文新,胡育文.L源逆变器,中国,公开号:CN1852021,2006.10.25.
    [90].周成礼.应用于交流异步起动电机的L源逆变器研究,[硕士学位论文],南京,南京航空航天大学,2008.
    [91].黄文新,胡育文,杨奇.单级可升压逆变器,中国,授权号:ZL2009I0181639.3.
    [92].Witulski A F.Introduction to modeling of transformers and coupled inductors.IEEE Transactionson Power Electronics,1995,10(3):349-356.
    [93].Jingbo, L.,H. Jiangang and X. Longya.Dynamic Modeling and Analysis of Z SourceConverter—Derivation of AC Small Signal Model and Design-Oriented Analysis.IEEE Transactionson Power Electronics,2007,22(5):1786-1796.
    [94].Han-Hsiang Huang,Chun-Yu Hsieh,Jie-Yu Liao,and Ke-Horng Chen.Adaptive droopresistance technique for adaptive voltage positioning in boost dc-dc converters.IEEE Transactions onPower Electronics,2011,26(7):770-778.
    [95].张卫平.开关变换器的建模与控制.北京:中国电力出版社,2006:88-110.
    [96].M.H.Bierhoff,F.W.Fuchs.Semiconductor loss in voltage source and current source IGBTconverters based on analytical derivation.IEEE Proceedings of PESC,2004:2836-2842.
    [97].Kolar J. W.,Zach F. C., Casanellas F..Losses in PWM inverters using IGBTs.IEE ElectricPower Applications,1995,142(4):285-288.
    [98].Ribeiro H.,A. Pinto,and B. Borges.Single-stage DC-AC converter for photovoltaicsystems.IEEE Proceedings of ECCE,2010:604-610.
    [99].魏居魁.串联型Z源逆变器应用于光伏发电的关键技术研究,[硕士学位论文],南京,南京航空航天大学,2010.
    [100]. M. Kazmierkowski,R. Krishnan,and F. Blaabjerg.Control in Power Electronics-SelectedProblems.New York:Academic,2002.
    [101].张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003:112-133.
    [102]. L. Harnefors and H.-P. Nee.Model-based current control of ac drives using the internalmodel control method.IEEE Transactions on Industrial Application,1998,34(1):133-141.
    [103].胡广书.数字信号处理:理论、算法与实现.北京:清华大学出版社,1997.
    [104]. S.-K. Chung.A phase tracking system for three phase unity interface inverters.IEEETransactions on Power Electronics,2000,15(3):431-438.
    [105]. Limongi L. R,Bojoi R.,Pica C. and et. al.Analysis and comparison of phase-locked looptechniques for grid utility applications.IEEE Proceedings of PCC,2007:674-681.
    [106]. S. Kjaer,J. Pedersen,and F. Blaabjerg.A review of single-phase grid-connected invertersfor photovoltaic modules.IEEE Transactions on Industrial Application,2005,41(5):1292-1306.
    [107]. R. Gonzalez,J. Lopez,P. Sanchis and L. Marroyo.Transformerless inverter for single-phasephotovoltaic systems.IEEE Transactions on Power Electronics,2007,22(2):693-697.
    [108].肖华锋,谢少军,杨晨.NPC三电平并网逆变器共模电流抑制技术研究.中国电机工程学报,2010,30(33):23-29.
    [109]. IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems.IEEEStandard929,2000.
    [110]. DIN VDE0126-1-1Automatic Disconnection Device between a Generator and the PublicLow-voltage Grid.DIN Electrotechnical Standard,2005.
    [111]. Tamas Kerekes,Remus Teodorescu,Marco Liserre,et. al.,Evaluation of three-phasetransformerless photovoltaic inverter topologies.IEEE Transactions on Power Electronics,2009,24(9):2202-2210.
    [112]. Tamas Kerekes,Remus Teodorescu,and U. Borup,Transformerless photovoltaic invertersconnected to the grid.IEEE Proceedings of APEC,2007:1733-1737.
    [113]. Tamas Kerekes,Remus Teodorescu,Marco Liserre,Common mode voltage in case oftransformerless PV inverters connected to the grid.IEEE Proceedings of ISIE,2008:2390-2395.
    [114]. J. Holtz,Pulse width modulation for electronic power conversion,Proceedings of IEEE,1994,82(8):1194-1214.
    [115]. Duncan Andrew Grant,Yann Darroman,and James Suter.Synthesis of tapped-inductorswitched-mode converters.IEEE Transactions on Power Electronics,2007,22(5):1964-1969.
    [116]. Kaiwei Yao,Mao Ye,Ming Xu,and Fred C. Lee.Tapped-inductor buck converter forhigh-step-down dc-dc conversion.IEEE Transactions on Power Electronics,2005,20(4):775-780.
    [117]. Ahmet M. Hava,Russel J. Kerkman,and Thomas A. Lipo.Simple analytical and graphicalmethods for carrier-based PWM-VSI drives.IEEE Transactions on Power Electronics,1999,14(1):49-60.
    [118].袁佳歆,饶斌斌,刘俊博,陈柏超.调制比对逆变器输出波形质量的影响.电工技术学报,2011,26(增刊1):142-147.
    [119]. Maddula, S. K. and Balda, J. C..Lifetime of electrolytic capacitors in regenerative inductionmotor drives.IEEE Proceedings of PESC,2005:153-159.
    [120]. Jun Yao,Hui Li,Yong Liao,et al.An improved control strategy of limiting the DC-linkvoltage fluctuation for a doubly fed induction wind generator.IEEE Transactions on PowerElectronics,2008,23(3):1205-1213.
    [121].储剑波.驱动空调压缩机的永磁同步电动机的控制技术研究,[博士学位论文],南京,南京航空航天大学,2010.
    [122]. E. Ledezma,B. McGrath,A. Munoz,and T. A. Lipo.Dual AC-drive system with a reducedswitch count.IEEE Transactions on Industry Application,2001,37(5):1325-1333.
    [123]. C. B. Jacobina,M. B. de R. Correa,A. M. N. Lima and E. R. C. da Dilva.AC motor drivesystems with a reduced-switch count converter.IEEE Transactions on Industry Application,2003,39(5):1333-1342.
    [124]. C. B. Jacobina,E. C. dos Santos,M. B. de R. Correa,and E. R. C. daDilva.Single-phase-input reduced-switch-count AC-AC drive systems.IEEE Transactions on IndustryApplication,2008,44(3):789-798.
    [125]. IEC61000-3-2Limits for harmonic current emission(equipment input current≤16A perphase).IEC Electrotechnical Standard,2009.
    [126]. H. C. Cheng,Y. C. Hsieh,and C. S. Lin.A novel single-stage high-power-factor AC/DCconverter featuring high circuit efficiency.IEEE Transactions on Industrial Electronics,2011,58(2):524-532.
    [127]. A. El Aroudi,M. Orabi,R. Haroun,and L. Martinez-Salamero.Asymptotic slow-scalestability boundary of PFC AC-DC power converters: theoretical prediction and experimentalvalidation.IEEE Transactions on Industrial Electronics,2011,58(8):3448-3460.
    [128].段勇.功率因数校正技术及其在变频空调系统中的应用,[硕士学位论文],长沙,中南大学,2011.
    [129].王晗,杨兴华,杨喜军,叶梵生.采用无桥拓扑的部分有源PFC在变频器中的应用和实现.变频器世界,2007,10:48-52.
    [130]. Inazuma K.,Ohishi K.,and Haga H..High-power-factor control for inverter output powerof IPM motor driven by inverter system without electrolytic capacitor.IEEE Proceedings of ISIE,2011:619-624.
    [131]. Haga H.,Nishiya K.,Kondo S.,and Ohishi K..High power factor control of electrolyticcapacitor less current-fed single-phase to three-phase power converter.IEEE Proceedings of IPEC,2010:443-448.
    [132]. Inazuma K.,Utsugi H.,Ohishi K.,and Haga H..High power factor single-phase dioderectifier driven by repetitive controlled IPM motor.IEEE Transactions on Industrial Electronics,2012,to be published.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700