用户名: 密码: 验证码:
260kVA无源软开关辅助变流器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力机车辅助变流器是为机车牵引及制动系统提供保障的一种重要设备,它的性能将直接影响机车的正常运行。由于这类变流器的单台容量较大,因此早期的辅助变流器往往存在体积大、噪声大和损耗大等缺点。为了实现大功率变流器装置的小型化、低耗化和高效化,目前有效并被广泛采用的设计方法是提高变流器的工作频率,达到增大功率密度、提高瞬时响应速度、抑制音频噪声等目的。在进行高频化设计时,需要面对和解决一系列问题,包括如何有效地解决由于变流器开关频繁动作而产生的如开关损耗、二极管反向恢复电流和电源电磁干扰等,而软开关技术能够有效解决这些问题。
     本文研究一种基于无源软开关技术的大功率高频辅助变流器,其功率为260kVA,开关工作频率为15kHz。论文首先提出一种新型的辅助变流器拓扑结构,分析了关键电路的工作原理;然后,利用状态空间平均法和智能控制方法对变流器进行建模和控制;最后,根据给定的技术指标,计算电路参数,开发系统样机,并通过对关键模块的测试验证辅助变流器的正确性和实用性。
     (1)基于无源软开关技术的辅助变流器拓扑结构
     结合260kVA无源软开关辅助变流器的面向对象和工作环境,基于无源软开关技术和直-(交)-直-交(DC-(AC)-DC-AC)变流技术,提出了一种新型的大功率高频辅助变流器系统拓扑结构。变流器的前端(DC-(AC)-DC部分)由三个采用输入串联输出并联方式连接的高频DC/DC变换器组成,这种模块化系统结构的设计可以降低开关器件的电压等级,而且该配置方式的自动平衡机制可以保证系统的稳定性;变流器的后端(DC-AC部分)为将直流转化为交流的DC/AC逆变器,其中无源软开关箝位电路技术的使用可以有效地降低变流器的体积和重量。同时,对主电路中的缓冲型无源软开关电路、能量恢复电路、RCD箝位电路等几个关键电路的工作原理进行分析,在此基础上,提出一种基于能量恢复的新型RCD位电路,进一步提高了辅助变流器的工作效率。
     (2)基于状态空间平均法的辅助变流器模型分析
     对于辅助变流器中的高频DC/DC变换器,应用状态空间平均法,建立了变换器的数学模型。针对变换器的强非线性特点,为了获得良好的稳态、瞬态、动态等特性,在考虑变压器漏感、输出滤波电感、以及电容等效短路电阻的情况下,建立了变换器的等效电路。通过分析一个周期内变换器关键部件的电压和电流理想波形的变化趋势,得到了不同状态下的变换器等效电路和对应的状态变量方程描述。在此基础上,通过平均化和线性化处理,获得了变换器在连续工作模式下的状态平均方程和小信号传递函数。
     (3)基于遗传算法的辅助变流器智能控制方法
     为了降低辅助变流器中电气设置参数的不确定性,负载性质的多变性等因素对系统的负面影响,对变流器的控制策略进行研究,提出了一种基于遗传算法的智能控制方法。针对DC/DC变换器,首先,选择合适的PWM控制方式,构建双闭环控制结构,即利用电流内环反馈获得优异的动态响应,电压外环反馈获得期望的穿越频率和相位裕度。然后,采用传统PID控制方法对DC/DC变换器实施控制,依据一定原则选取合适的PID参数,通过仿真验证了控制效果。最后,针对现有DC/DC转换器采用传统的PID控制方法难以获得最优控制参数的问题,提出一种基于遗传算法的智能PID控制策略,在双闭环控制结构中,采用遗传算法对电压外环中PID控制器的参数进行自寻优,电流内环仍采用PI控制算法实现电流反馈控制。仿真结果表明,相比于传统PID控制,基于遗传算法的PID控制策略能够获得更好的动态响应和稳定裕度。针对DC/AC逆变器,采用遗传算法对空间矢量调制进行控制,实现了三相输出电压波形地有效控制。
     (4)辅助变流器样机的实现与测试
     结合本文的理论研究,完成了260kVA无源软开关辅助变流器的软硬件设计,开发了系统样机,对相关模块进行了测试。针对辅助变流器的工作环境和各项技术指标,基于前面章节的理论分析,完成了辅助变流器主电路中关键器件的参数设计和选型,研制出了260kVA无源软开关辅助变流器装置。然后,利用该实验装置进行了实验测试,重点对DC/DC模块和DC/AC模块进行测试、分析和评估,验证所设计的辅助变流器在实际运行条件下的正确性和实用性。
Electric locomotive auxiliary converter provides protection for locomotive traction and braking system, and its performance directly affects the normal operation of locomotive. Because of the large capacity of this kind of auxiliary converter, the early auxiliary converters usually exist a series of defects, such as bulky, noisy, big loss, and so on. In order to realize miniaturization, low loss and high efficiency, increasing the frequency of the converter has been applied widely and it increases system power density, improves transient response speed, and suppresses radio noise. Some problems such as switching power loss, diode reverse recover current, and electromagnetic interference caused by high-frequency operation of switches should be considered for the high-frequency design.
     This dissertation studies a high-frequency and high power auxiliary converter based on the passive soft-switching technology, and the power and operating frequency of the converter is 260kVA and 15kHz, respectively. Firstly, a new topology of the converter is proposed and the working principles of key circuits are analyzed. Then, the state space averaging method and intelligent control are used for the modeling and control of the converter. Finally, based on the given qualifications, the parameters of main circuits are calculated and a model machine is developed, and then experiment tests of key models are implemented to verify the correctness and practicality of auxiliary converter.
     (1) Topology of auxiliary converter based on the passive soft-switching technology
     Considering the oriented object and working environment of the auxiliary converter, a new topology of a high-power and high-frequency auxiliary converter is proposed by applying the passive soft-switching and DC-(AC)-DC-AC converting technique. The front-end of the auxiliary converter is composed of three DC/DC converters connected with each other with the input-series-output-parallel style, and such modular architecture reduces switching voltage level and guarantees system stability. The back-end of the auxiliary converter is composed of a DC/AC inverter which transforms DC into AC, and the usage of the passive soft-switching clamp circuit technology reduces the weight and volume of the converter. Moreover, the operation principles of main circuits, such as passive soft-switching circuit, energy recovery circuit, and clamp circuit, are descried, and an improved RCD clamp circuit is proposed to improve the efficiency of the auxiliary converter.
     (2) Modeling and analysis of auxiliary converter based on state space averaging method
     For the high-frequencyDC/DC converter in the auxiliary converter, modeling and analysis of the auxiliary converter is presented applying the state space averaging method. Considering the strong nonlinearity of the converter, in order to obtain satisfying steady state, transient and dynamic characteristics, equivalent circuit of the converter is established on the condition of considering the transformer leakage inductance, output filter inductor and equivalent short-circuit resistance of the capacitor. Then the key voltage and current waves in a cycle is analyzed, and the corresponding equivalent circuits and state space equations under different states are derived. Finally, throug the averaging process and linearization process, the small-signal transfer function and state space model of the converter are obtained in continuous operating mode.
     (3) Intelligent control of auxiliary converter based on genetic algorithm
     In order to ensure the performance of the auxiliary converter against the negative effects caused by the uncertainties of electrical parameters, variability of load and any other factors, a genetic algorithm based control method for the auxiliary converter is proposed. For the DC/DC converter, an appropriate PWM control scheme is selected, and then the double closed-loop control structure of the DC/DC converter is built, where good dynamic response is obtained by current feedback, i.e. inner loop and desired crossover frequency and phase margin are achieved by voltage feedback, i.e. outer loop. Then, traditional PID technology is used, and the simulation results verify the control effect after selecting the PID parameters according to certain principles. However, since the traditional PID control method is difficult to obtain the optimal parameters of the controller, a PID tuning algorithm based on genetic algorithm is proposed to optimize the performance of DC/DC converter. Under the double closed-loop control structure, the genetic algorithm is employed to optimize the parameters of PID controller for the voltage loop, and PI controller is used to achieve current feedback control. The simulation results show that the PID controller based on genetic algorithm can get better dynamic response and stability margin. For the DC/AC inverter, the genetic algorithm is employed to control the space vector modulation, which achieve effective control of three-phase output voltage waveform.
     (4) Design, implementation and test of auxiliary converter
     Based on the theoretical study, the hardware and software of the 260kVA passive soft-switching auxiliary converter is designed, the model machine is developed, and some experiments for key models are carried out on the model machine. According to the working condition and various technical indicators, the parameters of the main circuit are determined, and the auxiliary converter is established. Moreover, experimental tests and analysis of the established device are performed, the results verify that the designed auxiliary converter is correct and practical under actual operating conditions.
引文
[1]中国铁路第六次大提速.http://baike.baidu.com/view/905457.htm
    [2]刘刚.积极推进装备现代化.全面提升安全保障能力为确保提速安全持续稳定提供可靠的移动装备保证在全路车辆工作会议上的工作报告(摘要)[J].中国铁路,2008,(2):45-54.[3]李建旭.大功率交流机车的辅助变流器系统研究[D].北京交通大学,2008.[4]吴强.机车辅助变流器的技术发展[J].机车电传动,2002,(3):4-7.
    [5]张占松,蔡宣三.开关电源的原理和设计[M].北京:电子工业出版社,1998.
    [6]周林泉,阮新波.一种新型的ZVZCS PWM Boost全桥变换器[J].中国电机工程学报,2003,23(11):24-28.
    [7]Mcatee C J, Agrawal J P, Moghbelli H. A 100 watt power supply using ZVS boost converter[C]. APEC 1995:496-502.
    [8]Qian J R, Batarseh I, Siri K, et al. A novel zero-voltage-switching (ZVS) boost converter by using a nonlinear magnetizing inductor of the transformer[C]. APEC 1995:490-495.
    [9]Freitas L C, Cruz D F, Farias V J. A novel ZCS-ZVS-PWM DC/DC buck converter for high power and high switching frequency:analysis, simulation and experimental results[C]. APEC 1993:693-699.
    [10]Wu T F, Liang S A, Chen Y M. Design optimization for asymmetrical ZVS-PWM zeta converter[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39 (2):521-532.
    [11]明正峰,钟彦儒.硬开关和软开关三相PWM逆变器中偏差电压引起的波形畸变及校正策略比较[J].中国电机工程学报,2002,22(12):85-90.
    [12]陈国呈.PWM变频调速及软开关电力变换技术[M].北京:机械工业出版社,2001.
    [13]明正峰,钟彦儒.SVPWM技术在零电压过渡三相逆变器中的应用研究[J].中国电机工程学报,2002,22(6):56-61.
    [14]阮新波,严仰光.直流电源的软开关技术[M].北京:科学出版社,2000.
    [15]王聪.软开关功率变换器及应用[M].北京:科学出版社,2000.
    [16]Weiberg A H, Ghislanzoni L. A novel zero voltage and zero current power-switching technique[J]. IEEE Transactions on Power Electronics, 1992,7 (4):655-665.
    [17]Roux J A, Ferreira J A, Theron P C. A series resonant converter for arc striking application[C]. PESC95'Proceedings,1995,2:723-728.
    [18]王宝诚,张纯江,顾和荣,等.谐振直流环对三相PWM整流器空间矢量PWM波形的影响[J].中国电机工程学报,2004,24(2):113-117.
    [19]Yeung Y P B, Cheng K W E, Sutanto D. Multiple and fractional voltage conversion ratios for switched-capacitor resonant converters [C].2001 IEEE 32nd Annual Power Electronics Specialists Conference,3:1289-1294.
    [20]邵建设,尹建武,冯杰,等.谐振变换器中谐振电流-开关频率特性[J].高电压技术,2009,35(1):163-168.
    [21]Maksimovic D, Cuk S. Constant-frequency control of quasi-resonant converters [J]. IEEE Transactions on Power Electronics,1991,6 (1):141-150.
    [22]赵红茹,吴捷.准谐振变换器的建模与性能分析[J].华南理工大学学报(自然科学版),2003,31(7):1-5.
    [23]Wu T F, Chen Y K, Yang C H, et al. A structural approach to synthesizing and analyzing quasi-resonant and multi-resonant converters[C]. The 30th Annual IEEE Power Electronics Specialists Conference,1999,2:1024-1029.
    [24]成庶,陈特放,余明扬.一种新型有源次级钳位全桥零电压零电流软开关PWM变换器[J].中国电机工程学报,2008,28(12):44-49.
    [25]Grigore V, Kyyra J. A new zero-voltage-transition PWM buck converter[C]. The 9th Mediterranean Electrotechnical Conference,1998,2:1241-1245.
    [26]Shi X F, Chan C Y. Analysis and passivity-based control of zero-voltage-transition PWM converters[J]. IEEE Transactions on Power Electronics,2002,17 (5):633-640.
    [27]曾庆虹,甘伟明,晋建秀.一种零电压转换PWM开关变换器的改进研究[J].电子技术应用,2007,(6):129-131.
    [28]高原,邱新芸.零电压转换PWM DC-DC变换器的研究[J].仪器仪表学报,2005,26(S8):645-648.
    [29]林周布.无源无损缓冲型软开关技术的研究[J].电工电能新技术,2002,21(1):33-37.
    [30]林渭勋.现代电力电子电路[M].杭州:浙江大学出版社,2002.
    [31]蔡宣三.高频功率电子学-DC/DC变换部分[M].北京:科学出版社,1993.
    [32]蔡宣三,刘理.高频准谐振功率变换器的研究[J].清华大学学报,1991,31(5):39-48.
    [33]Marx M, Schroder D. Analysis of a zero voltage transition DC/DC full-bridge converter[C]. PESC 95'Proceedings,1995,1:298-303.
    [34]Cuichao H, Chingshan L, Yimin J, et al. Novel zero voltage transition PWM converter[J]. IEEE Transactions on Power Electronics,1994,9 (2):213-219.
    [35]瞿文龙,李众庆,刘士祥,等.一种正激式ZVT-PWM高频软开关充电机的研究[J].清华大学学报,1999,39(3):41-44.
    [36]张纯江,刘彦民,邬卫扬,等.软开关AC/DC变流器中SVPWM波形的优化选择[J].中国电机工程学报,2000,20(6):35-38.
    [37]Ivanovic B, Stojiljkovic Z. A novel active soft switching snubber designed for boost converter[J]. IEEE Transactions on Power Electronics,2004,19 (3): 658-665.
    [38]Elasser A, Torrey D A. Soft switching active snubbers for DC/DC converters[J]. IEEE Transactions on Power Electronics,1996,11 (5): 710-722.
    [39]Nomura H, Fujiwara K. A loss-less passive snubber for soft-switching boost-type converters[C].1997 Proceedings of the 73rd Power Conversion Conference-Nagaoka,1997, (2):793-796.
    [40]Smith K M J, Smedley K M. Properties and synthesis of passive lossless soft-switching PWM converters[J]. IEEE transactions on Power Electronics,1999,14(5):890-899.
    [41]吴洪洋,何湘宁.一种新颖的三电平软开关功率因数校正电路[J],中国电机工程学报,2002,22(10):22-27.
    [42]张方华,王慧贞,严仰光.推挽正激整流及其应用[J].中国电机工程学报,2004,24(4):168-173.
    [43]顾亦磊,吕征宇,钱照明.一种新型的三电平软开关谐振型DC/DC变换器[J].中国电机工程学报,2004,24(8):24-28.
    [44]胡育文,丁志刚,游志青.变压器二次侧电流箝位DC/DC ZVS全桥变换器[J].中国电机工程学报,2003,23(12):153-159.
    [45]Cooke P. Modeling average current mode control of power converters[C]. The 15th Annual IEEE Applied Power Electronics Conference and Exposition,2000, (1):256-262.
    [46]Sun J, Bass R M. Modeling and practical design issues for average current control[C]. The 15th Annual Applied Power Electronics Conference and Exposition,1999, (2):980-986.
    [47]Hsiao C J, Ridley R B, Lee F C. Small-signal analysis of switching DC/DC converters using the simulation program COSMIR[C]. Proceedings of the Virginia Power Electronics Center Seminar, Blacksburg, VA,1988,219-223.
    [48]Lai Y M, Tse C K, Szeto C H. A computer method for modeling periodically switched networks[C]. PESC 94 Record,25th Annual IEEE Power Electronics Specialists Conference, (2):1297-1302.
    [49]Shortt D J, Lee F C. Extensions of the discrete-average models for converter power stages[J]. IEEE on Aerospace and Electronic Systems,1984,20 (3): 279-289.
    [50]Wester G W, Middlebrook R D. Low frequency characterization of switched DC/DC converters[J]. IEEE Transactions on Aerospace and Electronic Systems,1973,9:376-385.
    [51]Vorperian V. Simplified analysis of PWM converters using the model of the PWM switch:Part I and II[J]. IEEE Transactions on Aerospace and Electronic Systems.1990,26 (3):490-505.
    [52]Moussa W M, Morris J E. Effects of non-ideal switching in PWM switching converters[J]. International Journal of Electronics,1992,72:213-222.
    [53]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社,2006.
    [54]吴爱国,李际涛. DC/DC变换器的控制方法和研究现状[J].电力电子技术,1999,2:75-76.
    [55]Chang P H, Jung J H. A systematic method for gain selection of robust PID control for nonlinear plants of second-order controller canonical form[J]. IEEE Transactions on Control Systems Technology,2009,17 (2):473-483.
    [56]He M Z, Xu J P. Nonlinear PID in digital controlled cuck converters[C]. The 22nd Annual IEEE Applied Power Electronics Conference,2007:1461-1465.
    [57]李乔,吴捷.用于DC/DC变换器的非线性PID控制[J].华南理工大学学报,2004,32(5):17-23.
    [58]Yousefzadeh V, Choudhury S. Nonlinear digital PID controller for DC/DC converters[J]. The 23rd Annual IEEE Applied Power Electronics Conference and Exposition,2008:1704-1709.
    [59]邓卫华,张波,丘东元,等.电流连续型Boost变换器状态反馈精确线性化与非线性PID控制研究[J].中国电机工程学报,2004,24(8):45-50.
    [60]张悦,魏克新,欧阳紫威. DC/DC变流器系统的LQR-PID控制算法研究[J].天津理工大学学报,2008,24(1):5-7.
    [61]马红波,冯全源.BUCK型开关变换器最优PID控制器设计[J].电机与控制学报,2008,12(6):439-444.
    [62]Hsieh C H. Optimal fuzzy-immune-PID controllers design of PWM DC/DC converters[C], Annual Meeting of the North American on Fuzzy Information Processing Society,2007:123-128.
    [63]吴忠,史永丽. DC/DC升压变换器自适应-PID串级控制系统仿真研究[J].系统仿真学报,2004,16(5):344-346.
    [64]陆天华,沈锦飞,潘庭龙.基于单神经元PID控制的DC/DC变换器研究[J].通信电源技术,2008,25(2):33-36.
    [65]张天星,周雒维,郭丽萍.谐振开关电容DC-DC变换器单周控制策略[J].微电子学,2008,38(4):502-506.
    [66]吴爱国,李际涛,黄瑞祥,等. DC-DC变换器的大信号建模及鲁棒控制方法[J].电子学报,2001,29(5):649-652.
    [67]张涌萍,张波,陈斌,等.基于双线性系统理论的Boost DC/DC变换器新型控制策略[J].2006,21(7):109-114.
    [68]伍言真,丘水生,陈艳峰. DC/DC开关变换器滑模变结构控制的新方案[J].电子学报,2000,28(5):62-64.
    [69]胡文金,周东华.基于强跟踪滤波器的DC-DC变换器自适应控制[J].清华大学学报(自然科学版),2008,48(S2):1712-1717.
    [70]王伟,易建强,郑耀林,等. DC-DC变换器的模糊神经网络控制方法研究[J].系统仿真学报,2004,16(11):2567-2570,2574.
    [71]邓卫华,张波,胡宗波. CCM Buck变换器的状态反馈精确线性化的非线性解耦控制研究[J].中国电机工程学报,2004,24(5):120-125.
    [72]高为炳.变结构控制理论基础[M].北京:科学出版社.1990.
    [73]周军,李言俊.变结构控制系统的稳定性和鲁棒性[J].西北工业大学学报,1998,5:251-255.
    [74]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [75]伍言真,丘水生,陈艳峰. DC/DC开关变换器滑模变结构控制的新方案[J].电子学报,2000,5:62-64.
    [76]苏彩红,陆益民,朱学峰. DC/DC变换器的变结构控制策略[J].武汉科技大学学报(自然科学版).2003,6:169-172.
    [77]吴爱国,李际涛,黄瑞祥,袁浩. DC/DC变换器的大信号建模及鲁棒控制方法[J].电子学报,2001,5:649-651.
    [78]梅生伟,中铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003
    [79]秦世引,宋永华.混杂控制系统的结构体系分析.电力系统自动化,2000,6:5-9.
    [80]Levis A. Challenges to control:A collective view[J]. IEEE Transactions on Automatic Control,1986,32 (4):275-285.
    [81]Athans M. Command and control (C2) theory:A challenge to control science[J]. IEEE Transactions on Automatic Control.1987,32(4):286-292.
    [82]胡宗波,张波,胡少甫,等.基于切换线性系统的DC/DC变换器的输出能控性研究[J].电子学报,2005,2:370-374.
    [83]Herbertt S R. Nonlinear P-I controller design for switch mode DC/DC power converters[J]. IEEE Transactions on Circuits and Systems,1991,38 (4): 410-417.
    [84]Sanders S R, Verghese G C. Lyapunov-based control for switched power converters [J]. IEEE Transactions on Power Electronics,1992,7 (1):17-24.
    [85]胡宗波,张波,邓卫华,等.基于切换线性系统理论的DC/DC变换器控制系统的能控性和能达性[J].中国电机工程学报,2004,24(12):165-170.
    [86]胡宗波,张波,邓卫华,等. PWM DC/DC变换器混杂动态系统的能控性和能观性[J].电工技术学报,2005,20(2):76-82.
    [87]Tobias G, Georgios P, Manfred M. Model predictive control in power electronics:a hybrid systems approach[C]. Proceeding of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain,2005:5606-5611.
    [88]Georgios P, Tobias G, Manfred M. Hybrid modeling and optimal control of switch-mode DC/DC converters[C]. Proceedings of the Workshop on Computers in Power Electronics, COMPEL'04,2004:148-155.
    [89]Herbertt S R, Ramon S O. On the control of the resonant converter:a hybrid-flatness approach[C]. Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems,2002,1-15.
    [90]Venkataraman R, Sabanovie A, Cuk S. Sliding mode control of DC-to-DC converters[C]. In Proceedings of IECON'85, San Francisco,1985,251-258.
    [91]Herbertt S R. Sliding motions in switched bilinear networks[J]. IEEE Transactions on Circuit and Systems,1987,34 (8):919-923.
    [92]Sanders S, Verghese G. Lyapunov-based control for switching power converters[C]. Proceedings of IEEE Power Electronics Specialists Conference,1990:51-58.
    [93]Mossoba J T, Krein P T. Exploration of deadbeat control for DC/DC converters as hybrid systems[C]. Proceeding of IEEE Power Electronics Specialists Conference, PESC'05,2005:1004-1010.
    [94]Mossoba J T, Krein P T. Exploration of deadbeat control for DC/DC converters as hybrid systems[C]. Proceeding of IEEE Power Electronics Specialists Conference, PESC'05,2005:1004-1010.
    [95]Brad L, Riehard M. Switching frequency dependent average models for PWM DC/DC converters[J]. IEEE Transactions on Power Electronics,1996, 11(1):89-98.
    [96]Pawan G, Amit P. Hybrid mode-switched control of DC/DC boost converter circuits[J]. IEEE Transactions on Circuits and Systems,2005,52 (11): 734-738.
    [97]阮新波,严仰光.直流开关电源的软开关技术[M].北京:科学出版社,2000:208-221.
    [98]刘福鑫.高压直流电源系统中DC/DC变换器的研究[D].南京航空航天大学,2004.
    [99]徐永红.高压直流航空电源系统中静止变流器DC/DC级研制[D].南京航空航天大学,2006.
    [100]阮新波.移相控制零电压开关PWM变换器的研究[D].南京航空航天大学,1996.
    [101]Redl R, Sokal N O, Balogh L. A novel soft-switching full-bridge DC/DC converter:analysis, design considerations, at 1.5kW,100kHz[J]. IEEE Transactions on Power Electronics,1991,6 (3):408-418.
    [102]阮新波,严仰光,脉宽调制DC/DC全桥变换器的软开关技术[M],北京,科学出版社,1999:20-60.
    [103]杜贵平,弥波,张涌萍,等.基于切换线性系统的DC/DC变换器矩阵系数多项式描述模型[J].中国电机工程学报,2006,26(21):65-70.
    [104]张浩然,汪晓东.一种新的逆变器控制算法的设计[J].哈尔滨工业大学学报,2009,41(5):226-230.
    [105]陈道炼.DC/AC逆变技术及其应用[M].北京:机械工业出版社,2003.
    [106]陈江.基于滑模控制的DC-AC逆变器的研究[D].浙江大学,2002.
    [107]袁佳歆,陈柏超,田翠华,等.基于免疫遗传算法的逆变器控制[J].中国电机工程学报,2006,26(5):110-118.
    [108]张浩然,汪晓东.基于支持向量机的逆变器控制策略的研究[J].电工技术学报,2005,20(11):44-48.
    [109]郑雪生,李春文,汤洪海,等.三相PWM电压型逆变器的积分滑模控制[J].电工技术学报,2007,22(12):105-109.
    [110]丁新平,钱照明,崔彬.基于模糊PID的Z源逆变器直流链升压电路控制[J].中国电机工程学报,2008,28(24):31-38.
    [111]马皓,张涛韩思亮,等.新型逆变器滑模控制方案研究[J].电工技术学报,2005,20(7):50-56.
    [112]孙德保,汪秉文.自适应控制原理[M].武汉:华中理工大学出版社,1991.
    [113]王聪.软性开关逆变电路及其应用[M].北京:机械工业出版社,1993.
    [114]秦娟英,张华军.基于自适应控制的逆变器实时控制系统设计[J].微计算机信息,2005,21(5):38-40.
    [115]邹云屏,成功,丁凯.模型参考自适应逆变器的研究[J].通信电源技术,2000,(3):16-19.
    [116]邹云屏,成功,丁凯.一种基于模型参考自适应控制的软开关逆变器[J].电力电子技术,2000,(3):14-16.
    [117]王江,王家军,许镇琳.基于逆变器死区特性的永磁同步电动机系统的自适应变结构控制[J].中国电机工程学报,2001,21(8):37-41.
    [118]吴浩伟,段善旭,易德刚,等.基于重复和PI控制的中频逆变器复合控制方案[J].电力电子技术,2006,40(4):38-40.
    [119]陈宏.基于重复控制理论的逆变电源控制技术研究[D].南京:南京航空航天大学,2003.
    [120]胡兴柳.基于重复控制技术的逆变电源研究[J].电力电子技术,2004,38(4):51-53.
    [121]赵金,延烨华,徐金榜,等.逆变电源重复控制技术的研究[J].华中科技大学学报:自然科学版,2003,31(12):25-28.
    [122]齐东流,李多山,肖本贤.基于重复控制与电压双闭环控制的逆变器设计[J].通信电源技术,2009,26(3):16-19.
    [123]游志青.基于重复控制技术的数字式逆变电源的研究[D].南京:南京航空航天大学,2003.
    [124]孙孝峰,孟令杰,杨超.三相逆变器采样模型重复控制研究[J].中国电机工程学报,2009,29(15):36-42.
    [125]Kawamura A, Haneyoshi T, Hoft R G. Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor[J]. IEEE Transactions on Power Electronics,1988,3 (2):118-125.
    [126]Zhang K, Kang Y, Xiong J, et al. Deadbeat control of PWM inverter with repetitive disturbance prediction[C]. The 14th Annual Applied Power Electronics Conference and Exposition,1999, (2):1026-1031.
    [127]Jung S L, Huang H S, Chang M Y, et al. DSP-Based multiple-loop control strategy for single-phase inverters used in AC power sources[C]. The 28th Annual IEEE Power Electronics Specialists Conference,1997, (1):706-712.
    [128]蔡秀珊,唐锴,刘洋.一类结构不确定非线性系统的鲁棒镇定[J].哈尔滨工业大学学报,2009,41(5):218-221.
    [129]潘孟春,单庆晓,胡楷.基于鲁棒系数的逆变器开关角选择方法[J].中国电机工程学报,2004,24(10):87-90.
    [130]郑雪生,李春文,汤洪海,等.三相电压型逆变器的鲁棒跟踪双环控制器[J].清华大学学报(自然科学版),2008,48(1):38-41.
    [131]张子健,徐敏,曾晓彬,等.LQG/LTR鲁棒控制器在机翼主动颤振抑制中的应用[J].西北工业大学学报,2009,27(2):190-194.
    [132]蔡自兴.智能控制(第二版)[M].北京:电子工业出版社,2004.
    [133]孙丹,孟濬,管宇凡,等.基于相空间重构和模糊聚类的永磁同步电机直接转矩控制系统逆变器故障诊断[J].中国电机工程学报.2007,27(16):49-53.
    [134]尹作友,张化光.基于模糊T-S模型的非线性系统的H∞鲁棒容错控制[J].控制与决策,2009,24(6):813-818.
    [135]徐金榜,赵金,罗泠,等.PWM整流系统模糊逻辑控制研究[J].华中科技大学学报(自然科学版),2005,33(2):47-49.
    [136]陈鑫兵,何礼高.基于模糊控制的三电平逆变器中点电位平衡策略[J].电工技术学报,2007,22(10):103-108.
    [137]欧阳磊,黄友锐,黄宜庆.基于模糊RBF神经网络的PID及其应用[J].计算机工程,2008,34(22):231-233.
    [138]韩笑,孟玉发.辅助变流器在SS3B型固定重联电力机车上的应用研究[J].铁道机车车辆,2004,24(3):24-27.
    [139]唐青松,吴强,曹怀志,等.一种采用无源软开关箝位电路技术的新型高 效DC-DC变换器[J].变流技术与电力牵引.2007,4:18-24.
    [140]Cho G, Sabate J A, Hua G, et al. Zero-voltage and zero-current switching full-bridge PWM converter for high-power applications[C], Proceedings of the IEEE Power Electronics Specialists Conference,1994, (1):102-108.
    [141]Cho J G, Baek J W, Jeong C Y, et al. Novel zero-voltage and zero-current-switching (ZVZCS) full bridge PWM converter using a simple auxiliary circuit[C]. The 13th Annual Applied Power Electronics Conference and Exposition,1998,834-839.
    [142]Bendre, S N, Divan I. Wallace and R.W.Gascoigne, New high power DC-DC converter with loss limited switching and lossless secondary clamp[J]. IEEE Transactions on Power Electronics,2003,18 (4):1020-1027.
    [143]Starman L A. Dynamic performance of PWM DC-DC boost converter with input voltage feed-forward control[J]. IEEE Transactions on Circuits and Systems Fundamental Theory and Applications,1999,46 (12):1473-1481.
    [144]Sun J, Schoneman G K, Jenkins D E. Small-signal characterization of a zero-voltage switching DC/DC converter for pulse-load applications[C]. The 30th Annual IEEE Power Electronics Specialists Conference,1999, (1): 439-444.
    [145]Ren Y C, Wu X H, Qian Z, Ruan K. A novel unified average model for single switch DC-DC converter[C]. The 15th Annual IEEE Applied Power Electronics Conference and Exposition,2000, (1):263-268.
    [146]Kazimierczuk M K, Edstrom A J. DC and AC analysis of buck PWM DC-DC converter with peak-voltage-modulation feedforward control [C]. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems,1999, (5):246-249.
    [147]Tan F D, Middlebrook R D. A unified model for current-programmed converters [J]. IEEE Transactions on Power Electronics,1995,10 (4): 397-408.
    [148]Midya P, Krein P T. Closed-loop noise properties of pulse-width modulated power converters[C]. The 26th Annual IEEE Power Electronics Specialists Conference,1995, (1):15-21.
    [149]Garcera G, Figueres E, Benavent J M. Analog adaptive current injected control of DC-DC switching converters with robust dynamic response: Industrial electronics society[C]. Proceedings of the 24th Annual Conference of the IEEE,1998,2:1046-1051.
    [150]Tang W, Ridley R, Lee F C. Small signal modeling of average current-mode control[C]. In Proc. IEEE APEC Conf. Rec,1992,747-755.
    [151]Ioannidis G, Kandianis A, Manias S N. Novel control design for the buck converter[C]. IEEE Proceedings on Electric Power Applications,1998,145 (1):39-47.
    [152]Sun J, Bass R M. Modeling and practical design issues for average current control[C]. The 14th Annual Applied Power Electronics Conference and Exposition,1999, (2):980-986.
    [153]Cooke P. Modeling average current mode control of power converters[C]. Proceedings of the 15th Annual IEEE Applied Power Electronics Conference and Exposition,2000, (1):256-262.
    [154]Middlebrook R D, Cuk S. A general unified approach to modeling switching converter power stages[C]. IEEE Power Electronics Specialists Conference Record,1976,18-34.
    [155]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700