蜂蜜的热稳定性及流变和真空脱水特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜂蜜的理化性质与蜜源、产地、气候有关,品种不同、产地不同,其理化性质不同。蜂蜜的理化特性是选择生产、加工和贮存条件,确保蜂蜜质量和性状的关键。本文针对中国产金银花蜜、枣花蜜、枸杞蜜、紫云英蜜、洋槐蜜和椴树蜜,采用分光光度法、铁氰化钾滴定法测定蜂蜜中淀粉酶和蔗糖转化酶活性在热处理过程中的变化,建立蜂蜜中淀粉酶和蔗糖转化酶的热失活动力学模型。采用HLPC法测定蜂蜜中羟甲基糠醛(HMF)含量在热处理过程中的变化,建立蜂蜜中HMF的生成反应动力学模型。采用流变仪及连续程序变温方法测定不同温度下的粘度,建立蜂蜜的流变学模型。采用静态法方法测定蜂蜜在不同温度下的饱和蒸汽压,采用真空微波脱水方法测定蜂蜜的真空脱水曲线和脱水速率曲线,建立蜂蜜的饱和蒸汽压—温度—水分含量模型和真空脱水模型。
     结果表明:
     1.在温度>313.15K的热处理过程中,蜂蜜中淀粉酶的热失活速率方程、热失活方程分别为:
     k_d=k_(fd)·exp[-164353.92/(RT)]
     [RA]_d=100·exp[-k_(fd)·exp(-164353.92/(RT)·t]
     在温度>303.15K的热处理过程中,蜂蜜中蔗糖转化酶的热失活速率方程、热失活方程分别为:
     k_i=k_(fi)·exp[-160353.50/(RT)]
     [RA]_i=100·exp[-k_(fi)·exp(-160353.50/(RT)·t]
     式中[RA]_d、[RA]_i为蜂蜜中淀粉酶和蔗糖转化酶的相对酶活。中国产金银花蜜、枣花蜜、紫云英蜜、枸杞蜜、洋槐蜜和椴树蜜中淀粉酶的热失活频率常数k_(fd)分别为7.56×10~(19)、5.82×10~(20)、1.02×10~(21)、3.59×10~(20)、5.53×10~(20)、8.51×10~(20),蔗糖转化酶的热失活频率常数k_(fi)(单位s~(-1))分别为2.25×10~(21)、4.72×10~(22)、6.79×10~(21)、5.54×10~(22)、2.66×10~(22)、3.01×10~(22)。
     2.在温度≥343.15K的恒温热处理过程中,蜂蜜中HMF的生成反应速率方程、生成反应方程生成分别为:
     k_h=k_(fh)·exp[-97640.93/(RT)]
     [HMF]_t=[HMF]_0·exp[k_(fh)·exp(-811786.69/T)·t]
     式中[HMF]_0和[HMF]_t分别为蜂蜜中HMF初时含量和t时含量。中国产金银花蜜、枣花蜜、紫云英蜜、枸杞蜜、洋槐蜜和椴树蜜中HMF的生成反应频率常数k_(fh)分别为9.33×10~(10)、5.64×10~(10)、1.45×10~(11)、1.83×10~(10)、4.05×10~9、8.81×10~9。
     3.中国产金银花蜜、枣花蜜、紫云英蜜、枸杞蜜、洋槐蜜和椴树蜜的流变学模型分别为:
     μ=0.0532w~(8.4414)·exp[22468 w~(-0.6178)/(RT)] (金银花蜜)
     μ=0.0358w~(8.8.8304)·exp[24273 w~(-06008)/(RT)] (枣花蜜)
     μ=0.0151·w~(8.0985)·exp[24811 w~(-0.5783/(RT)] (紫云英蜜)
     μ=0.0273·w~(8.3971)·exp[22758 w~(-0.6008)/(RT)] (枸杞蜜)
     μ=0.033·w~(8.3737)·exp[23585 w~(-0.5983)/(RT)] (洋槐蜜)
     μ=0.0415·w~(9.0215)·exp[24449 w~(-0.6029)/(RT)] (椴树蜜)
     式中μ为粘度(cp),T为温度(K),w为蜂蜜水分含量(%W/W)。
     4.蜂蜜的饱和蒸汽压—温度—水分含量模型为:Inp~s=-A/T+B,式中p~s为饱和蒸汽压(kpa),T为温度(K),A、B为系数。蜂蜜水分含量为16%、19%、22%、25%、27%时,A分别为5377.4、5370.5、5347.3、5345.4、5355.0、5367.1,B分别为18.48、18.53、18.53、18.59、18.69、18.79。
     5.蜂蜜的真空脱水模型即蜂蜜的水分含量比率—真空脱水时间方程分别为:MR=0.0133·exp(0.0135T)·exp[-t·(7×10~(-27))·(1/T)~(-δ)],式中MR为水分含量比率,t为真空脱水时间(min),δ为系数。蜂蜜装料厚度为(2.3-2.4)mm、(3.4-3.6)mm、(4.6-4.8)mm时,δ分别为9.5646、9.3135、9.9289。
The phsico-chemical characteristics of honey are related with its plant resource and produced place. The phsico-chemical characteristics of honey are changed with the changing of its kind or produced place. To choose the suitable conditions of producing, processing and saving honey according to the phsico-chemical characteristics of honey is necessary and the key of improving the quality of honey.
     To determine the variations of diastase and invertase activities of Chinese honeysuckle honey, date honey, astragali honey, medlar honey, acacia honey and bass honey during heat treatment with spectrophotometer and titration of kaliumferricyanide. Then to operate on data and obtain the kinetics models of thermo-deactivation of the diastase and invertase in them. To determine the change of the HMF content of the six kinds of honey during heat treatment by HLPC. Then to analyse the mechanism of producing HMF in honey, and set up the kinetics model of producing HMF in honey. To determine the viscosity of the six kinds of honey at different temperatures by rheometer and with sequential programme temperature transformation. Then to analyse and operate on data, and set up the model of rheological behavior of honey. To determining the saturated vapor pressure of honey at different temperatures with static state pressure method, and the curves of vacuum dehydration and dehydration rate of honey with vacuum microwave dehydration method. Then to analyse and operate on data, and get the models of saturated vapor pressure-temperature- water content and vacuum dehydration of honey.
     The results show:
     1. During heat treatment at above 313.15K, the kinetics model of thermo-deactivation of diastase in honey is K_d = k_(fd)·exp [-164353.92/(RT) ] and [RA]_d =100·exp[-k_(fd)·exp(-164353.92/(RT)·t]. During heat treatment at above 303.15K, the velocity equation and equation of thermo-deactivation of invertase in honey are k_i = k_(fi)·exp [-160353.50/(RT)] and [RA]_i=100·exp[-k_(fi)·exp(-160353.50/(RT)·t]. [RA]_d and [RA]_i are the reduced activities of diastase and invertase in honey, and k_d and k_i are the velocities of thermo-deactivation of diastase and invertase in honey. The apparent frequency constants k_(fd) of thermo-deactivation of diastase in Chinese honeysuckle honey, date honey, astragali honey, medlar honey, acacia honey and bass honey are respectively 7.56×10~(19)s~(-1), 5.82×10~(20)s~(-1), 1.02×10~(21)s~(-1), 3.59×10~(20)s~(-1), 5.53×10~(20)s~(-1), 8.51×10~(20)s~(-1). The apparent frequency constants k_(fi) of thermo-deactivation of invertase in these honey are respectively 2.25×10~(21)s~(-1), 4.72×10~(22)s~(-1), 6.79×10~(21)s~(-1), 5.54×10~(22)s~(-1), 2.66×10~(22)s~(-1), 3.01×10~(22)s~(-1).
     2. During heat treatment at above 343.15K, the velocity equation and equation of producing HMF in honey are k_h=k_(fh)·exp[-97640.93/(RT)] and [HMF]_t=[HMF]_0·exp[k_(fh)·exp(-811786.69/T)·t]. [HMF]_0 and [HMF]_t are the HMF contents of honey at 0 minute and t minute. And k_h is the velocity of producing HMF in honey. The apparent frequency constants k_(fi) of producing HMF in Chinese honeysuckle honey, date honey, astragali honey, medlar honey, acacia honey and bass honey are respectively 9.33×10~(10)s~(-1), 5.64×10~(10)s~(-1), 1.45×10~(11)s~(-1), 1.83×10~(10) s~(-1), 4.05×10~9, 8.81×10~9s~(-1).
     3. The models of rheological behaviour of Chinese honeysuckle honey, date honey, astragali honey, medlar honey, acacia honey and bass honey are respectivelyμ=0.0532w~(8.4414)·exp[22468w~(-0.6178)/(RT)],μ=0.0358w~(8.8304)·exp[24273w~(-0.6008)/(RT)],μ=0.0151·w~(8.0985)·exp[24811w~(-0.5783)/(RT)],μ=0.0273·w~(8.3971)·exp[22758w~(-0.6008)/(RT)],μ=0.033·w~(8.3737)·exp[23585w~(-0.5983)/(RT)], andμ=0.0415·w~(9.0215)·exp[24449w~(-0.6029)/(RT)].μis the visicidity of honey and its unit is cp, and w the water content of noney and its unit mass percentage, and T temperature of honey and its unit K.
     4. The model of saturated vapor pressure-temperature-water content of honey is Inp~s=-A/T+B. p~s is saturated vapor pressureof honey, and its unit is kpa. T is temperature of honey, and its unit K. A and B are loading thickness constants. When the content of honey is 16% or 19% or 22% or 25% or 27%, constant A is 5377.4, 5370.5 or 5347.3 or 5345.4 or 5355.0 or 5367.1. constant B is 18.48 or 18.53 or 18.53 or 18.59 or 18.69 or18.79.
     5. The model of vacuum dehydration of honeys, that is MR-t equation, is MR=0.0133·exp(0.0135T)·exp[-t·(7×10~(-27))·(1/T)~(-δ)]. MR is the ratio of water contents of honey, and t vacuum dehydration time, and the unit of t is minute, andδlanding thickness constant. When landing thickness of honey is (2.3-2.4)mm or (3.4-3.6)mm or (4.6-4.8)mm,δis 9.5646 or 9.3135 or 9.9289.
引文
[1] 徐景耀编著.蜂蜜[M].北京:北京农业科技出版社,1995
    [2] 袁泽良,冯峰编著.蜂产品加工技术与保健[M].北京:科学技术文献出版社,2001
    [3] 中华人民共和国国家质量监督检验检疫总局发布.中华人民共和国国家标准GB/T18796-2002.蜂蜜[S].
    [4] 张坚,刘凤云,许子俊等.青海省油菜花蜜营养成分的研究[J].营养学报,1995,17(2):234~237
    [5] L. S. M. Costa, M. L. S. Albuquerque, L. C. Trugo, et al. Determination of non-volatile compounds of different botanical origin Brazilian honey[J]. Food Chemistry, 1999, 65: 347~352
    [6] Paula B. Andrade, M. Teresa Amaral, Paulo Isabel, et al. Physicochemical attributes and pollen spectrum of Portuguese heather honeys[J]. Food Chemistry, 1999, 66: 503~510.
    [7] Almahdi Melad ALJADI, Kamaruddin mohd, YUSOFF. Isolation and identification of phenolic acids in Malaysian honey with antibacterial properties[J]. Turk J Med Sci, 2003, 33: 229~236
    [8] N. Sahinler, S. Sahinler, A. Gul. Biochemical composition of honeys produced in Turkey[J]. Journal of Apicultural Research, 2004, 43 (2): 53~56
    [9] Graciela Ojeda de Rodriguez, Betzabe Sulbaran de Ferret, Alexis Ferrer, et al. Characterization of honey produced in Venezuela[J]. Food Chemistry, 2004, 84: 499~502
    [10] J. F. Cotte, H. Casabianca, S. Chardon, et al. Application of carbohydrate analysis to verify honey authenticity[J]. Journal of Chromatography A, 2003, 1021: 145~155
    [11] M. M. Cavia, M. A. Fernandez-Muino, E. Gomez-Alonso, et al. Evolution of fructose and glucose in honey over one year: influence of induced granulation[J]. Food Chemistry, 2002, 78: 157~161
    [12] Jorge Chirife, Maria Clara Zamora, Aldo Motto. The correlation between water activity and % moisture in honey: Fundamental aspects and application to Argentine honeys[J]. Journal of Food Engineering, 2006, 72 (3): 287~292
    [13] Maria Clara Zamora, Jorge Chirife. Determination of water activity change due to crystallization in honeys from Argentina[J]. Food Control, 2006, 17: 59~64
    [14] Roderck J. Weston, Kevin R. Mitchell, Kerry L. Allen. Antibacterial Phenolic components of New Zealand MANUKA honey[J]. Food Chemistry, 1999, 64: 295~301
    [15] Roderck J. Weston, Lise K. Brocklebank, Yinrong Lu. Identification and quantitative levels of antibacterial components of some New Zealand honeys[J]. Food Chemistry, 2000, 70: 427~435
    [16] Silvia Suarez, Ines Mato, Jose F. Huidobro, et al. Solid-phase extraction procedure to remove organic acids from honey[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2002, 770 (1-2): 77-82
    [17] Silvia Suarez-Luque, Ines Mato, Jose F.Huidobro, et al. Rapid determination of minority organic acids in honey by high-performance liquid chromatography[J]. Joural of Chromatography A, 2002, 955: 207-214
    [18] Mohamed Al-Mamary, Ali Al-Meeri, Molham Al-Habori. Antioxidant activities and total phenolics of different types of honey[J]. Nutrition Research, 2002, 22: 1041-1047
    [19] MaJ.Nozal, J.L.Bernal, J.C.Diego, et al. HPLC determination of low molecular weight organic acids in honey with series-coupled ion-exclusion columns[J]. Joural of Liquid Chromatography & Related Technologies, 2003,26 (8): 1231-1253
    [20] Almahdi Melad ALJADI, Kamaruddin mohd, YUSOFF. Isolation and identification of phenolic acids in Malaysian honey with antibacterial properties[J]. Turk J Med Sci, 2003, 33: 229-236
    [21] A.M.Aljadi, M.Y.Kamaruddin. Evalution of the phenolic contents and antioxidant caPacities of two Malasian floral honeys[J]. Food Chemistry, 2004, 85: 513-518
    [22] Lihu Yaoa, Yueming Jiang, Riantong Singanusong, et al. Phenolic acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for floral anthentication[J]. Food Research International, 2005, 38: 651-658
    [23] Aline Meda, Charles Euloge Lamien, Marco Romito, et al. Determination of the total phenolic, flavonoid and praline contents in Burklina Fasan honey, sa well as their radical scavenging activity[J]. Food Chemistry, 2005, 91: 571-577
    [24] A.Pirini, L.S.Conte, O.Francioso,et al. Capillary gas chromatographic determination of free amino acids in honey as a means of discrimination between different botanical sources[J]. HRC Journal of High Resolution Chromatography, 1992, 15 (3): 165-168
    [25] M.J.Nozal, J.L.Bernal, M.L.Toribio, et al. Rapid and sensitive method for determining free amino acids in honey by gas chromatography with flame ionization or mass spectrometric detection[J]. Joural of Chromatography A, 2004, 1047 (1): 137-146
    [26] J.F.Cotte, H.Casabianca, B.Giround, et al. Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity[J]. Analytical and Bioanalytical Chemistry, 2004, 378 (5): 1342-1350
    [27] Maria Jesus Nozal, Laura Toribio, Juan Carlos Diego, et al. A comparative study of several HPLC methods for determining free amino acid profiles in honey[J]. Journal of SeParation Science, 2005, 28 ( 9-10): 1039-1047
    [28] L.C.Azeredo, M.A.A.Azeredo, C.S.T.De SamPaio. HPLC assay for the determination of ascorbic acid in honey samples[J]. Journal of Liquid Chromatography and Related Technologies, 2001, 24 (7): 1015-1020
    [29] Hayrullah Yilmaz, Omer Yavuz. Content of some trace metals in honey from south-eastern Anatolia[J]. Food Chemistry, 1999,65: 475-476
    [30] Marcelo Enrique Conti. Lazio region (central Italy) honeys: a survey of mineral content and typical quality Parameters[J]. Food Control, 2000, 11: 459-463
    [31] Vikas Nanda, B.C.Sarkar, H.K.Sharma, et al. Physico-chemical properties and estimation of mineral content in honey produced from different plants in Northern India[J]. Journal of Composition and Analysis, 2003, 16: 613-619
    [32] Anass Terrab, Angeles F.Recamales, Dolores Hernanz, et al. Characterisation of SPanish thyme honey by their physicochemical characteristics and mineral contents[J]. Food Chemistry, 2004, 88: 537-542
    [33] Rut Fernandez-Torres, Juan Luis Perez-Bernal, Miguel Angel Bello-Lopez, et al. Mineral content and botanical origin of SPanish honeys[J]. Talanta, 2005, 65 (3): 686-691
    [34] l.da CAzeredo, M.A.A.Azeredo, S.R.de Souza, et al. Protein contents and physicochemical properties in honey samPales of Apis mellifera of different floral origins[J]. Food Chemistry, 2003, 80: 249-254
    [35] L.P.Oddo, E.Baldi, M.Accorti. Diastatic activity in some monofloral honeys[J]. Apidologie, 1990,21 (1): 17-24
    [36] L.P.Oddo, M.G. Piazza, A.GSabatini. Characterization of monofloral honeys[J]. Apidologie, 1995, 26 (4): 453-465
    [37] L.P.Oddo,M.G. Piazza, P.Pulcini. Invertase activity in honey[J]. Apidologie, 1999, 30 (1): 57-65
    [38] Josep Serra Bonvehi. Invertase activity in fresh and processed honeys[J]. Journal of the Science of Food & Agriculture, 2000, 80 (4): 507-512
    [39] Z.Szel, A.Kardos-Neumann, P.A.Biacs, et al. Investigation of enzyme activity in Hungarian acacia and milkweed honeys[J]. ActaAlimentaria, 2002, 31 (2): 197-201
    [40] Stefan Bogdanov. Nature and Origin of the Antibacterial Substances in Honey[J]. Lebensmittel-Wissenschaft und -Technologie, 1997, 30 (7): 748-753
    [41] Roderick J.Weston. The contribution of catalase and other natural products to the antibacterial activity of honey: a review[J]. Food Chemistry, 2000, 71 (2): 235-239
    [42] J.J.White. The role of HMF and diastase assay in honey quality evaluation[J]. Bee World, 1994,75(3): 104-117
    [43] S.Qamer, A.R.Shakoori. Increased hydroxymethylfurfural and decreased diastase activity as indicators of degradation of quality of honey[J]. Pakistan Journal of Zoology, 2004, 36 (2): 165-166
    [44] R.F.A.Moreira, C.A.B.De Maria. Investigation of the aroma compounds from headsPace and aqueous solution from the cambara (Gochnatia Velutina) honey [J]. Flavour and Fragrance Journal, 2005, 20(1): 13-17
    [45] Ana Cristina Soria, Isabel Martinez-Castro, Jesus Sanz. Analysis of volatile composition of honey by solid phase microextraction and gas chromatography-mass spectrometry[J]. Journal of Separation Science, 2003, 26 (9-10): 793-801
    [46] J.Pryce Jones, G.W.Scott Blair. Plasticity, fluidity and consistence of foodstuffs(lst ed.)[M]. Amsterdam: North-Holland Publishing ComPany, 1953
    [47] Brenda Mossel, Bhesh Bhandari, Bruce D'Arcy, et al. Determination of viscosity of some Australian honeys based on composition[J]. International Journal of Food Properties. 2003, 6 (1): 87~97
    [48] Bhesh Bhandari, Bruce D'Arcy, Samul Chow. Rheology of selected Australian honeys[J]. Journal of Food Engineering, 1999, 41: 65~68
    [49] 张兴军.蜂蜜褐变的化学机制分析与探讨[J].蜂蜜杂志,1996,3:3~4
    [50] Adriana Pereyra Gonzales, Leila Burin, Maria del Pilar Buera. Color changes during storage of honeys in relation to their composition and initial color. Food Research International[J] , 1999, 32 (3): 185~191
    [51] Ana Cristina Soda, Isabel Martinez-Castro, Jesus Sanz. Analysis of volatile composition of honey by solid phase microextraction and gas chromatography-mass spectrometry[J]. Journal of SeParation Science, 2003, 26 (9~10): 793~801
    [52] Cecilia Elena LuPan. DSC study of honey granulation stored at various temperatures[J]. Food Research International, 1997, 30 (9): 683~688
    [53] D. AnuPama, K. K. Sapna. Sensory and physcico-chemical of commercial samples of honey[J]. Food Reasarch International, 2003, 36: 183~191
    [54] Salud Serrano, Marta Villarejo, Robert Espejo, et al. Chemical and physical Parameters of Andalusian honey: classification of Citrus and Eucalyputs honeys by discriminant analysis[J]. Food Chemistry, 2004, 87: 619~625
    [55] J. Devillers, M. Morlot, M. H. Pham-Delegue, et al. Classification of monofloral honeys based on their quality control data[J]. Food Chemistry, 2004, 86: 305~312
    [56] 李军生,何仁,江权荣等.蜂蜜淀粉酶在鉴别蜂蜜掺假中的应用研究[J].食品科学,2004,25(10):59~62
    [57] 李琦智,朱敏,任德曦.蜂蜜的功效与应用[J].四川中医,2004,22(1):30~31
    [58] 王本祥编著.蜜蜂产品的医疗效能[M].长春:吉林人民出版社,1981
    [59] 中华人民共和国卫生部药典委员会.中华人民共和国药典(1985版)一部[M].北京:人民卫生出版社,化学工业出版社,1987.318~319
    [60] 朱奇,郭善利,刘国富等.蜂蜜抗菌作用机制探讨[J].蜂蜜杂志,1999,(5):5~6
    [61] Osato MS, Reddy SG, Graham DY. Osmotic effects of honey on growth and viability of Helicobacter pylori[J]. Digestive diseases and Science. 1999, 44 (3): 462~464
    [62] Sinigaglia M, Corbo MR, Massa S, et al. Effect of three honey types on Escherichia coli O157: H7 and Shigella flexneri[J]. Advance in Food Science, 2000, 22 (5): 156~160
    [63] Peter J. Taormina, Brendan A. Niemira, Larry R. Beuchat. Inhibitory activity of honey against foodborne Pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power[J]. International Journal of Food Microbiology 2001, 6 (3): 217~225
    [64] 朱威,胡福良,李英华等.蜂蜜的抗菌机理及其抗菌效果的影响因素.天然产物研究与开发,2004,16(4):372~375
    [65] Patricia E. Lusby, Alexandra L. Coombes, Jenny M. Wilkinson. Bactericidal Activity of Different Honeys against Pathogenic Bacteria[J]. Archives of Medical Research. 2005, 36 (5): 464~467
    [66] 栾双梅,幸坤艳,任桂蕾.蜂蜜治疗胃十二指肠溃疡34例[J].世界华人消化杂志,1998,6:334
    [67] 汪涛.蜂蜜配合枸橼酸铋钾治疗老年消化性溃疡的疗效观察[J].职业与健康,2000,10:111
    [68] 郭芳彬.蜂蜜对消化性溃疡的疗效与机理浅析[J].中国养蜂,2004,1:19
    [69] Alim ATMM. Natural honey accelerates healing of indomethacin-induced antral ulcers in rats[J]. Saudi Med J, 1995, 16: 161~166
    [70] Gharzouli K, Gharzouli A, Amira S, et al. Protective effect of mannitol, lucose-fructose-sucrose-maltose mixture, and natural honey hyperosmolar solutions against ethanol-induced gastric damage in rats [J]. Exp Toxic Pathol, 2001, 53: 175~180
    [71] Gharzouli K, Gharzouli A, Amira S, et al. Prevention of ethanol-induced gastric lesions in rats by natural honey and glucose-fructose-sucrose-maltose mixture[J]. Pharmacol Res, 1999, 39: 151~156
    [72] Gharzouli K, Amira S, Gharzouli A, et al. Gastroprotective effects of honey and glucose-fructose-sucrose-maltose mixture against ethanol-, indomethacin-, and acidified aspirin-induced lesions in eht rat[J]. Exp Toxic Pathol, 2002, 54: 217~221
    [73] Alis Dogan, Durdane Kolankaya. Protective effect of Anzer honey against ethanol-induced increased vascular permeability in the rat stomach[J]. Experomental and Toxicologic Pathology, 2005, 57: 173~178
    [74] 谢红霞.蜂蜜的抗菌特性及其在医学上的应用[J].海峡药学,2004.16(4):145~147
    [75] P. C. Molan, R. A. Copper. Honey and sugar as a dressing for wounds ulcers[J]. Tropical Doctor, 2000, 30 (4): 249~250
    [76] PhD R. A. Cooper, BSc E. Halas, PhD P. C. Molan. The Efficacy of Honey in Inhibiting Strains of Pseudomonas Aeruginosa From Infected Burns[J]. Journal of Burn Care & Rehabilitation. 2002, 23 (6): 366~370
    [77] 郭芳彬.蜂蜜的抗菌药理研究[J].养蜂科技,2002,(6):22~25
    [78] 莫宗永.蜂蜜和三黄粉治疗烧伤瘢痕上溃疡的疗效观察[J].中医药研究,1998,(4):37
    [79] 李静伟.蜂蜜治疗各类创面的体会[J].中国临床医药研究杂志,2003,(107):106~106
    [80] 黄文诚.蜂蜜过氧化氢的医疗作用[J].蜜蜂杂志,2003,(3):22~23
    [81] Takeshi Nagai, Mizuho Sakai, Reiji Inoue. Antioxidative activities of some commercially honeys, royal jelly, and propolis[J]. Food Chemistry. 2001, 75 (2): 237~240
    [82] Mohamed Al-Mamary, Ali Al-Meeri, Molham Al-Haborib. Antioxidant activities and total phenolics of different types of honey[J]. Nutrition Research. 2002, 22: 1041~1047
    [83] A. M. Aljadi, M. Y Kamaruddin. Evaluation of the phenolic content and antioxidant caPacities of two Malaysian floral honeys[J]. Food Chemistry. 2004, 85: 513~518.
    [84] M. J. Snow, M. Manley-Harris. On the nature of non-peroxide antibacterial activity in New Zealand manuka honey[J]. Food Chemistry. 2004, 84(1): 145~147
    [85] 玄红专,胡福良.14种蜂蜜的抗氧化活性[J].养蜂科技,2003,(4):38
    [86] 高庆菊.蜂蜜的营养与保健[J].中国保健食品,2002,15(6):18
    [87] 吴金泉编著.蜂蜜、健康、美容[M].北京:中国农业出版社,1998
    [88] 潘建国,王开发,段怡.论蜂产品在护肤美容上的应用[J].蜜蜂杂志(月刊),2001,6:24~25
    [89] 石永峰,戴红霞.蜂蜜的特性及其在食品中的应用[J].陕西粮油科技,1995,20(2):25~27
    [90] 余金牛.蜂蜜在人体组织保存和中药制剂中的应用[J].中国养蜂,1998,(1):19
    [91] 熊鹏辉.蜂蜜在中药炮制及制剂中的应用[J].时珍国医国药,2005,16(1):35~36
    [92] 中华人民共和国国家出入境检验检疫局发布.中华人民共和国国家出入境检验检疫局行业标准SN/T 0852~2000.进出口蜂蜜检验方法[S].
    [93] S. Bogdanov, P. Martin, C. Lullman. Harmonised methods of the Europen Honey Commission[J]. Apidoiogie Extra issue, 1997, 214~220
    [94] 张忠义,陈辉.蜂蜜中蔗糖转化酶测定方法探讨[J].食品科学,2002,23(11):116~118
    [95] 陶琼.蜂蜜中蔗糖转化酶和淀粉酶活性的热稳定性比较[J].蜜蜂杂志,2002,4:5~6
    [96] S. R. Joshi, H. Pechhacker, A. William, et al. Physico-chemical characteristics of Apis dorsata, A. cerana and A. mellifer honey from Chitwan district, central NePal[J]. Apidologie, 2000, 31(3): 367~375
    [97] H. Horn, D. Bohm. The relationship between the yield, moisture, praline and the enzyme activities invertase and diastase in honey[J]. Deutshe Lebensmittel Rundschau, 2004, 100 (3): 88~92
    [98] 陶向群.影响蜂蜜淀粉酶活性的因素探讨[J].蜜蜂杂志,1992,8:3~4
    [99] H. Horn, W. P. Hammes. The influence of temperature on honey quality Parameters[J]. Deutsche Lebensmittel Rundschau, 2002, 98 (10): 366~372
    [100] A. O. A. C. Official methods of analysis: 15th edition. Association of Official Analytical Chemists, Inc. , Arlington, VA, USA. 1990
    [101] S. Bodganov, EMartin, C. Lullmann. Harmonised methods of the European honey commission. In B. Vaissiere Apidologie. France: Elsevier. 1997. 1~59
    [102] 中华人民共和国国家质量监督检验检疫总局发布.中华人民共和国国家标准GB/T18932.18~2003.蜂蜜中羟甲基糠醛含量的测定方法——液相色谱—紫外检测法[S].
    [103] M. ZapPala, B. Fallico, E. Arena, et. al. Methods for the determination of HMF in honey: a comParison[J]. Food Control, 2005, 16 (3): 273~277
    [104] Filippo Lo Coco, Clemente Valentini, Veronica Novelli, et. al. High-performance liquid chromatographic determination of 2-furaldehyde and 5-hydroxymethy-2-furaldehyde in honey[J]. Journal of Chromatography A. 1996, 749(1~2): 95~102
    [105] Maria J. Nozal, Jose L. Bernal, Laura Toribio, et al. High-performance liquid chromatographic determination of methyl anthranilate, hydroxymethylfurfural and related compounds in honey[J]. Journal of chromatography A, 2001, 917(1~2): 95~103
    [106] 徐寿昌主编.有机化学:第2版[M].北京:高等教育出版社,1993
    [107] M. S. Feather, D. W. Harris, S. B. Nicols. Routes of conversion of D-xilose, hexouronics acids ang L-ascorbic acid to 2-furalhedye[J]. Journal of Organic Chemistry, 1982, 37: 1600~1606
    [108] R. C. Hoseney. Chemical changes in carbohydrates produced by thermal processing[J]. Journal of Chemical Education, 1984, 61: 308~312
    [109] H. D. Belitz, W. Grosch. Food chemistry[M]. Berlin: Springer~Verlag, 1999
    [110] Owen R.Fennema著.食品化学[M] :第1版.王璋,许时婴,汤坚译.北京:中国轻工业出版社,2003
    [111] S. M. Antony, I. Y. Han, J. R. Rieck, et al. Antioxidative effect of Maillard reaction products formed from honey at different reaction times[J]. Journal of Agricultural and Food. Chemistry, 2000, 48: 3985~3989.
    [112] B. Fallico, M. ZapPala, E. Arena, et al. Effects of conditioning on HMF content in monofloral honeys[J]. Food Chemistry, 2004, 85 (2): 305~313
    [113] O. O. Anam, R. K. Dart. Influence of metal ions on hydroxymethylfurfural formation in honey[J]. Analytical Proceedings Including Analytical Communications, 1995, 32: 515~517
    [114] N. Singh, P. K. Bath. Quality evaluation of different types of Indian honey[J]. Food Chemistry. 1997, 58 (1~2): 129~133
    [115] S. Karaboumioti, P. Zervalaki. The effect of heating on honey HMF and invertase[J]. Apiacta, 2001, 36 (4): 177~181
    [116] N. Singh, S. Singh, A. S. Bawa, et al. Relationship between heating and hydroxymethylfurfural formation in different honey types[J]. Journal of Food SCIENCE and Technology, 1998, 35: 154~156
    [117] E. Tosi, M. Ciappini, E. Re, et al. Honey thermal treatment effects on hydroxymethylfurfural content[J]. Food Chemistry, 2002, 77 (1): 71~74
    [118] 鲁亚芳,董怡为.蜂蜜品质的流变学检验法探讨[J].食品科学,1993,14(12):51~54
    [119] 董怡为,鲁亚芳.蜂蜜的流变热力学特性研究[J].食品科学,1996,17(1):12~15
    [120] 陆则坚,郑宝东,陈丽娇.蜂蜜流变特性及其质量鉴定[J].农业工程学报,1994,(2):114~117
    [121] 潘君拯,陈青春,鲁亚芳.蜂蜜流变模型及水分—温度—粘度图[J].食品科学,1993,14(1):9~13
    [122] Pan Junzheng, Ji Changyin. General rheology model for natural honeys in China[J]. Journal of Food Engineering[J] , 1998, 36: 165~168
    [123] Brenda Mossel, Bhesh Bhandari, Bruce D'Arcy, et al. Use of an Arrhenius model to predict rheological behaviour in some Australian honey[J]. Lebensm. -Wiss. u. -Technol. 2000, 33: 545~552
    [124] S. Yanniotis, S. Skaltsi, S. Karabumioti. Effect of moisture content on the viscosity of honey at different temperatures[J]. Journal of Food Engineering. 2006, 72 (4): 372~377
    [125] Athina Lazaridou, Costas G. Biliaderis, Nicolaos Bacandritsos, et al. Composition, thermal and rheological behavour of selected Greek honeys[J]. Journal of Food Engineering, 2004, 64: 9~21
    [126] Leslaw Juszczak, Teresa Fortuna. Rheology of selected Polish honey. Journal of Food Engineerin[J] , 2006, 75: 43~49
    [127] P. A. SoPade, P. Hally, B. Bhandari, et al. Application of the Williams-Landel-Ferry model to the viscosity-temperature relationship of Australian honeys[J]. Journal of Food Engineering, 2002, 56: 67~75
    [128] 唐继国,武玉斌,王淑兰.槐花蜂蜜的流变性[J].青岛化工学院学报,1994,15(4):311~317
    [129] 衣守志,王强,马沛生.饱和蒸汽压测定方法评述[J].天津轻工业学院学报,2001,(2):1~4
    [130] 刘成雁,陈宇航,董启仁.纯液体饱和蒸汽压测定实验装置的改进[J].大学化学,1999,(2):15~18
    [131] 李珊,钟爱国.静态平衡法测定液体饱和蒸汽压实验装置的改进.中南工学院学报,2000,(1):21~24
    [132] 赵素英,王良恩,黄诗惶.单一含盐溶液饱和蒸汽压的测定关联及应用.四川大学学报(工程科学版),2002,34(5):115~118
    [133] 刘永灵.碳酸丙烯酸酯稀溶液饱和蒸汽压的测定.浙江化工,1997,28(2):39~41
    [134] 潘绍先,吴詜,姚清晨等.气相色谱法估算多环芳烃蒸汽压.分析化学,1996,(8):113~136
    [135] Goodman, M. A. . Vapor pressure of agrochems by Knudsen-Effusion method using quarz crystal microbalance[J]. J. Chem. Eng. Data, 1997, 42 (6): 1227~1231
    [136] 梁英华,陈军,马沛生.四个蒸汽压—温度关联方程的比较.河北理工学院学报,1999,21(4):73~75
    [137] 刘鸿仪.蒸汽压方程参数的理论预测.上海第二工业大学学报,1996,(2):23~29
    [138] J. Crank. The mathematics of diffusion: 2nd ed. [M]. Oxford UK: Clarendon Press, 1975
    [139] 姜元欣,许时婴,王璋.南瓜渣的微波真空干燥.食品与发酵工业,2004,(4):58~62
    [140] A. E. Drouzas, E. Tsami, G. D. Saravacos. Microwave vacuum drying model of fruit gels[J]. Journal Food Engineering, 1999, 39: 117~122
    [141] I. T. Togrul, D. Pehlivan. Mathematical modeling of solar drying of apricots in thin layers[J]. Journal of Food Engineering, 2002, 55: 209~216
    [142] O. Yaldiz, C. Ertekin, H. I. Uzum. Mathematical modeling of thin layer solar drying of sultana grapes[J]. Energy, 2001, 26: 457~465
    [143] 司天贵.流体食品浓缩实验研究.海南大学学报(自然科学版),1995,(3):23~26
    [144] 左建国,华泽钊,刘宝林等.冷冻干燥过程中溶液冷冻特性的DSC研究.低温工程,2005,(3):21~25
    [145] 隆江.低聚果糖冷冻干燥机理的研究[D].广西大学,2002
    [146] 曾哲灵,万冬满,熊涛等.颗粒状固体纯蜂蜜的研制[J].中国畜产与食品,1999,6(1):2~4
    [147] 杨开,孙培龙,何荣军等.固体蜂蜜制备工艺研究[J].食品工业,2005,(3):9~11
    [148] 胡虹.蜂蜜生物酶活性及固体蜂蜜加工工艺研究:[硕士学位论文].南昌大学,2005
    [149] 王璋,许时婴,张寒冰.用滚筒干燥生产固体蜂蜜的研究.食品工业科技,2004,(12): 12~15
    [150] 张寒冰.用滚筒干燥生产固体蜂蜜的研究:[硕士学位论文].江南大学,2005
    [151] 宋瑞霞.蜂蜜粉加工工艺研究[硕士学位论文].中国农业大学,2004
    [152] 戚以政,夏杰编著.生物反应工程[M].北京:化学工业出版社,2004
    [153] 中华人民共和国国家质量监督检验检疫总局发布.中华人民共和国国家标准GB/T18932.22—2003.蜂蜜中果糖、葡萄糖、蔗糖和麦芽糖含量的测定方法——液相色谱—差示检测法[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700