基于Z拓扑的光伏并网逆变器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国民经济的飞速发展能源问题日益突出,发展和利用新能源是当前的重中之重。太阳能是新能源中最有发展前途的形式,利用太阳能进行发电对于缓解能源问题正在起着越来越重要的作用。全文从光伏并网系统的概况进行分析,详细分析了单级电压源型并网逆变器、带Boost电路的电压源型逆变器和Z源型逆变器的工作原理,总结并比较了它们的优缺点。论文在对Z源型逆变器的拓扑结构、工作原理、波形特性进行分析的基础上,以状态空间平均法对Z源逆变器分部分进行了建模和统一,并在模型的基础上针对于其不足提出了统一建模方案。同时论文详细介绍了SPWM和SVPWM的调制原理以及直通零矢量的控制方法,并介绍了基于本文DSP+FPGA硬件平台的单相SVPWM结合直通分段控制的调制原理与实现方法。并以建模结果和SVPWM为基础,设计了多环的控制系统结构。并对电流内环加入了重复控制的环节,有效的减少了并网电流谐波失真,取得了良好的控制效果。最终,以基于DSP+FPGA控制核心的电压模式Z源型并网逆变器实验平台进行实验,取得了良好的实验结果。主要研究内容包括:
     1.分析了光伏并网系统的组成及其各部分的作用。介绍了作为光伏并网系统核心的逆变器主要拓扑及其应用,详细分析了常用的三种电压型逆变器的拓扑结构、工作原理与特点。重点分析了Z源型逆变器的母线电压的二次谐波干扰问题的产生原因、危害以及抑制方法。针对这三种电压型逆变器从开关器件的功率(SDP)、直流侧无源器件大小、太阳能电池阵列输出电压和逆变器有源器件电压等级、系统效率等方面对它们进行了全面的比较分析,最后总结了Z源型逆变器的优缺点。
     2.对电力电子的常用的建模方法进行简单的介绍与总结。重点介绍了应用状态空间平均法对Z源型逆变器分为Z源升压子电路和逆变桥两部分分别进行建模的方法和建模结果。在分析此种方法不足的基础上,提出了一种统一建模的分析方法,并给出具体的建模模型和建模的结果。
     3.介绍了应用于逆变器的两种主要调制方法SPWM和SVPWM的原理及其生成方法。详细分析了针对于Z源型逆变器的SPWM和SVPWM的直通零矢量的几种控制方法,分析了几种控制方法的优缺点。最后,针对于采用传统的SPWM调制由于直通零矢量加入所带来的开关频率加倍问题,介绍了本文所采用的单相SVPWM的生成原理以及直通分段的直通零矢量控制方法并且详细介绍了通过FPGA生成单相SVPWM的方法。
     4.分析了电压型Z源型逆变器应用于光伏并网发电系统的控制策略。通过电路结构和控制目标将整个控制系统分为三个闭环结构:并网交流电流内环、母线电压外环、MPPT直通零矢量环。在对电流内环控制原理分析的基础上,针对于Z源型逆变器母线电压二次谐波的干扰问题,提出了针对于Z源逆变器的结合重复控制的电流内环控制方案,以抑制二次谐波的干扰。对于母线电压外环采用检测Z源电容电压与在线计算直通零矢量相结合的方式直接对母线电压进行闭环控制,从而提高了系统控制的精确度。
     5.分析了Z源型并网逆变器的硬件系统设计、DSP+FPGA硬件平台设计及其协调控制策略和仿真系统设计。硬件系统设计中包括基于DSP+FPGA的控制系统组成与设计、Z源型逆变器的主参数设计原则与方法。DSP+FPGA硬件平台设计中包括DSP与FPGA的协调控制策略、DSP与FPGA的功能框图。仿真系统设计主要包括Z源型逆变器中各个部分的仿真模型建立结构与实际的仿真模型。
     6.以基于DSP+FPGA硬件平台的Z源型并网逆变器实验平台和南开大学示范电站作为基础,对仿真结果与实验结果进行了分析对比,仿真结果与实验结果相互吻合,验证了系统设计的合理性与有效性。
The problem of energy has become more serious as the social economy develops rapidly in recent years. As the most promising energy method, the use of solar energy is taking a more important role in generating electricity than before. The research and development of solar energy would have an active impact on the social economy. From the overview of photovoltaic on grid system, this paper made a detailed analysis of the principle of single-level voltage source inverter, voltage source inverter with Boost circuit and Z source inverter, summarized and compared their advantages and disadvantages, ultimately chose the Z source inverter circuit with more excellent performance. After analyzing the topology, operation principle and waveform of Z source inverter, this paper build model for each part of the system, based on state space average method, then combine them together. Against the shortcomings of the model, a unified model was proposed. This paper also introduced the modulation principle of SPWM and SVPWM as well as injection method of shoot-through zero vector. This article introduced principle and realization of single-phase SVPWM modulation combined with shoot-through segment injection based on DSP+FPGA hardware platform. Based on modeling results and SVPWM, a multi-loop control system was designed. And the current inner loop was improved by adding a repeated control link, effectively reducing the grid current harmonic distortion, achieved good control effect. Finally, experiments were conducted on voltage source Z Source on grid Inverter platform, which is controlled by DSP+ FPGA, ideal results were gained. The main contents include:
     1. Make an analysis of the composition and function of parts in the photovoltaic system. Introduce the topologies of inverter, which is the core of a photovoltaic on grid system, and their applications, a detailed analysis of topology, working principle and characteristics of three common-used inverters was also conducted. Focus on the causes, hazards, and suppression method of second harmonic interference of Z source inverter bus voltage. Against the three inverter, from the aspects of the switching devices power (SDP), the size of DC side components, photovoltaic module or fuel battery and inverter capacity and system efficiency, a full comparison and analysis were conducted. Finally, according to the comparison results and the actual design requirements of this article, Z source inverter was selected. And the advantages and disadvantages of Z source inverter were summarized.
     2. Modeling methods commonly used in power electronics were briefly introduced and concluded. The modeling results and state space averaging method used in Z source inverter were introduced in emphases. Z source inverter was divided into Z sources boost sub-circuit and the inverter bridge to model the two parts respectively. After analyzing the shortage of this method, a unified modeling approach was proposed and specific modeling models and modeling results were given.
     3. Introduce principle and generation of two main modulation methods-SPWM and SVPWM applied to inverter. Several injection methods of SPWM and SVPWM shoot-through zero vector in the Z source inverter were analyzed and the advantages and disadvantages of several control methods were summarized. Finally, against the switching frequency doubling problem caused by bringing in shoot-through zero vectors in the traditional SPWM modulation, principle of single-phase SVPWM as well as the shoot-through segment control methods used in this paper were introduced. And the method of generating the single-phase SVPWM by FPGA was given.
     4. Analyze the control strategy of Z source inverter in photovoltaic power generation system. In terms of circuit structure and control objectives, the entire control system consists of three closed-loop structure:the inner grid AC current loop, the outer bus voltage loop, MPPT shoot-through zero vector loop. Based on the analysis of control principle of inner current loop, for the problem of bus voltage second harmonic interference in Z source inverter, the repetitive control theory was proposed to improve the performance of inner loop. The method of testing Z source capacitor voltage and calculating shoot-through zero vectors on line was used to control the bus voltage directly to improve the control accuracy of the system.
     5. Analyze the design of Z Source Inverter hardware system, DSP+FPGA hardware platform and simulation system. Hardware system design includes control system based on DSP+FPGA and design of main parameters of Z source inverter. DSP+ FPGA hardware platform design includes coordinated control strategy between DSP and FPGA and the function structure of DSP and FPGA, Simulation system design includes the modeling of each part in Z source inverter.
     6. Based on experimental platform of Z source inverter, in which DSP+FPGA is controlling core and demonstration power station of NanKai University as a basis, the simulation and experimental results were analyzed and compared, the simulation results and experimental results agree with each other, the rationality and effectiveness of the system was verified.
引文
[1]寻找新能源—二十一世纪能源问题展望.《光明日报》,1999年11月29日
    [2]马胜红,许洪华.光伏发电纵横谈.太阳能.2004,Vol.1:3-5
    [3]李安定.太阳能光伏发电系统工程.北京:北京工业大学出版社,2001:101~104
    [4]孔慧,熊胜虎.全球光伏产业发展现状及发展趋势分析.太阳能,2009,Vol.1:10~12
    [5]钱野,罗如意.国外太阳能扶持政策借鉴.杭州科技,2009.4:20~27
    [6]韦东远.全球太阳能光伏产业发展动态及对我国光伏产业发展的评述.能源政策分析,2009.4:50~57
    [7]赵玉文.21世纪我国光伏产业发展战略思考.中国工程科学,2001.7
    [8]李俊锋,王斯成,张敏吉等.中国光伏发展报告.北京:中国环境科学出版社,2007:5-22
    [9]王长贵.中国光伏产业发展现状与挑战.新材料产业,2009,NO.9
    [10]刘凤君.现代逆变技术及应用.北京:电子工业出版社,2006:22~44
    [11]Miaosen Shen, Alan Joseph, Jin Wang, ectal. Comparison of Traditional Inverters and Z-Source Inverter for Fuel Cell Vehicles. IEEE TRANSACTIONS ON POWER ELECTRONICS,2007, Vol.22 (4):1453-1463
    [12]Fang Zheng Peng, XiaomingYuan, XuPeng Fang, ectal. Z-souree Inverter for adjustable Speed drives[J]. Power Eleertonies Letters IEEE, Vol.1(2):33-35
    [13]Fang Zheng Peng. Z-Source Inverter. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,2003, Vol.39 (2):504-510
    [14]蒋兴铭.电压型逆变器的分析研究.湖南大学学报.1991,Vol.18(1):48-55
    [15]王飞.单相光伏并网系统的分析与研究:[博士学位论文].合肥:合肥工业大学.2005
    [16]赵珂,曹建.基于BUCK型DC-DC变换器的仿真研究.南昌航空大学学报(自然科学版),2008,Vol.22(4):71-74
    [17]付光杰,曹雪.改进的Boost变换器小信号模型及其应用.电力电子技术,2009,Vol.43(1):76~78
    [18]刘树林,刘健,钟久明.输出本质安全型Buck-Boost DC-DC变换器的分析与设计.中国电机工程学报,2008,Vol.28(3):60~65
    [19]丁海洋,朱伟建,吴春华等.一种新颖的光伏发电系统Cuk型软开关变换器的研究.电气传动自动化,2006,Vol.28(3):27-29
    [20]石季英,张红颖,吴俊昭等.零电流开关准谐振SEPIC变换器的仿真设计.计算机仿真,2003,Vol.20(12):30~32
    [21]高奇.Z源逆变器的主电路研究:[硕士学位论文].杭州:浙江大学,2005
    [22]房绪鹏.Z源逆变器研究:[博士学位论文].杭州:浙江大学,2005
    [23]周志健.基于DSP的Z源逆变器控制与设计:[硕士学位论文].合肥:合肥工业大学,2007
    [24]Fang Zheng Peng. Z-Source Inverter for Motor Drives. IEEE TRANSACTIONS ON POWER ELECTRONICS, JULY 2005, VOL.20(4):857-863
    [25]许颇.基于z源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006
    [26]高奇,钱照明,顾斌等.阻抗型逆变器的一种非正常工作状态分析.电工技术学报,2005.8,Vol.20(8):55~59
    [27]丁新平.z-源变流器关键技术的研究:[博士学位论文].杭州:浙江大学,2007
    [28]Holtz J. Pulse width modulation-a survey. IEEE Trnas.Industrial Electronics,1992,39(5)
    [29]R.D.Middlebrook, S.Cuk. A general unified Approach to modeling switching-converter Power stages. IEEE Power electronics specialists conference record,1976:18-34
    [30]Huliedel H. Low frequency sample-data models of switch model DC-DC converter. IEEE Power electronics,1991,6(1)
    [31]高潮等.准谐振及PWM型变流器开关工作波形平均建模法.电工技术学报,1996,11(1)
    [32]林波涛等.PWM开关变换器符号分析.电子学报,]996,24(9)
    [33]邢岩,黄立培,孙晓东等.组合式前端DC-DC变换器[J].中国电机工程学报,2004,24(6):157-161
    [34]张加胜,张磊.四象限变流器的一种统一性建模及分析方法研究[J].中国电机工程学报,2004,24(8):39~44
    [35]张纯江,顾和荣,王宝诚等.基于新型相位幅值控制的三相PWM整流器的数学模型[J].中国电机工程学报,2003,23(7):28~31
    [36]J.Mahdavi, A.Emaadi, M.D.Bellar, etcal. Analysis of Power electronic converters using the generalized state-space averaging approach. Circuits and Systems:Regular Papers, IEEE Transactions, Aug,1997, Vol.44(8:767-770
    [37]S.R.Sanders, J.M.Noworolski, X.Z.Liu, etcal. Generalized averaging method for Power conversion circuits. IEEE Power electronics, April 1991, Vol.6(2):251-259
    [38]B.-K.Lee, M.Ehsami. A simplified functional simulation model for three-Phase voltage-source inverter using switehing function concept. IEEE Trans.1nd.Electron, APril 2001, Vol.48(2):309-321
    [39]Y.Adachi, S.Kobayashi, K.Tsuehida, ectal. An attribute graph grammar for signal flow graphs. In Pro of the IEEE International Conferenee, Aug.1999, VOl.2:1549-1554
    [40]舒志兵,李俊.PWM电压型逆变器的数学模型分析.南京化工大学学报,2001,Vol.23(5):61~63
    [41]陈威.Z源逆变器的信号流图建模与控制分析:[硕士学位论文].合肥:合肥工业大学,2007
    [42]顾斌.Z源逆变器控制方法的研究:[硕士学位论文].杭州:浙江大学,2005
    [43]Xinping Ding, Zhaoming Qian, Yeyuan Xie, ectal. Transient Modeling and Control of the Novel ZVS Z-Source Rectifier.37th IEEE Power Eleetronics Specialists Conference, June 18-22,2006:898-902
    [44]P.C.Loh, D.M.Vilathgamuwa, C.J.Gajanayake, ectal. Transient Modeling and Analysis of Pulse-Width Modulated Z-Source Inverter. IEEE Transactions on Industry Applications, 2005:2782-2789
    [45]Jingbo Liu, Jiangang Hu, Longya Xu. A Modified SpaceVector PWM for Z-Source Inverter-Modeling and Design. IEEE Transactions on Industry Applications,2005: 1242-1247
    [46]Chandana J.Gajanayake, D.MahindaVilathgamuw, poh Chiang Loh. Small-Signal and Signal-Flow-Graph Modeling of Switehed Z-Source Impedance Network. Power Eleetronies Letters IEEE, September 2005, VOl.3(3):111-116
    [47]Jin-WooJung, MinDai, AliKeyhan. Modeling and Control of Fuel Cell Based Z-Source Converter. IEEE Transactions on Industry Applications,2005:1112-1118
    [48]Miaosen Shen, Qingsong Tang, Fangzheng Peng. Modeling and controller design of the z-source inverter with inductive load. Power Electronics Specialists Conference:PESC, 2007 June 17-21:1084-1089.
    [49]D. M. Vilathgamuwa, P. C. Loh, M. N. Uddin. Transient Modelling And Control of Z-source Current Type Inverter. IEEE Transactions on Industry Applications,2007: 1823-1830
    [50]赵青.一种基于单极性SPWM控制的正弦波逆变器的研究:[硕士学位论文].杭州:浙江大学,2004
    [51]毛惠丰,陈增禄,任记达等SPWM数字化自然采样法的理论及脉冲误差分析.中国电机工程学报,2006,Vol.26(9):131~136
    [52]Hamman J, Van Der Merwe F S. Voltage harmonics generated by voltage-fed inverters using PWM natural sampling[J]. IEEE Transactions on Power Electronics,1988,3(3): 297-302.
    [53]吴忠,李红,左鹏等.自然采样SPWM逆变电源的谐波分析及抑制策略[J].电网技术,2002,25(4):17~20.
    [54]Bakari Mwinyiwiwa, Zbigniew Wolanski, Boon-Teck Ooi. Microprocessor implemented SPWM for multiconverters with phase-shifted triangle carriers[J]. IEEE Transactions on Industry Appilcations,1998,34(3):487-494.
    [55]阳岳丰,吕征宇.全桥逆变单极性SPWM控制方式过零点振荡的研究.电源技术应用,2005,Vol.8(9):16~19
    [56]石新春,陈雷,张玉平.双极性SPWM调制的单相工频正弦波逆变器的设计.通信电源技术,2008,Vol.25(4):53~56
    [57]董改花,冯浩.双极性SPWM波形生成法开关点计算及其谐波分析.电气传动自动化,2005,Vol.27(3):23-25
    [58]易龙强,戴瑜兴SVPWM技术在单相逆变电源中的应用.电工技术学报,2007,Vol.22(9):112-117
    [59]李翠萍,王新生,张华强.基于MATLAB的空间矢量PWM仿真研究.机床与液压,2007,Vol.35(7):219~221
    [60]高学军,周志华,温世伶等.基于TMS320F2812DSP的SVPWM算法研究.重庆邮电大学学报(自然科学版),2007,Vol.19(4):510~514
    [61]Zeliang Shu, Jian Tang, Yuhua Guo etcal. An Efficient SVPWM Algorithm With Low Computational Overhead for Three-Phase Inverters. IEEE TRANSACTIONS ON POWER ELECTRONICS,2007, Vol.22 (5):1797-1805
    [62]Naser Abdel-Rahim, john E. Quaicoe. A Single-phase Delta-Modulated Inverter for UPS Applications. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,1993, Col.40 (3):347-354
    [63]MUSTANSIR H. KHERALUWALA, DEEPAKRAJ M. DIVAN. Delta Modulation Strategies for Resonant Link Inverters. IEEE TRANSACTIONS ON POWFR FLFCTRONICS,1990, Vol.5 (2):220-228
    [64]王归新,张昌盛,康勇等.UPS逆变器电压控制的Delta调制策略研究.中国电机工程学报,2004,Vol.24(9):182~187
    [65]Poh Chiang Loh, Mahinda Vilathgamuwa, Yue Sen Lai, etcal. Pulse-Width Modulation of Z-Source Inverters. IEEE TRANSACTIONS ON POWER ELECTRONICS,2005, Vol.20 (6):1346-1355
    [66]Amitava Das, Debasish Lahiri, Barnali Kar. Space Vector PWM Based AC Output Voltage Control of Z-Source Inverter. INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, COMMUNICATION AND ENERGY CONSERVATION",2009:1-4
    [67]Fangzheng Peng, Miaosen Shen, Zhaoming Qian. Maximum Boost Control of the Z-Source Inverter. IEEE TRANSACTIONS ON POWER ELECTRONICS,2005, Vol.20 (4):833-838
    [68]Miaosen Shen, Jin Wang, Alan Joseph, ectal. Maximum Constant Boost Control of the Z-Source Inverter. IAS 2004,2004:142-147
    [69]von Zimmermann, M.Lechler, M.Piepenbreier. Z-source drive inverter using modified SVPWM for low Output Voltage and regenerating Operation. Power Electronics and Application,2009:1-10
    [70]Miaosen Shen, Jin Wang, A. Joseph, ectal. Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Transactions on Industry Applications, May-June 2006,42(3):770-778
    [71]Quang-Vinh Tran, Tae-Won Chun, Jung-Ryol Ahn etc.Algorithms for Controlling Both the DC Boost and AC Output Voltage of Z-Source inverter.IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2007, Vol.54 (5):2745-2750
    [72]XinPing Ding, ZhaomingQian, ShuitaoYang, ectal. A PID Control Strategy for DC-link Boost Voltage in Z-source Inverter. Applied Power Eleetronies Conference,2007, Vol.1:1145-1148
    [73]XinPing Ding, ZhaomingQian, Shuitao Yang, ectal. A Direct Peak DC-link Boost Voltage Control Strategy in Z-Source Inverte. Applied Power Eleetronies Conference,2007, Vol.1:648-653
    [74]蔡磊,钱照明,彭方正.Z源单相并网逆变器控制的实现.电力电子技术,2008,Vol.42(7):14~16
    [75]崔彬,钱照明,丁新平等.Z源逆变器的电压电流双闭环控制.电力电子技术,2007,Vol.41(9):1-3
    [76]Zhi Jian Zhou, Xing Zhang, Po Xu, etcal. Single-Phase Uninterruptible Power Supply Based on Z-Source Inverter. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2008, Vol.55 (8):2997-3004
    [77]Gajanayake, C.J.Vilathgamuwa, D.M.PohChiangLoh. Modeling and design of multi-loop closed loop controller for Z-source inverter for Distributed Generation. Power Electronies Spcialists Conferenee,2006, Vol.1:1-7
    [78]杨水涛,丁新平,张帆等.Z口源逆变器在光伏发电系统中的应用.中国电机工程学报,2008,Vol.28(17):112~118
    [79]胡寿松.自动控制原理(第四版).北京:科学出版社,2001.137-169
    [80]陶永华,尹怡欣,葛芦生.新型PID控制及其应用.北京:机械工业出版社,1998:1-26
    [81]潘新民,王燕芳.微型计算机控制技术实用教程.北京:电子工业出版社,2008:229-255
    [82]T.lnous, M.Nakano, S.Twai. High Aecuracy Control of Servomechanism for Repeated Contouring. Proeeedings of the 10th Annual SymPosiumon Ineremental Motion Control Systems and Devices,1981:285-292
    [83]T.Inous, M.Nakano, T.Kubo, etal. High Aceuracy Control of a Proton Synchrotron Maget Power Supply. IFAC 8th Triennial World Congress,1981: 3137-3142
    [84]S.Hara, T.Omata, M.Nakano. Synthesis of Repetitive Control systems and its Applcations. proe of 24th CDC IEEE,1985:1387-1392
    [85]M.Tomizuka, T.Tsao, K.ehew. Diserete-Time Domain Analysis and Synthesis of Repetitive Controllers, Proe of ACC,1988:PP.860-866
    [86]M.Tomizuka, C.KemPf. Design of Diserete Time RePetitive Controllers with APPlications to Mechanical Systems. Proe of IFAC,11th, August 1990
    [87]M.Ymada, Y.Funahashi, S.Ishiharaetal. Extended Diserete-time prototype RePetitive Controllers and its Application. Proc 35th CDC IEEE,1996, Vol.4:3606-3611.
    [88]J.Hu, M.Tomizuka. A new Plug- in adaptive controller for rejection of periodic disturbances. ASME/IEEE J.Dynamie Syst,1991, Vol.33:1-5.
    [89]Keiji, Watanbe, K.Yamada. Repetitive Control of Time delay system. Proe of 29th CDC IEEE,1990:1685-1690
    [90]K.Chew, M.Tomizuka. Steady-state and Stochastie Performance of a Modified Diserete-Time PrototyPe RePetitive Controller. Journal of Dynamie Systems and Control ASME,1990, Vol.112:35-41
    [91]T.Haneyoshi, A.Kawamura, R.G.Hoft. Waveform Compensation of PWM Inverter with Cyclic Fluctuating Loads. IEEE Trans on IA,1988, Vol.24(4):582-589
    [92]陈宏.基于重复控制理论的逆变电源控制技术研究:[博士学位论文].南京:南京航空航天大学,2003
    [93]杨秀云.PWM逆变器重复控制策略的研究:[硕士学位论文].杭州:浙江工业大学,2004
    [94]李俊林.单相逆变器重复控制和双环控制技术研究:[硕士学位论文].上海:浙华中科技大学,2004
    [95]宋冲.重复控制在有源电力滤波器中的应用:[硕士学位论文].杭州:浙江大学,2008
    [96]张瑞宁,石新春.独立光伏系统最大功率跟踪控制器的实现.电源技术,2008,Vol.32(7):468-471
    [97]何薇薇,杨金明.太阳能光伏发电最大功率跟踪系统研究.电力电子技术,2008,Vol.42(8):30~32
    [98]张玉平,石新春.一种新型光伏最大功率跟踪控制器的实现.电力电子技术,2009,Vol.43(2):14~16
    [99]张超,何湘宁.非对称模糊PID控制在光伏发电MPPT中的应用.电工技术学报,2005,Vol.20(10):72~75
    [100]Cyclone II Device Handbook, Volume 1, Altera Corporation,2007
    [101]tms320f2812 Data Manual, Texas Instruments,2007
    [102]潘松,黄继业.EDA技术与VHDL北京:清华大学出版社,2005:105-127
    [103]何苏勤,王忠勇TMS320C2000系列DSP原理及实用技术.北京:电子工业出版社,2003:316-356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700