Z源逆变器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的电压源和电流源逆变器相比,Z源逆变器具有可实现升降压变换以及逆变器桥臂可以直通等优点,在新能源发电领域具有广阔的应用前景。但现有的Z源逆变器拓扑存在Z源电容电压应力大以及启动冲击大等缺陷。
     本文研究新型Z源变流器电路结构与电路拓扑设计方法,并在此基础上系统地研究了Z源应用于单相逆变、三相逆变以及AC-AC这三个功率变换场合时的新型电路拓扑、工作原理、工作特性和控制策略。
     提出了新型Z源变流器电路结构,给出了Z源变流器电路拓扑设计方法,得到了一系列新型Z源变流器电路拓扑,新型拓扑能够解决现有拓扑所存在的重要缺陷,减小变换器体积、重量和实现成本。
     探索了Z源在单相逆变场合的应用。提出了单相Z源逆变器电路拓扑族,包括基本型、简化型和升降压型三种拓扑。基本型与简化型拓扑仅需使用两个功率开关,并且输入输出共地。以简化型拓扑为例进行了分析,研究了其单周期控制策略,并进行了实验验证。升降压型拓扑需使用三个功率开关,存在降压和升压两种工作模式,能实现单级升降压逆变,具有输入电流连续,双向功率流动等优点。
     提出了新型三相Z源逆变器拓扑及其软启动策略,能有效解决传统拓扑电路结构上的缺陷,减小变换器的体积、重量,增加可靠性。研究了新型拓扑在各种调制策略下的工作特性,分析了断续工作模式下的工作原理,并推导了进入断续工作模式的条件,给出了参数设计准则,研制了原理样机,给出了实验结果。
     建立了新型三相Z源逆变器的小信号模型,得到了系统传递函数,基于根轨迹法分析了各电路参数对系统传递函数中右半平面零点的影响。在分析现有的闭环控制实现复杂,稳定性差的基础上,提出了输入电压前馈加输出电压峰值反馈的控制策略,实现了直流侧与交流侧的解耦控制,具有实现简单、稳定性好以及输出电压无稳态误差等优点,实验结果证实了理论分析的正确性。
     最后,对Z源AC-AC变换器进行了研究。提出了一类新型单相与三相Z源AC-AC变换器电路拓扑族及其换流策略,有效解决了现有拓扑导通损耗大以及存在换流问题等缺陷,这类电路拓扑具有结构简单、变换效率和可靠性高、换流实现简单且安全可靠等优点。分析了这类变换器的稳态工作原理、换流工作模态和参数设计准则,并以电压型单相Z源AC-AC变换器为例进行了实验验证。
The Z-source inverter can perform buck-boost conversion and the phase legs can be on shoot-through state, therefore it can be widely used in renewable energy power supply system, but the present Z-source inverter has the drawbacks of high Z-source capacitor voltage stress and huge inrush surge.
     The research of this dissertation focus on the new Z-source converter structure and design method of Z-source converter topologies. The new topologies, operation principle, characteristic and control strategy of the single-phase Z-source inverter, three-phase Z-source inverter and Z-source AC-AC converter are investigated systematically.
     A new Z-source converter structure is proposed and a series of new Z-source converter topologies are derived based on the topological design method. Compared to existing topologies, the new topologies can achieve less volume, weight and cost. The application of the Z-source network in single-phase inverter is researched. The single-phase Z-source inverter topologies are proposed, including the basic topology, the simplified topology and the buck-boost topology. The basic and simplified topologies only utilize two switches with the input and output sharing the same ground. Analysis is given taking the simplified topology as an example. One-cycle control is adopted and is verified by experimental results. The buck-boost topology utilizes three switches and has two operation modes: buck mode and boost mode. It can perform the single-stage buck-boost conversion with continuous input current and bidirectional power flow.
     An improved three-phase Z-source inverter topology and its soft-start strategy are proposed to solve the problems in traditional topology. The system volume and cost can be reduced and the reliability can be improved. The characteristic of improved topology under various SPWM and SVPWM control is investigated. The operation principle under discontinuous conduction mode (DCM) is analyzed and the condition in DCM mode is derived. The parameters design rule is given. A prototype is built on and the experimental results are given.
     The small signal model of the new three-phase Z-source inverter is derived and the transfer function of system is given. The effect on right-hand-plane zero caused by different parameters is analyzed based on loot-locus analyses. The present closed loop control strategy of Z-source inverter is complex and not always stable. A new feed-forward of input plus feedback of peak output control strategy is proposed, and the control of DC-link and inverter stage is decoupling. This control strategy is simple and stable, and there is no steady-state error in ac output. The analysis is verified by experimental results.
     Finally, the analysis is given on Z-source AC-AC converter. A new family of single phase four switches structure and three phase six switches structure Z-source AC-AC converters are proposed to solve the drawbacks of high conduction loss and commutation problem in present Z-source AC-AC converters. They have the merits such as simple structure, high efficiency, high reliability and safe commutation can be achieved. The operation principle, commutation modes and parameter design method are analyzed. Experimental results on voltage-fed single phase Z-source AC-AC converter are given to verify the analysis.
引文
[1] B. A. Welchko, T. A. Lipo, T. M. Jahns, et al, Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations, IEEE Trans. on Power Electronics, 2004, 19(4): 1108-1116
    [2] A.Sikorski, T. Citko, Current controller reduced switching frequency for VS-PWM inverter used with AC motor drive applications, IEEE Trans. on Industrial Electronics, 1998, 45(5): 792-801
    [3] Jun-Keun Ji, Jang-Hwan Kim, et al, A novel three-phase line-interactive UPS system with parallel-series active power-line conditioning capabilities using AC line reactor, IEEE IAS, 2004: 1861-1866
    [4] C. Zhao, J. W. Kolar, A novel three-phase three-port UPS employing a single high-frequency isolation transformer, IEEE PESC, 2004: 4135-4141
    [5] H. I. Sewell, D. A. Stone, C. M. Bingham, Novel three phase unity power factor modular induction heater, IEE Electric Power Applications, 2000, 147(5): 371-378
    [6] J. H. Marks, T. C. Green, Rating analysis of active power filters, IEEE PESC, 2001: 1420-1425
    [7] Woo-Cheol Lee, Taeck-Kie Lee, Dong-Seok Hyun, A three-phase parallel active power filter operating with PCC voltage compensation with consideration for an unbalanced load, IEEE Trans. on Power Electronics, 2002, 17(5): 807-814
    [8]王飞,宇世杰,苏建徽,沈玉粱,太阳能光伏并网发电系统的研究,电工技术学报,2005, 20 (5): 87-91
    [9] J. B. Ekanayake, M. Jenkins, A three-level advanced static VAr compensator, IEEE Trans. on Power Delivery, 1996, 11(1): 540-545
    [10] G. Joos, J. Espinoza, Three phase series VAr compensation based on a voltage controlled current source inverter with supplemental modulation index control, IEEE PESC, 1994: 1437-1442
    [11] T. Sukegawa, K. Kamiyama, K. Matsui, et al, Fully digital vector controlled PWM VSI-fed ac drives with an inverter dead-time compensation strategy, IEEE Trans. on Industry Applications. 1991, 27(3): 552-559
    [12] S. C. Rizzo, W. Bin, R. Sotudeh, Symmetric GTO and snubber component characterization in PWM current-source inverters, IEEE Trans. on Power Electronics, 1998, 13(4): 617-625
    [13] G. Joos, G. Moschopoulos, P. D. Ziogas, A high performance current source inverter, IEEE Trans. on Power Electronics, 1993, 8(4): 571-579
    [14] F. Z. Peng, Z-source inverter, IEEE IAS 2002: 775-781
    [15]彭方正,房绪鹏,顾斌等,Z源变换器,电工技术学报,2004, 19(2):47-51
    [16] F. Z. Peng, M. S. Shen, Z. M. Qian, Maximum boost control of the Z-source inverter, IEEE Trans. on Power Electronics, 2005, 20(4): 833-838
    [17] M. S. Shen, J. Wang, A. Joseph, et al, Constant boost control of the Z-source inverter to minimize current ripple and voltage stress, IEEE Trans. on Industry Applications, 2006, 42(3):770-777
    [18] P. C. Loh, D. M. Vilathgamuwa, Y. S. Lai , et al, Pulse-width modulation of Z-source inverters, IEEE Trans. on Power Electronics, 2005, 20(6): 1346-1355
    [19] Q. Tran, T. Chun, J. Ahn, H. Lee, Algorithms for controlling both the DC boost and AC output voltage of Z-source inverter, IEEE Trans. on Industrial Electronics, 2007, 54(5): 2745-2750
    [20]顾斌,钱照明,房绪鹏等,Z源逆变器空间矢量控制的DSP实现,电力电子技术,2005, 39(6): 107-108
    [21] P. C. Loh, D. M. Vilathgamuwa, G. J. Gajanayake, et al, Transient modeling and analysis of pulse-width modulated Z-source inverter, IEEE Trans. on Power Electronics, 2007, 22(2): 498-507
    [22] J. B. Liu, J. G. Hu, L. Y. Xu, Dynamic modeling and analysis of Z-source converter: derivation of AC small signal model and design oriented analysis, IEEE Trans. on Power Electronics, 2007, 22(5): 1786-1796
    [23] M. S. Shen, Q. S. Tang, F. Z. Peng, Modeling and controller design of the Z-source inverter with inductive load, IEEE PESC, 2007:1804-109
    [24] X. P. Ding, Z. M. Qian, S. T. Yang, et al, A PID control strategy for DC-link boost voltage in Z-source inverter, IEEE APEC, 2007: 1145-1148
    [25] X. P. Ding, Z. M. Qian, S. T. Yang, et al, A direct peak DC-link boost voltage control strategy in Z-source inverter, IEEE APEC, 2007: 648-653
    [26] C. J. Gajanayake, D. M. Vilathgamuwa, P. C. Loh, Development of a comprehensive model and a multiloop controller for Z-source inverter DG systems, IEEE Trans. on Industrial Electronics, 2007, 54(4): 2352-2359
    [27] P. C. Loh, F. Blaabjerg, C. P. Wong, Comparative evaluation of pulse width modulation strategies for Z-source Neutral-point-clamped inverter, IEEE Trans. on Power Electronics, 2007, 22(3): 1005-1013
    [28] P. C. Loh, S. W. Lim, F. Gao, et al, Three-Level Z-source inverters using a single LC impedance network, IEEE Trans. on Power Electronics, 2007, 22(2): 706-711
    [29] P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, et al, Z-source current-type inverters: digital modulation and logic implementation, IEEE Trans. on Power Electronics, 2007, 22(1): 169-177
    [30] X. P. Ding, Z. M. Qian, Y. Y. Xie, et al, A Novel ZVS Z-Source rectifier, IEEE APEC, 2006: 951-955
    [31]王利明,钱照明,彭方正,Z源直流变换器,电气应用,2005, 24(2): 123-124
    [32] X. P. Fang, Z. M. Qian, F. Z. Peng, Single-phase Z-source PWM AC-AC converters, IEEE Power Electronics Letters, 2005, 3(4): 121-124
    [33] F. Zhang, X. P. Fang, F. Z. Peng, et al, A new three-phase AC-AC Z-source converter, IEEE APEC, 2006: 123-126
    [34] Y. Huang, M. S. Shen, F. Z. Peng, et al, Z-source inverter for residential photovoltaic systems, IEEE Trans. on Power Electronics, 2006, 21(6): 1776-1782
    [35] P. Xu, X. Zhang, C. W. Zhang, et al, Study of Z-source inverter for Grid-connected PV systems, IEEE PESC, 2006: 18-22
    [36] F. Z. Peng, A. Joseph, J. Wang, et al, Z-source inverter for motor drives, IEEE Trans. on Power Electronics, 2005, 20(4): 857-863
    [37] F. Z. Peng, M. S. Shen, K. Holland, Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles, IEEE Trans. on Power Electronics, 2007, 22(3): 1054-1061
    [38]王得利,宋丹,李杰等,基于Z源逆变器的PMSG风电系统控制策略研究,电力电子技术,2008, 42(5): 56-58
    [39] K. You, M. F. Rahman, A new power converter for ISA 42V powernet system using matrix converter theory and Z-source inverter concepts, IEEE VPPC, 2005: 461-467
    [40]Y. S. Xue, L. C. Chang, S. B. Kj?r, Topologies of single-phase inverters for small distributed power generators: an overview, IEEE Trans. on Power Electronics, 2004, 19(5): 1305-1314
    [41] N. Kasa, T. Iida, H. Iwamoto, An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system, IEEE IECON, 1999: 185–190
    [42] K. M. Smedley, S. Cuk, One-cycle control of switching converters, IEEE Trans. on Power Electronics, 1995, 10(6): 625-633
    [43] K. M. Smedley, S. Cuk, Dynamics of one-cycle controlled Cuk converter, IEEE Trans. on Power Electronics, 1995, 10(6): 634-639
    [44] N. Vázquez, J. Almazan, J.álvarez, et al, Analysis and experimental study of the buck, boost and buck-boost inverters, IEEE PESC, 1999: 801-806
    [45] S. Bhowmik, R. Spee, A guide to the application-oriented selection of AC-AC converter topologies, IEEE Trans. on Power Electronics, 1993, 8(2): 156-163
    [46] L. Wei , T. A. Lipo, A novel matrix converter topology with simple commutation, IEEE IAS, 2001: 1749-1754
    [47] D. Vincenti, J. Hua, P. Ziogas, Design and implementation of a 25-kVA three-phase PWM AC line conditioner, IEEE Trans. on Power Electronics, 1994, 9(4): 384-389
    [48]李磊,陈道炼,优良综合性能的正激式高频环节交-交变换器,中国电机工程学报,2006,26(17):77-81
    [49] F. Z. Peng, L. Chen, F. Zhang, Simple topologies of PWM AC-AC converters, IEEE Power Electronics Letters, 2003, 1(1): 10-13
    [50] F. Z. Peng, Z-source inverter, IEEE Trans. on Industry Applications, 2003, 39(2): 504-510
    [51] M. Kazerani, A direct AC-AC converter based on current-source converter modules, IEEE Trans. on Power Electronics, 2003, 18(5): 1168-1175
    [52]俞红祥,纪延超,林敏,交流斩波器的新型谐波抑制脉宽调制技术,中国电机工程学报,2005, 25(5): 68-73
    [53]石勇,杨旭,王兆安,新型三电平PWM交流斩波器,电工技术学报,2003, 18(6): 7-11
    [54]张方华,严仰光,高频耦合AC-AC变压器的研究,中国电机工程学报,2005, 25(12): 149-153
    [55] B. Farhangi, S. Farhangi, Comparison of Z-source and boost-buck inverter topologies as a single phase transformer-less photovoltaic grid-connected power conditioner, IEEE PESC, 2006: 74-79
    [56] Y. Xie, Z. Qian, X. Ding, et al, A novel buck-boost Z-source rectifier, IEEE PESC, 2006: 1225-1229
    [57] X. Ding, Z. Qian, Y. Xie, et al, Transient modeling and control of the novel ZVS Z-source rectifier, IEEE PESC, 2006: 898-902
    [58] K. You, M. F. Rahman, Analytical comparison of conduction and switching losses of a novel matrix-Z-Source converter and a conventional VSI converter for automotive ISA 42 V System, IEEE PESC, 2006: 146-152
    [59] Y. Xie, Z. Qian, X. Ding, et al, A novel buck-boost Z-source rectifier, IEEE PESC, 2006: 1225-1229
    [60] Z. Zhou, T. Li, T. Takahashi, et al, Design of a universal space vector PWM controller based on FPGA, IEEE APEC, 2004: 1698-1702
    [61] T. Chun, Q. Tran, J. Ahn, et al, Ac output voltage control with minimization of voltage stress across devices in the Z-source inverter using modified SVPWM, IEEE PESC, 2006: 3030-3034
    [62] Y. Huang, M. S. Shen, F. Z. Peng, A Z-source inverter for residential photovoltaic systems, IEEE IPEC, 2005: 1426-1431
    [63] X. P. Fang, Z. M. Qian, Q. Gao, et al, Current mode Z-source inverter-fed ASD system, IEEE PESC, 2004: 2805-2809
    [64] F. Z. Peng, X. Yuan, X. Fang, et al, Z-source inverter for adjustable speed drives, IEEE Power Electronics Letters, 2003, 1(2): 33-35
    [65] F. Z. Peng, Z-source inverter for adjustable speed drives, IEEE PESC, 2004: 249-254
    [66] F. Z. Peng, M. S. Shen, Z. M. Qian, Maximum boost control of the Z-source inverter, IEEE PESC, 2004: 255-260
    [67] Y. H. Kim, H. W. Moon, et al, A fuel cell system with Z-source inverters and ultracapacitors, IEEE IPEMC, 2004: 1587-1591
    [68] M. S. Shen, J. Wang, A. Joseph, et al, Maximum constant boost control of the Z-source inverter, IEEE IAS, 2004:142-147
    [69] P. C. Loh, D. M. Vilathgamuwa, Y. S. Lai, et al, Pulse-width modulation of Z-source inverters, IEEE IAS, 2004: 148-155
    [70]丁新平,Z源变流器关键技术的研究,[博士学位论文],杭州:浙江大学,2007
    [71]高奇,钱照明,顾彬等,阻抗型逆变器的一种非正常工作状态,电工技术学报,2005, 20(8): 55-58
    [72] M. Shen, A. Joseph, J. Wang, et al, Comparison of traditional inverters and Z-source inverter, IEEE PESC, 2005: 1692– 1698
    [73] X. P. Ding, Z. M. Qian, Y. Xie, et al, Three phase Z-source rectifier, IEEE PESC, 2005: 494-500
    [74] K. Holland, F. Z. Peng, Control strategy for fuel cell vehicle traction drive systems using the Z-source inverter, IEEE VPPC, 2005: 639-644
    [75] C. J. Gajanayake, D. M.Vilathgamuwa, P. C. Loh, et al, Z-source inverter based power quality compensator with enhanced ride-through capability, IEEE IAS, 2007: 955-962
    [76] S. T. Yang, X. P. Ding, F. Zhang, et al, Unified control technique for Z-Source inverter, IEEE PESC, 2008: 3236-3242
    [77] C. Rosas, C. Julio, F. Z. Peng, et al, Z-source converter based zero voltage electronic load, IEEE PESC, 2008: 2764-2770
    [78] Z. J. Zhou, X. Zhang, P. Xu, et al, Single-phase uninterruptible power supply based on Z-source inverter, IEEE Tran. on Industrial Electronics, 2008, 55(8): 2997-3004
    [79] J. Y. Liu, J. Hu, L. Y. Xu, A modified space vector PWM for Z-source inverter -modeling and design, IEEE ICEMS, 2005: 1242 -1247
    [80] Y. Huang, F. Z. Peng, J. Wang, et al, Survey of the power conditioning system for PV power generation, IEEE PESC, 2006: 3257-3262
    [81]高奇,Z源逆变器的主电路研究,[硕士学位论文],杭州:浙江大学,2005
    [82]顾斌,Z源逆变器控制方法的研究,[硕士学位论文],杭州:浙江大学,2005
    [83] M. S. Shen, F. Z. Peng, Operation modes and characteristics of the Z-source inverter with small inductance, IEEE IAS, 2005: 1253-1260
    [84] K. Holland, M. S. Shen, F. Z. Peng, Z-source inverter control for traction drive of fuel cell-batteryhybrid vehicles, IEEE IAS, 2005: 1651-1656
    [85] K. You, F. M. Rahman, Modulation and control schemes for a new power converter based on Z-source and matrix converter for ISA 42 V powernet system, IEEE PEDS, 2005: 436-441
    [86] T. Vinh, T. Chun, J. Ahn, H. Lee, Algorithms for controlling both the DC boost and AC output voltage of the Z-source inverter, IEEE IECON, 2005: 970-974
    [87] P. C. Loh, F. Blaabjerg, S. Feng, et al, Pulse-width modulated Z-source neutral point clamped inverter, IEEE APEC, 2006: 431-437
    [88] P. Loh, C. Gajanayake, D. Vilathgamuwa, et al, Evaluation of resonant damping techniques for Z-source current-type inverter, IEEE APEC, 2006: 784-790
    [89]丁道宏,电力电子技术(修订版),北京:航空工业出版社,1999
    [90] P. C. Loh, F. Blaabjerg, C. P. Wong, Comparative evaluation of pulse-width modulation strategies for Z-source neutral-point-clamped inverter, IEEE PESC, 2006: 1316-1322
    [91] C. J. Gajanayake, D. M. Vilathgamuwa, P. Loh, Modeling and design of multi-loop closed loop controller for Z-source inverter for distributed generation, IEEE PESC, 2006: 353-1359
    [92] F. Gao, P. C. Loh, D. M. Vilathgamuwa, et al, Performance analysis of random pulse-width modulated Z-source inverter with reduced common mode switching, IEEE PESC, 2006: 1536-1542
    [93]张占松,蔡宣三,开关电源的原理与设计(修订版),北京:北京电子工业出版社,2004
    [94]刘凤君,正弦波逆变器,北京:科学出版社,2002
    [95] M. Shen, A. Joseph, Y. Huang, et al, Design and development of a 50kW Z-source inverter for fuel cell vehicles, IEEE IPEMC, 2006: 1076-1080
    [96] P. C. Loh, N. Duan, C. Liang, et al, Z-source B4 inverters, IEEE PESC, 2007: 1363-1369
    [97]林渭勋,现代电力电子电路,杭州:浙江大学出版社,2002
    [98]陈坚,电力电子学-电力电子变换和控制技术,北京:高等教育出版社,2002
    [99] M. Shen, F. Z. Peng, Operation modes and characteristics of the Z-source inverter with small inductance or low power factor, IEEE Trans. on Industrial Electronics, 2008, 55(1): 89-96
    [100] K. You, M. F. Rahman, A matrix-Z-source converter for automotive integrated starter alternator system, IEEE APEC, 2008: 273-279
    [101] G. Murthi, O. Ojo, A comprehensive analysis of a three-phase Z-source DC-AC converter, IEEE APEC, 2007: 1714-1720
    [102] J. Anderson, F. Z. Peng, Four quasi-Z-Source inverters, IEEE PESC, 2008: 2743-2749
    [103] K. You, M. F. Rahman, Constructing a novel power converter by matrix converter theory and Z-source inverter concepts for ISA 42 V powernet system, IEEE IAS, 2006: 2101-2108
    [104] K. You, M. F. Rahman, Application of general space vector modulation approach of AC-AC matrix converter theory to a new bidirectional converter for ISA 42 V System, IEEE IAS, 2006: 2480-2487
    [105] F. Zhang, F. Z. Peng, Z. M. Qian, Z-H converter, IEEE PESC, 2008: 1004-1007
    [106]房绪鹏,Z源逆变器研究,[博士学位论文],杭州:浙江大学,2005
    [107]许颇,基于Z源型逆变器的光伏并网发电系统的研究,[博士学位论文],合肥:合肥工业大学,2006
    [108] M. S. Shen, A. Joseph, J. Wang, et al, Comparison of traditional inverter and Z-source inverter for fuel cell vehicles, IEEE Workshop on Power Electronics in Transportation, 2004: 125-132
    [109] J. W. Jung, M. Dai, A. Keyhani, Modeling and control of a fuel cell based Z-source converter, IEEE APEC, 2005: 1112 -1118
    [110]许颇,张兴,张崇巍等,采用Z源变换器的小型风力并网逆变系统,电工技术学报,2008, 23(4): 93-97
    [111] P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, et al, Z-source current-type inverters: digital modulation and logic implementation, IEEE IAS, 2005: 940-947
    [112] P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, et al, Transient modeling and analysis of pulse-width modulated Z-source inverter, IEEE IAS, 2005: 2782-2789
    [113]丁新平,钱照明,崔彬等,具有承受电网电压跌落能力的交流调速系统的策略,电气传动,2007, 37(4): 3-8
    [114]谢晔源,Z源整流器研究,[硕士学位论文],杭州:浙江大学,2006
    [115] J. S. Lai, F. Z. Peng, Multilevel Converters—A new breed of power converters, IEEE Trans. on Industry Applications, 1996, 32(3): 509-517
    [116] A. Nabae, S. Ogasawara, H. Akagi, A novel control scheme for current controlled PWM inverters, IEEE Trans. on Industry Applications, 1986, 22(4): 312-323
    [117]严仰光,航空航天器供电系统,北京:航空工业出版社,1994
    [118]胡寿松,自动控制原理(第四版),北京:科学出版社,2001
    [119] Z. Fedyczak, R. Strzelecki, G. Benysek, Single phase PWM AC-AC semiconductor transformer topologies and applications, IEEE APEC, 2002: 1048-1053

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700