永磁同步直驱型全功率风机变流器及其控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,风力发电技术取得了显著的进步,并逐渐成为新能源应用技术中的一个重要分支。本文以安徽省“十五”科技攻关项目和国家“十一五”科技支撑项目为依托,对风力发电应用技术中的永磁同步直驱型全功率风机变流器及其控制技术进行研究。在永磁同步风力发电机的数学模型、永磁同步风力发电机模拟器、永磁同步风力发电机的控制策略及其控制性能、永磁同步风力发电机无速度传感器控制、永磁同步风力发电机参数辨识、永磁同步直驱系统实验室模拟、直驱系统用全功率风机变流器的控制时序及全功率风机变流器的网侧、机侧变流器的协调控制等方面进行了深入研究,并获得了一些具有创新意义的科研成果。本文主要研究内容及创新点可概括如下:
     1、针对直驱系统采用的永磁同步风力发电机的电气结构和论文研究关注的重点,建立了三相和六相永磁同步风力发电机的数学模型,并重点分析了各自的特点。根据理论分析的模型方程,利用Matlab/Simulink建立了永磁同步风力发电机的通用仿真模型,并采用具体电机参数,给出了相关的仿真结果,三种模型的建立为后续针对永磁同步风力发电机控制策略和无速度传感器控制方法的研究建立了理论和仿真平台。
     2、提出了一种兆瓦级永磁同步风力发电机模拟器:根据兆瓦级永磁同步风力发电机的数学模型,可获取不同转速状态下的发电机定子电压和定子电流方程,通过控制三相电压型PWM变流器来近似模拟发电机的这种定子输出电压和电流特性,可达到验证全功率风机变流器带载特性和带载能力的目的,文中详细给出了发电机模拟器的控制系统设计并仿真验证了所提方案的可行性。
     3、对永磁同步风力发电机的常规矢量控制策略进行了详细的研究:分析了在实际工程应用的永磁同步直驱系统中,单纯采用常规的永磁同步发电机矢量控制方法的不足,结合实际的兆瓦级永磁同步风力发电机参数,文中提出了一种永磁同步风力发电机的复合矢量控制策略。此策略的提出使得当直驱系统中的永磁同步发电机运行在不同的工况时,对其控制可实现不同矢量控制策略的切换运行,从而提高整个系统的运行稳定性和提高发电机的发电效率。
     4、对永磁同步风力发电机的无速度传感器控制方法进行了研究:针对直驱系统中永磁同步风力发电机的特定运行工况,提出了一种锁相环加模型参考自适应方法的无速度传感器控制方法,该方法实现简单,辨识准确。文中给出了该控制方法的子系统设计和详细的仿真分析。此方法的提出,实现了直驱系统需无速度传感器控制的关键技术要求。
     5、对兆瓦级永磁同步风力发电机的参数进行辨识:针对矢量控制和无速度传感器控制方法需要准确已知永磁同步风力发电机参数的要求,文中对典型的最小二乘参数辨识方法进行了理论分析和仿真研究,并指出此方法虽然能准确辨识参数,但计算量稍显复杂,不利于工
     程实际应用。针对其不足,提出了一种适宜于工程应用中的基于无速度传感器矢量控制方法的直接参数辨识方法,文中并给出了详细的理论分析及仿真结果。
     6、对永磁同步直驱系统的拖带系统实验室模拟方案进行了探讨:根据不同的设计要求和实验目的,构建了不同功率等级下的三种永磁同步风力发电机的模拟拖带方案并进行了详细的实验研究。以此三种模拟拖带系统为平台,文中分别构建了不同功率等级的全功率风机变流器,并以此为平台,实验验证了文中所提的复合矢量控制策略和无速度传感器的控制方法的可行性和正确性,从而为后续针对实际风场的试运行奠定实验基础。
     7、对兆瓦级永磁同步直驱系统用全功率风机变流器的协同控制策略及控制时序进行了研究:针对全功率风机变流器的硬件特性和实际风场需实现低电压穿越的控制要求,对全功率风机变流器的网侧、机侧及直流侧撬棒电路的协同控制方案进行了较为系统的理论和实践研究。为实现实际风场的试运行,设计实现了全功率风机变流器的控制时序,并进行了长达半年的实际风场试运行测试。
In recent years, wind power generation technology has made remarkable progress, and becomes an important branch of new energy technology. Based on the Subjects of Supported Program of Anhui Province during the 10th Five-year Plan Period, and the Subjects of Supported Program of the Ministry of Science and Technology during the 11th Five-year Plan Period (No. 2006BAA01A20) , this paper makes a deep study on correlative key technologies of full power wind turbine converter used in MW level permanent magnet synchronous direct-drive wind power generation system, comprising the permanent magnet synchronous generator (PMSG) mathematical model, vector control strategy & its performance, speed sensorless control method, parameter identification of PMSG, generator simulator and experimental simulation of PMSG wind power generation system, and control sequence & coordinated control of direct-drive full power wind turbine converter. Within the above research scopes, some scientific achievements, which are of innovation significance at certain extent, have been achieved. The main research content included in this paper, can be listed as follows:
     1. In allusion to the electrical structure and other concerned emphases of PMSG used in the direct-drive system, mathematical model of three phases & six phases PMSG are established, while putting highly emphasis on the analysis of their respective characteristics. According to the model and equation built by theoretical analysis, the universal simulation model of PMSG is established by Matlab/Simulink, and corresponding simulation results are given by adopting the actual generator parameters. Three kinds of model mentioned above have built the theoretic and simulation platform for the further study directing towards the control strategy of PMSG.
     2. A MW level PMSG simulator is proposed: According to the mathematical model of MW level PMSG, the stator voltage & current characteristics of generator under diverse rotate speed, can be acquired, then three phase frequency converter is adopted to approximately simulate the stator voltage & current characteristics, which aiming at validating the characteristic/feature and capability/ability of the load-bearing. In this paper, control system design of the PMSG simulator is described in detail, and the simulation results testify its feasibility.
     3. The common vector control strategy of PMSG is studied in details, and its shortages in the actual engineering application of direct-drive PMSG system, are analyzed as well. In accordance with the actual parameters of the MW level PMSG, a compound vector control strategy is proposed in this paper. This method has realized the switching control of different vector control strategies while PMSG in the direct-drive system is running in diverse operating condition. Thus improving the system stability and power generation efficiency.
     4. Speed sensor-less control strategy of PMSG is investigated: In allusion to the given operating condition of PMSG in the direct-drive system, a speed sensor-less control method which combines phase-locked loop (PLL) and model reference self-adaptation, is proposed. It is simple to implement, while its identification is exact, and its implementation h as fulfilled the technical requirements of sensor-less control in the direct-drive system. Subsystem design of this method and corresponding simulation analysis are also given in this paper.
     5. Parameter identification of MW level PMSG is researched: It is necessary for vector control and speed sensor-less control methods to acquire the accurate PMSG parameters. In allusion to above requirement, this paper illustrates the typical parameter identification method of least squares, and then the analysis and simulation results point out that this method can achieve the exact parameter identification, but it is not suitable for engineering application. For this reason, a parameter identification method based on the speed sensor-less vector control, which has good practicability, is proposed in this paper, and theoretical analysis and simulation verification show the better performance in detail.
     6. Experimental simulation scheme of direct-drive system is investigated: three kinds of simulated traction scheme of PMSG under diverse power level are constructed, and corresponding experimental investigations are also carried out. For different experimental purpose, based on the above simulated traction systems,the feasibility and validity of the compound vector and speed sensor-less control strategies, proposed in this paper, are testified by the experimental results, thereby establishing the foundation for the further trial running of direct-drive system in wind farm. 7. Coordinated control strategy & control sequence of MW level direct-drive full power wind turbine converter are studied in this paper: In allusion to the hardware characteristic of full power converter and low voltage ride through (LVRT) capability which is essential in wind farm, coordinated control scheme among the net side, motor side and crowbar circuit in the DC side of full power wind turbine converter is investigated. In order to guarantee the trial running of full power converter, its control sequence is designed and achieved, it undergo half year's trial running experiment in the wind farm.
引文
[1]《合肥阳光电源新能源简报》第1~85期.合肥(内部期刊),2008年8月~2010年4月.
    [2]张国伟,龚光彩,吴治.风能利用的现状及展望.节能技术.2007 25(141).
    [3] J. Marques, H. Pinheiro, H. A. Gründling, and etc.“A Survey on Variable-speed Wind Turbine System”. http://www.ufsm.br/gepoc/publicacoes/congressos/A%20Survey%20on%20 Variable-Speed%20Wind%20Turbine%20System.pdf
    [4]风电设备.中国农业机械工业协会风能设备分会.2008年第1~12期.
    [5]赵永强,李俊峰,许洪华.风力发电技术发展状况与趋势分析.中国能源科技专刊,2006 China Energy Science&Technology 2006.
    [6]全国风能设备行业2009年年会暨风能产业发展研讨会会议文件.
    [7] World Wind Energy Report 2007, WWEA:World Wind Energy Association.
    [8] World Wind Energy Report 2008, WWEA:World Wind Energy Association.
    [9] World Wind Energy Report 2009, WWEA:World Wind Energy Association.
    [10] Jinsong Kang ,Zhiwen Zhang ,Yongqiang Lang.“Development and Trend of Wind Power in China”. in Proc. of IEEE Electrical Power Conference, pp.330-335,2007, Canada.
    [11]李永东,苑国峰.中国风力发电的发展现状和前景.电气时代, 2006(3):16-19.
    [12]我国风电设备发展前景分析, 2009年中国将成为世界最大的风机生产国.GM通用机械.2008年第二期.
    [13]李杰.“中国风电行业分析报告”,正哲国际(香港)有限公司,2009
    [14] Liuchen Chang.Wind Energy Conversion Systems. IEEE Canadian Review - Spring / Printemps 2002.
    [15] Henk Polinder,Frank F. A. van der Pijl,Gert-Jan de Vilder,Peter J. Tavner.“Comparison of Direct-Drive and Geared Generator Concepts for Wind Turbines”. IEEE Trans. Energy Conversion, pp.725-733,Vol. 21, No. 3, Sep 2006.
    [16] H. Li, Z. Chen.“Overview of different wind generator systems and their comparisons”. Published in IET Renewable Power Generation Received on 24th January 2007. www.ietdl.org
    [17]李辉,薛玉石,韩力.并网风力发电机系统的发展综述.微特电机.2009年第5期.
    [18]杨淑英.双馈型风力发电变流器及其控制.合肥工业大学博士论文,2007年12月.
    [19] http://www.gongkong.com/webpage/forum/200812/2008121211462400003-1.shtml双馈型风力发电机组与永磁直驱风力发电机组的综合比较
    [20]中国不饱和树脂网(www.upr-e.cn).
    [21] Anders Grauers.“Design of Direct-driven Permanent-magnet Generators for Wind Turbines”. The article for the degree of Doctor of Philosophy.1996
    [22]薛玉石,韩力,李辉.直驱永磁同步风力发电机组研究现状与发展前景.电机与控制应用.2008,35(4).
    [23] http://www.86wind.com/info/detail/6-6848.html
    [24] http://www.istis.sh.cn/list/list.aspx?id=1978
    [25] http://business.sohu.com/20070914/n252148693.shtml .[网站:国金证券:湘电股份直驱风机前景看好但估值已高].
    [26] http://www.xemc-wind.com/Dvbbs/index.asp湘电风能论坛
    [27]张新房.大型风力发电机组的智能控制研究[D].华北电力大学博士论文,2004.
    [28]林勇刚.大型风力机变桨距控制技术研究[D].华北电力大学博士论文,2005.
    [29] T.Tafticht, K.Agbossou, A.Cheriti, M.L.Doumbia.“Output Power Maximization of a Permanent Magnet Synchronous Generator Based Stand-alone Wind Turbine”. in Proc. of IEEE International Symposium on Industrial Electronics,pp.2412-2416,vol.3,2006.
    [30]李晶.变速恒频双馈风电机组动态模型及并网控制策略的研究[D].华北电力大学博士论文,2004.
    [31] J. S. Thongam1,P. Bouchard1, H. Ezzaidi and M. Ouhrouche.“Wind Speed Sensorless Maximum Power Point Tracking Control of Variable Speed Wind Energy Conversion Systems”. in Proc. of IEMDC '09,pp.1832-1837,2009
    [32] http://www.easthavenwindfarm.com/filing/high/modeling.pdf ,Dynamic Modeling of GE 1.5 and 3.6 Wind Turbine-Generators, GE-Power Systems Energy Consulting,Copyright 2002 General Electric Company, U.S.A., Prepared by:Nicholas W. Miller,William W. Price,Juan J. Sanchez-Gasca,October 27, 2003,Version 3.0
    [33]魏毅立.变桨距调速风力发电机组控制系统研究及应用[D].北京科技大学博士论文,2004.
    [34] http://tech.bjx.com.cn/html/20090702/122000.shtml,大型风电场及风电机组的控制系统.
    [35]曾婧婧,杨平,徐春梅,蒋式勤.风力发电控制系统研究. Process Automation Instrumentation.Vol.27 Supplement Issue May 2006.
    [36]李守好.风力发电装置刹车系统及偏航系统智能控制研究[D],西安电子科技大学硕士论文,2005.
    [37] Yicheng Chen, Pragasen Pillay, Azeem Khan.“PM Wind Generator Comparison of Different Topologies”. in Proc. of IEEE 39th IAS Annual Meeting on Industry Applications Conference,pp.1405-1412,vol.3,2004.
    [38] Dmitry Svechkarenko, Juliette Soulard, and Chandur Sadarangani. A Novel Transverse FluxGenerator in Direct-Driven Wind Turbines[J] http://www.ee.kth.se/php/modules/publications/reports/2006/IR-EE-EME_ 2006_ 008.pdf.
    [39]黄苏融,钱慧杰,张琪,谢国栋.现代永磁电机技术研究与应用开发.电机与控制应用. Vol.34, No. 1,2007.
    [40] o. Krovel, R. Nilssen, A. Nysveen.“A Study of the Research Activity in the Nordic Countries on Large Permanent Magnet Synchronous Machines”. http://www.elkraft.ntnu.no/norpie/10956873/Final%20Papers/ 053% 20-%20PaperNorpie2004.pdf
    [41] M.R. Dubois H. Polinder J.A. Ferreira.“Comparison of generator topologies for direct-drive wind turbines”. http://www-eng.lbl.gov/~rasson/windsail/alternator/Pb_003_2.PDF
    [42]湖南湘电风能有限公司技术文件.“Z72-2000风力发电用发电机技术规范”,文件编号:Z72-2B-TS-13-01
    [43]欧阳红林.多相永磁同步电动机调速系统控制方法的研究.湖南大学博士论文,2005
    [44] D. Vizireanu, X. Kiestelyn,S. Brisset, P. Brochet, Y. Milet, D. Laloy.“Polyphased Modular Direct-Drive Wind Turbine Generator”in Proc. of 2005 european conference on Power Electronics and Applications,pp.1-9, 2005.
    [45] Stéphane Brisset, Darius Vizireanu, and Pascal Brochet,“Design and Optimization of a Nine-Phase Axial-Flux PM Synchronous Generator With Concentrated Winding for Direct-Drive Wind Turbine”. IEEE Trans. Industry Applications,pp.707-715,Vol. 44, No. 3, May 2008
    [46] Geng Hua, and Yang Geng.“A novel control strategy of MPPT traking dynamics of wind turbine into account”.in Proc. of 37th IEEE PESC, pp.3080-3085, Jun. 2006, Jeju, Korea.
    [47] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda.“Sensorless output maximization control for variable-speed wind generation system using IPMSG”. IEEE Trans. Industry Applications, pp.60-67, vol.41, Jan./Feb.2005.
    [48] R. Datta, and V.T. Ranganathan.“A method of tracking the peak power points for a variable speed wind energy conversion system”. IEEE Trans. Energy Conversion, pp.163-168, vol.18, Mar. 2003.
    [49]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,Vol.27,No.20,2003.
    [50]赵仁德,变速恒频双馈风力发电机交流励磁电源研究[D],浙江大学博士论文,2005.
    [51]于飞,张晓锋,李槐树,叶志浩.大功率变流器的拓扑结构与器件选择.机车电传动.No 2,2004
    [52] Dos Reis, F. S, Islam, S, Tan, K. Alé, J. V. , et al.“Harmonic Mitigation in Wind TurbineEnergy Conversion Systems”. in Proc. of 37th IEEE Power Electronics Specialists Conference,pp.1-7,2006.
    [53] Jingya Dai, Dewei Xu, Bin Wu.“A Novel Control System for Current Source Converter Based Variable Speed PM Wind Power Generators”. in Proc. of IEEE PESC , pp.1852-1857,2007.
    [54] Teck Ming Hong, Nicky Kelvin Tan ,Syed Islam.“Mitigation of Harmonics in Wind Turbine Driven Variable Speed Permanent Magnet Synchronous Generators”. in Proc. of IEEE IPEC,pp.1159-1164,vol.2,2005.
    [55] Mariusz Malinowski, Wojciech Kolomyj ski, Marian P. Kazmierkowski , et al.“Control of Variable-Speed Type Wind Turbines Using Direct Power Control Space Vector Modulated 3-Level PWM Converter”. in Proc. of IEEE International Conference on Industrial Technology,pp.1516-1521,2006.
    [56] Gabiola, J.L. Villate,S.Ceballos,E.Robles, etal.“Multilevel Converters for Wind Turbines:Improving the Performance”. in Proc. of European Wind Energy Conference & Exhibition,pp. 22-25 November 2004, London.
    [57] Mika Ikonen, Ossi Laakkonen, Marko Kettunen.Two-level and Three-level Converter Comparision in Wind Power Application. http://www.elkraft.ntnu.no/smola2005/Topics/15.pdf
    [58]仇志凌,陈国柱.2MW风力发电并网逆变器研究与设计.第17届全国电源技术年会论文集.2007年10月,合肥.
    [59] S. Bolognani, M. Tomasini, L.Tubiana, et al,“Start-up Strategy for a Sensorless Direct Drive PM Generator for Wind Turbines,”IEEE ISIE 2005, June 20-23, 2005:1801-1806
    [60] N. Ertugrul, P.P. Acarnley,“A new algorithm for sensorless operation of permanent magnet motors,”IEEE Conference Record , Ind. Applicat. Society Annual Meeting, Vol.1, pp.414– 421, Oct. 1992.
    [61] C. French, P. Acarnley,“Control of permanent magnet motor drives using a new position estimation technique,”IEEE Trans. Ind. Applicat., Vol.32, No.5, pp.1089 - 1097 , Sept.-Oct. 1996.
    [62]李永东,张猛等,“永磁同步电机模型参考自适应无速度传感器控制方法,”电气传动, 2004(34) : 302~306
    [63] H.M. Kojabadi, Liuchen Chang,“Sensorless PMSM drive with MRAS-based adaptive speed estimator,”PESC '06. 37th IEEE, 18-22 June 2006, pp.1 - 5
    [64] R. Dhmuadi, N. Mohan et al,“Design and Implementation of an Extended Kalman Filter for the State Estimation of A Permanent Magnet Synchronous Motor,”IEEE Trans on PE,1991,6(3): 491-497
    [65] S . Bolognani,“Extended Kalman Filter Tuning in Sensorless PMSM Drives,”IEEE Trans onInd. Appl., 2003,39 (6 ):1741-1747.
    [66]江俊,沈艳霞,纪志,“基于EKF的永磁同步电机转子位置和速度估计,”系统仿真学报,2005, 17 (7); 1704-1707.
    [67] V.I. Utkin,“Sliding mode control design principles and application to electric drives,”IEEE Trans. on Industry Electronics, 1993, 40(1):23-36.
    [68] Z. Chen, M. Tomita, S. Doki, et al,“New adaptive sliding observer for position and velocity sensorless control of brushless DC motors,”IEEE Transactions on Industry Electronics, 2000, 47(3):582一591.
    [69] ARKMH, KIMKS,“Chattering reduction in the position control of induction motor using sliding mode,”IEEE Trans. on Power Electronics, 1991, 6(3):317- 325.
    [70] L. Harnefors, H.-P. Nee,“A general algorithm for speed and position estimation of AC motors”IEEE Trans, .Industrial Electronics, Vol.47, No.1, pp.77– 83, Feb. 2000.
    [71] Fatu Marius, Lascu Cristian, Andreescu Gheorghe-Danielet, et al,“Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines,”PESC '02. 33rd IEEE, 23-27 June 2007, Vol.2, pp. 815 - 820
    [72]王成元.电动机调速系统[M].机械工业出版设.2006年
    [73]王丽梅,田明秀,郑建芬,“基于观测器的永磁电机转子位置和速度估计方法”,沈阳工业大学学报,vol.27,No.2,2005
    [74] Shinji Shinnaka.“New Sensorless Vector Control Methods Based on a New Minimum-Order Flux State Observer in the“D-Module”for Permanent Magnet Synchronous Motors”. Electrical Engineering in Japan, Vol. 151, No. 2, 2005
    [75]Oskar Wallmark, Lennart Harnefors.“Sensorless Control of Salient PMSM Drives in the Transition Region”. IEEE Trans.Industrial Electronics,pp.1179-1187, Vol. 53, No. 4, Aug. 2006.
    [76]王峰.基于锁相环模型的永磁同步电动机无速度传感器研究.华南理工大学硕士论文.2004
    [77] Rolando P Burgos, Parag Kshirsagar, Alessandro Lidozzi,Fred Wang,Dushan Boroyevich.Mathematical Model and Control Design for Sensorless Vector Control of Permanent Magnet Synchronous Machines.2006 IEEE COMPEL Workshop, Rensselaer Polytechnic Institute, Troy, NY, USA, July 16-19, 2006
    [78]汪令祥,张兴,张崇巍,杨淑英,曹仁贤,“基于位置观测的直驱系统无速度传感器技术”,电力系统自动化,Vol.32 No.12,2008年6月25日.
    [79] P. L. Jansen and R. D. Lorenz,“Transducerless position and velocity estimation in induction and salient AC machines,”IEEE Trans. Ind. Applicat., vol. 31, pp. 240–247, Mar./Apr. 1995.
    [80]刘军,俞金寿.永磁同步电机控制策略.上海电机学院学报.Vol.10, No.3, Sep.2007.
    [81]邵立伟,廖晓钟,张宇河,等.自抗扰控制在永磁同步电机无速度传感器调速系统的应用[J].电工技术学报, 2006, 21(6):35-39.
    [82]孙凯,许镇琳,盖廓,邹积勇,窦汝振..基于自抗扰控制器的永磁同步电机位置伺服系统,中国电机工程学报.Vol.27,No.15.May 2007.
    [83]沈艳霞,江俊,纪志成.基于递归神经网络的永磁同步电机控制器设计[J].南京理工大学学报,2005,29
    [84]李鸿儒,顾树生.基于神经网络的PMSM自适应滑模控制[J].控制理论与应用,2005,22(3):461-464
    [85] Depenbrock M.“Direct self-control (DSC) of inverter-fed induction machine [J]”. IEEE Trans.Power Electronics,pp.420-429,vol.3,no.4,1988.
    [86] Takahashi, Isao , Noguchi, Toshihiko.“A new quick-response and high-efficiency control strategy of an inductio motor”. IEEE Trans. Industry Applications,pp.820-827,vol.22,no.5,1986.
    [87] Zhong L, M.F. Rahman, etc.“Analysis of direct torque control in permanent magnet synchronous motor drives”.IEEE Trans. Power Electronics, pp.528-536,vol.12,no.3,1997.
    [88] Zhong L, Rahman.“A Direct torque controller for permanent magnet synchronous motor drives[J]”. IEEE Trans. Energy Conversion,pp.637-642,vol.14,no.3,1999.
    [89]田浮,胡育文.无位置传感器永磁同步电机直接转矩控制系统方案的研究.“SEMCT’2001第五届全国小电机及控制技术研讨会论文集”
    [90]贾洪平.“PMSM DTC无传感器运行及传感器集成研究”.浙江大学博士论文.2006年.
    [91] ABB风机变流器:ACS800-77LC风力发电传动硬件手册(840到3180 kW).
    [92] Converterteam风机变流器产品宣传手册.
    [93] switch直驱型全功率风机变流器产品宣传手册
    [94] A. G. Abo-Khalil, and D. Lee.“Dynamic modeling and control of wind turbines for grid-connected wind generation system”,in Proc. of IEEE PESC,pp.2755-2760, Jun. 2006, Jeju Korea.
    [95] Rajesh Karki, Po Hu.Wind Power Simulation Model for Reliability Evaluation. CCECE/CCGEI, Saskatoon, May 2005
    [96] J. G. Slootweg, H. Polinder, and W. L. Kling.“Dynamic modeling of a wind turbine with doubly fed induction generator”, in Proc. of IEEE Power Engineering Society Summer Meeting, pp.644-649, vol.1, July 2001.
    [97]叶杭冶编著.风力发电机组的控制技术.北京:机械工业出版社,2006年1月.
    [98]邱关源主编.电路.北京:高等教育出版社,1989年
    [99] S. Lee, and K. Nam.“An overvoltage suppression scheme for AC motor drives using a halfDC-link voltage level at each PWM transition”. IEEE Trans. Industrial Electronics, pp.549-557, vol.49, June 2002.
    [100] Thomas P. Fuglseth.Modelling a 2.5 MW direct driven wind turbine with permanent magnet generator. Report for the final examination project of the Nordic PhD course on Wind Power
    [101]邓文,姜建国,玉井伸三. PWM逆变器感应电机系统中的过电压抑止滤波器研究.电工电能新技术,2002(3):28-32.
    [102] S. Lee, and K. Nam.“Overvoltage suppression filter design methods based on voltage reflection theory”. IEEE Trans. Power Electronics, pp.264-271, vol.19, March 2004.
    [103]汤蕴璆,张弈黄,范瑜编著.交流电机动态分析.北京:机械工业出版社,2005年1月.
    [104] Ying Yan, Jianguo Zhu, Haiwei Lu, Youguang Guo and Shuhong Wang.A PMSM Model Incorporating Structural and Saturation Saliencies.
    [105]汤蕴,史乃.电机学[M].机械工业出版社.2000年1月.
    [106] Z. Chen, F. Blaabjerg, F.Iov.A Study of Synchronous Machine Model Implementations in Matlab/Simulink Simulations for New and Renewable Energy Systems.
    [107] Dmitry Svechkarenko. Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator. Royal Institute of Technology Department of Electrical Engineering Electrical Machines and Power Electronics December, 2005
    [108] Wang Xiaoyuan Wang Qingyan Wang Yongfei.Analysis of the Magnetic Field of the Six-phase Disc PMSM and Effect of Air Gap Length on the Air Gap Magnetic Field.
    [109]马占山.“基于DSP的多相永磁同步电机矢量控制系统”.湖南大学硕士论文.2004年
    [110]谢卫.黄家圣.“六相双Y移30o绕组永磁同步电机动态性能分析”.中国航海.No.4,2003年.
    [111]刘大勇.“多相永磁同步电动机电力推进控制系统的研究”.哈尔滨工程大学博士学位论文.2000年1月.
    [112]黄进.p对极n相对称系统的变换理论.电工技术学报,Vol.1,1995
    [113] Jianguang Zhu, Hongyang Zhang, Renyuan Tang. The Study and Modeling of Multi-phase PMSM Variety Speed System with High Fault-Tolerant.2009
    [114] Paul Deglaire,“Sandra Eriksson and Andreas Solum.Simulation and control of direct driven permanent magnet synchronous generator (PMSG)”. http://www.elkraft.ntnu.no/smola2005/Topics/2.pdf.
    [115]尹明,李庚银,张建成,赵巍然,薛轶峰“.直驱式永磁同步风力发电机组建模及其控制策略”.电网技术.Vol.31 No.15,2007年8月.
    [116] Tze-Fun Chan, Pieter Borsje, Yiu-Kwong Wong, and Siu-Lau Ho.A Simulation Study on Sensorless Control of Permanent Magnet Synchronous Motor Drives.IEEE,2007
    [117] Enrique L. Carrillo Arroyo. Modeling and Simulation of Permanent Magnet SynchronouosMotor Drive System. Master of Science in Electrical Engineering University of Puerto Rico Mayaguez Campus .2006.
    [118] Ming Yin,Gengyin Li,Ming Zhou,Chengyong Zhao,Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration.IEEE,2007
    [119] T.F. Chan, W. Wang, P. Borsje, Y.K. Wong,S.L. Ho.Sensorless permanent-magnet synchronous motor drive using a reduced-order rotor flux observer. www.ietdl.org, Published in IET Electric Power Applications.
    [120]张强.博士论文“大功率并网变流器工程设计”合肥工业大学,2006年6月
    [121]刘芳,合肥工业大学硕士论文.2008年5月
    [122] Christian P. Dick, Sebastian Richter, Martin Rosekeit, Johannes Rolink, Rik W. De Doncker.Active Damping of LCL Resonance with Minimum Sensor Effort by Means of a Digital Infinite Impulse Response Filter.
    [123] J. Dannehl1, F.W. Fuchs, S. Hansen.PWM rectifier with LCL-filter using different current control structures
    [124]张崇巍,张兴.PWM整流器及其控制,机械工业出版社,2003年.
    [125]周志建.基于DSP的Z源逆变器控制与设计.合肥工业大学硕士论文.2007年6月.
    [126]刘飞,殷进军,周彦,段善旭. LCL滤波器的三相光伏逆变器双环控制策略.电力电子技术,Vol.42,No.9,2008年9月
    [127]李鑫,姚勇涛,张逸成,韦莉.采用电容电流内环的逆变器双闭环控制研究.电气传动.Vol.38,No.2.2008年.
    [128]易龙强.数字化UPS/EPS系统控制关键技术及其应用研究.湖南大学博士论文.2007年5月.
    [129] Katsuhiko Ogata,卢伯英,于海勋等翻译.现代控制工程(第四版),电子工业出版社.2007年.
    [130]李崇坚.交流同步电机调速系统[M].科学出版社.2006年3月.
    [131]陈伯时,电力拖动自动控制系统(第二版)[M],机械工业出版社,2000,page(s):56-76
    [132] Yasser Abdel-Rady Ibrahim Mohamed.Direct Instantaneous Torque Control in Direct Drive Permanent Magnet Synchronous Motors—a New Approach. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 22, NO. 4, DECEMBER 2007.
    [133]邓秋玲,黄守道,肖锋,直驱永磁同步发电机风力发电系统最大输出控制.湘潭大学自然科学学报.Vol.30 No.2,2008.
    [134]徐艳平,钟彦儒.永磁同步电机最小损耗控制的仿真研究.系统仿真学报.Vol.19,No.22,2007
    [135] XiaoHao Zhao, XiaoYun Feng, YongHeng Liao, and etc..Exloring and Modeling on Constant Speed Control Strategy of Permanent Magnet Synchronous Motor for Direct Drive System.
    [136] Tomonobu Senjyu, Satoshi Tamaki, Endusa Muhando,and etc..Wind velocity and rotorposition sensorless maximum power point tracking control for wind generation system.Available online at www.sciencedirect.com, Renewable Energy 31 (2006) 1764–1775.
    [137] Xianqing Cao and Liping Fan.A Quick Efficiency-Optimized Scheme for Vector Controlled Permanent Magnet Synchronous Motor Drive. 2009 IITA International Conference on Control, Automation and Systems Engineering.
    [138] Christos Mademlis, Iordanis Kioskeridis, and Nikos Margaris.Optimal Efficiency Control Strategy for Interior Permanent Magnet Synchronous Motor Drives
    [139] C. P. Mudannayake, M. F. Rahman and B. Karanayil.Sensorless Induction Machine Based Integrated Starter Alternator with Loss Minimization.
    [140] Calogero Cavallaro, Antonino Oscar Di Tommaso, Rosario Miceli, Angelo Raciti,Giuseppe Ricco Galluzzo, and Marco Trapanese.Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 4, AUGUST 2005
    [141] Jun Liu, Meng-zhi Huang and Yang Wang.Research on Vector-Control System of PMSM Based on Internal Model Control of Current Loop. 2009 Second International Workshop on Computer Science and Engineering. 978-0-7695-3881-5/09 $26.00 ? 2009 IEEE,DOI 10.1109/WCSE.2009.261
    [142] Ravindra Kumar Sharma, Vivek Sanadhya, Laxmidhar Behera and S Bhattacharya.Vector Control Of A Permanent Magnet Synchronous Motor.2008 IEEE.
    [143]冯哲峰,杨恩星,陈国柱.永磁直驱风力发电机的单位功率因数控制.机电工程.Vol.4,No.9,2007.
    [144]李长江,陈明俊,吴小役.PMSM调速系统中最大转矩电流比控制方法的研究.中国电机工程学报.Vol.25,No.21,Nov.2005.
    [145] F. Tahami, H. Nademi, M. Rezaei.A High-Performance Vector-Controlled PMSM Drive with Maximum Torque per Ampere Operation. 2nd IEEE International Conference on Power and Energy (PECon 08), December 1-3, 2008, Johor Baharu, Malaysia.
    [146] Christos Mademlis.Compensation of Magnetic Saturation in Maximum Torque to Current Vector Controlled Synchronous Reluctance Motor Drives. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 18, NO. 3, SEPTEMBER 2003
    [147] Guo Hong,Xu Qiang,Jia Zhengchun.Effects and Compensation of Magnetic Saturation in Flux-Weakening Controlled interior permanent magnet Linear Synchronous Motor.
    [148] Shigeo Morimoto, Masayuki Sanada, and Yoji Takeda,.Effects and Compensation of Magnetic Saturation in Flux-Weakening Controlled Permanent Magnet Synchronous Motor Drives. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 30, NO. 6, NOVEMBER/ DECEMBER 1994
    [149] I. Kawabe, S. Morimoto, and M. Sanada.Output Maximization Control of Wind Generation System Applying Square-Wave Operation and Sensorless Control.2007,IEEE.
    [150] Masashi Takiguchi, Toshiaki Murata, Junji Tamura and *Takeshi Tsuchiya .Maximum Torque/Minimum Flux Control of Interior Permanent Magnet Synchronous Motor Based on Magnetic Energy Model
    [151]郭栋.动态电压恢复器的锁相及控制策略研究.合肥工业大学硕士论文.2008年4月.
    [152] Masoud Karimi-Ghartemani, M.Reza Iravani, A Method for Synchronization of Power Electronic Converters in Polluted and Variable-Frequency Environments, IEEE Transactions on Power Systems,Vol.19,No.3,August 2004,page(s):1263-1270
    [153] Adrian Timbus, Remus Teodorescu, Frede Blaabjerg, Marco Liserre, Synchronization Methods for Three Phase Distributed Power Generation System. An Overview and Evaluation, Proc. of PESC’05, 2005, Page(s):2474-2481.
    [154] J.Svensson, Synchronization Methods for Grid-connected Voltage Source Converters, IEE Proc.Inst.Elect.Eng.Generation,Transmission,Distribution,Vol.148,May 2001,page(s):229-335
    [155] H.-S.Song, K.Nam, Instantaneous Phase-Angle Estimation Algorithm under Unbalanced Volta-ge Sag Conditions, Proc.Inst.Elect.Eng.Generation,Transmission,Distribution, Vol.147,November,2000,page(s):409-415
    [156]李彦栋,王凯斐,卓放,王兆安,新型软件锁相环在动态电压恢复器中的应用,电网技术,2004,28(8): 42-45
    [157] Hilmy Awad, Jan Svensson M.J.Bollen, Tuning Software Phase-Locked Loop for Series-Connected Converters, IEEE Transactions on Power Delivery, Vol.20,No.1, January, 2005, Page(s):300-308
    [158] Changjiang Zhan, C.Fitzer, V.k.Ramachandaramurthy, A.Arulampalam, M.Barnes, N.Jenkins, Software Phase-Locked Loop Applied to Dynamic Voltage Restorer(DVR), Proc. IEEE Power Eng. Soc. Winter Meeting.Conf.,Vol.3,Page(s):1033-1038
    [159] Se-kyo Chung, A Phase Tracking System for Three Phase Utility Interface Inverters, IEEE Transactions on Power Electronics, Vol.15, No.3, May 2000,Page(s):431-438
    [160] Pedro Rodriguze, Josep Pou Joan Bergas, Decoupled Double Synchronous Reference Frame PLL for Power Converters Control, IEEE Transactions on Power Electronics, Vol.22, No.2, March 2000,Page(s):584-592
    [161] C.C.Chan and H.Wang. An effective method for rotor resistance identification for high-performance induction motor vector control. IEEE Trans. Ind. Eletron. Nol.37,No.6, pp. 477-482.1990
    [162] D.S.Oh,H.B.Shin and M.J.Youn. A new slip gain adaptation algorithm for indirect Vectorcontrol systems.IEEE Transaction industry Application. Vo1.38, No.4,pp.303-307,1991
    [163] L.Loron,G.Lalibert. Application of the extended Kalman filter to parameters estimation of induction motors. Proc. Europe. Conf. Power Electron. Applicat. Vol. 5, pp. 85–90 1993
    [164] H.Rehman,A.Derdiyok,M.K.G?ven and L.Xu. An MRAS scheme for on-line rotor resistance adaptation of an Induction Machine, IEEE. pp.817-822,2001
    [165] Jennifer Stephan,Marc Bodson. Real-time estimation of the Parameters and fluxes of induction motors.IEEE Trans.Industrial Application,pp.746-759,1994.
    [166]王鸿山.风力发电机控制中的参数辨识技术. [硕士学位论文],合肥:合肥工业大学,2009
    [167]王振永,王然冉.电机的数学模型和参数辨识[M].北京:机械工业出版社,1989.12
    [168]吴靖.电机传动系统参数辨识方法的研究.[博士学位论文],杭州:浙江大学,2008
    [169] A.Ba-Razzouk and C.G.Olivier. Artificial neural networks rotor time constant adaptation in indirect field oriented control drives.Proe. IEEE Trans.pp.701-707. 1996
    [170]王鸿山,张兴,杨淑英,谢震.基于最小二乘法在线参数辨识的异步电动机矢量控制仿真研究.合肥工业大学学报.2009,4(32):495-499
    [171] H. M. Kojabadi, L. Chang, and T. Boutot.“Development of a novel wind turbine simulator for wind energy conversion systems using an inverter-controlled induction motor”. IEEE Trans Energy Conversion, pp.547-552,vol.19, Sept. 2004.
    [172] B. Rabelo, W. Hofmann, and M. Gluck.“Emulation of static and dynamic behaviour of a wind-turbine with a DC-Machin”, in Proc of 35th IEEE PESC, pp.2107-2112, 2004, Aachen, Germany
    [173]刘其辉,贺益康,赵仁德.基于直流电动机的风力机特性模拟.中国电机工程学报,2006(7):134-139.
    [174]卞松江,潘再平,贺益康.风力机特性的直流电机模拟.太阳能学报,2003(3):360-364.
    [175] S. Song, B. Jeong, J. Oh, and G. Venkataramanan.“Emulation of output characteristics of rotor blades using a hardware-in-loop wind turbine simulation”, in Proc. of APEC, pp.1791-1796, March 2005, Austin, Texas, USA.
    [176] M. Arifujjaman, M. T. Iqbal, and J. E. Quaicoe.“An isolated small wind turbine emulator”, in Proc. of IEEE CCECE/CCGEI, pp.1854-1857, May, 2006, Ottawa, Canda.
    [177] D. S. L. Dolan, and P. W. Lehn.“Real-time wind turbine emulator suitable for power quality and dynamic control studies”, in Proc. of IPST, pp.1-6, Jun. 2005, Montreal, Canada.
    [178]贾要勤.风力发电实验室用模拟风力机.太阳能学报,2004(6):735-739.
    [179] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li.“Intelligent controlled-wind-turbine emulator and induction-generator system using RBFN”, in IEE Proc.-Electr. Power Appl., pp.608-618, vol.153, July 2006.
    [180] S.Y. Yang, X. Zhang, C. W. Zhang, and R. X. Cao.“Test-bed of doubly fed induction generator for variable-speed constant-frequency wind power generation”. in Proc. of 5th IEEE IPEMC, pp.510-514,vol.1, Aug.2006, Shanghai, China.
    [181] http://www.flcd.cn/prodcut/default.html
    [182] http://www.china-swtgs.com/products.asp
    [183] TD3000高性能矢量控制变频器用户手册.版本:V1.2,归档日期:2005-03-07,BOM:31010403.
    [184]国家电网公司企业标准风电场接入电网技术规定.2009.12.22 Q/GDW 392-2009
    [185]迟永宁.各国风电并网导则对低电压穿越的要求-为什么需要低电压穿越.中国电力科学研究院新能源研究所.
    [186]张宪平,李亚西李昊许洪华.风力发电中电压跌落瞬间PWM整流器性能研究.电气应用.Vol.27,No.9. 2007.
    [187]陈瑶.直驱型风力发电系统全功率并网变流技术的研究.北京交通大学博士论文.2008年6月.
    [188]姚骏,廖勇,庄凯.永磁直驱风电机组的双PWM变换器协调控制策略.电力系统自动化.Vol.32,No.20,2008.
    [189]胡书举,李建林,许洪华.永磁直驱风电系统低电压运行特性的分析.电力系统自动化.Vol.31,No.17,2007.
    [190]徐嘉鹏.三相电压型PWM整流器控制策略的研究.北京交通大学.硕士学位论文.2007年3月
    [191]胡书举,李建林,许洪华.适用于直驱式风电系统的Crowbar电路分析.电力建设.Vol.28,No.9.2007年9月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700