人淋巴管的体外构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     国际淋巴学会前主席JR. Casley Smith教授曾指出:“Treatment of lymphedema is a notorious difficulty”,淋巴水肿的治疗的却是一个世界性的难题,至今尚未找到良好的治疗方法,。因此,研究探讨淋巴水肿lymphoedema的治疗,促进淋巴水肿组织内的淋巴管内皮细胞增生和淋巴管形成lymphngiogenesis,改善淋巴引流途径,从根本上治疗淋巴水肿,已成为摆在淋巴学工作者面前的极其艰巨而迫切的任务,具有重大的学术理论价值和和临床意义。
     另一方面,肿瘤tumor的淋巴转移是造成肿瘤病人死亡的主要原因,因此,研究抑制肿瘤的转移途径对控制肿瘤扩散也有十分重要的临床意义。
     基于这两方面的目的,我们试图利用干细胞stem cells首先在体外构建人淋巴管,进而在此基础上开展淋巴水肿的治疗研究和阻断肿瘤转移途径的研究。
     1981年Evans等首次成功地分离培养出小鼠胚胎干细胞embryonic stem cell;1998年,Thomson等首次培养出人的胚胎干细胞;从而为器官、组织移植的长远目标打下良好基础。
     继而成体干细胞可以分化成多种干细胞,特别是骨髓内含有多能干细胞,又称为骨髓间质干细胞(Mesenchymal Stem Cell)。这种干细胞有许多优点:易于从自身取材,无免疫排斥反应之忧,因而也就更易为病人所接受;成体干细胞,涉及较少伦理问题;体外易于扩增、易分离、以及体外操作简便。因此,在组织器官缺损性疾病,组织器官退行性疾病,遗传缺陷性疾病等多方面有重要的应用前景。
     目前的研究表明VEGF-C具有多种生物学特性和功能,可广泛作用于血管、淋巴管内皮细胞。VEGF-C156s是一种点突变型VEGF-C,其同源二聚体只能激活VEGFR-3,不能与VEGFR-2结合,因此,选用VEGF-C156s对骨髓间质干细胞进行诱导分化成淋巴管样内皮是最佳的方案,然而必须探讨、确定诱导分化的最佳VEGF-C156s浓度和时间,这也必定涉及到大量的试验。
     目的
     1.分离、培养出具有一定的纯度的骨髓间质干细胞,并且用流式细胞仪flow cytometry检测纯化后细胞的表面抗体surface-antibody进行鉴定appraisement,为后续试验做好细胞储备。
     2.用VEGF-C156s对骨髓间质干细胞进行诱导分化,确定诱导分化的最佳VEGF-C156s浓度和时间。
     3.研究骨髓间质干细胞诱导后形成的内皮细胞在三维基质中形成管状结构的能力,对骨髓间质干细胞来源淋巴管内皮细胞的功能进行检测,在体外构建新生淋巴管。
     材料和方法
     1.用密度为1.073g/ml的淋巴细胞分离液以及贴壁培养分离骨髓间质干细胞,培养、传代并冻存储备细胞。然后用流式细胞仪检测纯化后细胞的表面抗体CD14,CD34,CD44,CD105和CD166进行鉴定。
     2.在24孔板中用不同浓度的VEGF-C156s对骨髓间质干细胞进行诱导分化,然后分别在不同的时间对诱导分化后的骨髓间质干细胞进行Ⅷ因子染色(内皮细胞标志物),LYVE-1染色(淋巴管内皮细胞标志物)鉴定,观测染色后阳性细胞比例,确定诱导骨髓间质干细胞分化的最佳VEGF-C156s浓度,同时确定诱导分化时间,为实际应用中的浓度和时间打下参考基础。
     3.在冰盒上制备胶原凝胶,然后置培养箱中37℃中使其凝固成为胶原凝胶。选取生长状态良好的细胞吹打成单细胞悬液,然后接种在胶原凝胶表面。选取3,6,9,12天的胶原块,用倒置相差显微镜从底面观取表面单层细胞之下的不同平面,同时从垂直断面观察并照相。
     结果
     1.通过淋巴细胞分离液以及贴壁培养分离的方法,得到骨髓间质干细胞。到第三代以后,杂细胞甚少。用流式细胞仪检测细胞表面抗体,CD44,CD105和CD166呈阳性,CD14和CD34呈阴性。
     2.用50ng/ml浓度的VEGF-C156s诱导骨髓间质干细胞,在第5天开始出现Ⅷ因子染色阳性细胞,10天后,几乎所有的细胞都Ⅷ因子染色阳性。50ng/ml浓度组和100ng/ml浓度组差异不大,而10ng/ml和20ng/ml组VEGF-C156s诱导骨髓间质干细胞后,效果不明显,10天后,染色阳性细胞不多。所以选择50ng/ml的VEGF-C156s浓度作为最佳诱导浓度。
     3.诱导后形成的内皮细胞在三维基质中形成管状结构,我们成功地在体外用骨髓间质干细胞诱导分化后构建了人淋巴管。
     结论
     1.成功分离培养出具有一定的纯度的骨髓间质干细胞,并且进行了用流式细胞仪检测细胞表面抗体进行鉴定,结果跟文献中的描述吻合,储备的骨髓间质干细胞为后续试验做好了准备。
     2.可以用50ng/ml浓度的VEGF-C156s进行诱导分化。骨髓间质干细胞被诱导分化为淋巴管内皮细胞。
     3.在体外成功构建了新生人淋巴管,模拟了淋巴管的新生过程,同时证明了骨髓间质干细胞来源的淋巴管内皮细胞具有成管功能。
     创新性:
     1.首次证实骨髓间质干细胞可以被诱导分化为淋巴管内皮细胞,并且确定了诱导时间和最佳诱导浓度。
     2.首次把骨髓间质干细胞来源的淋巴管内皮细胞在三维培养基质中模拟了淋巴管的新生过程,在体外成功构建了人新生淋巴管。
Background
     Pro-chairman of International Lymphology Academy, Professor JR. Casley Smith indicate even : "Treatment of lymphedema is a notorious difficulty" , We adopt such conservative treatment according to patient's condition as massage acupuncture and so on., or we adopt operative treatment and drug therapy; however, conservative treatment is time-consuming; it only relieve symptom temporary and its effectiveness is not obvious, operation treatment is usually limited in range in treatment.and post-operation occur lymphatic vessel re-blockage .Its short-term effectiveness is satisfactory .long-term effectiveness is not satisfactory。operative treatment。As the aspect of drug treatment, emictory use in especial treatment of lymphedema, which threaten the function of heart, lung. But it did not adopt in common lymphedema. Therefore, there is not ideal treatment method to aim directly at lymphedema in clinic.
     Since 1996, A critical advance came from the pioneering work by Joukov and colleagues, who identified a ligand of FLT-4 (VEGFR-3), the vascular endothelial growth factor VEGF-C, a member of VEGF/PDGF family and abundant aminothiopropionic acid in C'. After found it, in early stage, most research was developed on its genes, molecular structure, receptor and its structural feature, bionomics, and so on.
     Mesenchymal Stem Cells (MSCs) developed from mesodermic desmohemoblast, and has the ability differentiate into osteoblasts, chondroblasts, and adipocytes in response to appropriate stimuli, it had been became a kinds of ideal cell in tissue and cell repair for its merits as followed:
     1. Bone marrow is an alternative source of stem cells which are well suited for clinical application because they are easily obtained from patients and because autologous transplantation, which obviates immunologic incompatibilities, is possible.
     2. Of the various progenitor cells that exist within bone marrow, mesenchymal stem cells (MSC) are particularly attractive for clinical use because they are easily isolated, can be expanded in culture, and can be genetically manipulated using currently available molecular techniques.
     3. MSCs are adult stem cells, has no ethics questions
     So, it is important for applicated MSCs into degenerative disease, genetic deficiency or others.
     Objectives
     1. To separate and culture human bone marrow mesenchymal stem cells. Then identify the stem cells and store cells for further study.
     2. Induce the differentiation of human bone marrow mesenchymal stem cells by VEGF-C156s and decide the best concentration and time of VEGF-C156s to induce differentiation.
     3. To study the function of lymphatic endothelial cells induced from MSCs in three dimensional substances.
     Methods
     1. Get the human bone marrow mesenchymal stem cells by lymphocyte separation medium (1.073g/ml) and adherent culture. Store cells for further study by passage and freeze cells. Identified the stem cells by flow cytometry to detect the surface antibody as CD14,CD34,CD44,CD105 and CD166.
     2. Observe the effect of VEGF-C156s on differentiation of human bone marrow mesenchymal stem cells into lymphatic endothelial cells with different concentration and at different time. Count the ratio of positive stain cells after stained by VI factor and LYVE-1.
     3. Prepares collagen gel on the ice box and then put into 37℃incubator. Inoculate the cells with good growth condition on the surface of the collagen gel. Then observe the growth of cultured cells by inverted phase contrast microscope. Vertical section was also observed.
     Results
     1. Human bone marrow mesenchymal stem cells were get by lymphocyte separation medium and adherent culture. The surface antibody identified by flow cytometry show results with positive CD44,CD105 and CD166 surface antibody. Negative results were get by CD14,CD34 surface antibody analysis. The results are coincidence with references, and proved the isolated cells are mesenchymal stem cells.
     2. With concentration of 50ng/ml, VEGF-C156s can induce the differentiation of human bone marrow mesenchymal stem cells from the five day. The differentiated cells show positive stain of VI factor and LYVE-1.
     3. Lymphatic endothelial cells induced from MSCs can grow with tubiform structure.
     Conclusions
     1. Isolated and cultured human bone marrow mesenchymal stem cells from bone marrow with high purity and get ready for further study.
     2. Human bone marrow mesenchymal stem cells can be induced by VEGF-C156s and differentiated into lymphatic endothelial cells.
     3. Lymphatic endothelial cells induced from MSCs have the function to form vessels and formed lymphatic vessels in vitro.
引文
1. Z.liu, Z. Z Guo, P. Dong, Y. Fang, Y. Liu, H. Tian, Z. Ding, Y. Bi, J. Liu, Y. Yang. Experimental Study on Lymphoedema Therapy by Vascular Endothelial Growth Factor-C Gene. 16th International Congress of the IFAA Proceedings. 2004.
    2. Zhiyu Liu, Jie Gao, Zhong Guo, Ping Dong Yunhai Fang Yanli Liu Hua Tian Zhaoxi Ding Yushun Bi Jinlan Liu Yuying Yang. Experimental Study on Lymphoedema Therapy by Vascular Endothelial Growth Factor-C Gene. The International Lymphology Symposium in Oita, Japan. 2004.
    3. Yunhai Fang, Zhiyu Liu, Yao Chen, Nianming Gong, Yanli Liu. Expression of Cell Adhesion Molecules on Vascular Endothelial Cells in Human Rectal Cancer. Annual Scientific Meeting of the American College of Gastroenterology. USA. 2005.
    4. Zhiyu Liu, Jie Gao. Construction of eukaryotic expression vector for human vascular endothelial growth factor C gene. Human Genome Meeting in Shanghai, China.2002.
    5. Liu Zhiyu, Chen Yao, Fang Yunhai, Li Ruixiang, Tian Hua, Song Tao. Expression of CEA, ICAM-1 on lymphatic endothelial cells in rectum cancer of human. 26th Lymphology Symposium in Japan. 2002.
    6. Sun Jinhao, Liu Zhiyu, Bi Yushun, Tian Hua, Ding Zhaoxi. Effects of Tumor Necrosis Factor- sand Interleukin-2 on Lymphocyte Migration in Mouse. International Symposium on Morphological Sciences. Beijing, China. 2000.
    7. Zhaoxi Ding, Zhiyu. Liu, Yushun Bi at all: Morphological study of the interaction between M21 melanoma and lymphatic endothelium. Lymphology, 2005, 38:87-91.
    8. J. sun, Zhiyu liu, Y. Bi at all: Effect of tumor necrosis factor-2 and iL-2 on spleen lymphocyte migration in mouse skin, lymphology, 1999, 32:166-170.
    9. Yao Chen, Zhi-Yu. liu, Ruixiang Li at all: Structural studies of initial lymphatics adjacent to gastric and colonic malignant neoplasms, Lymphology 1999, 32:70-74.
    10.李明焕、田铧、刘执玉、宋涛、李贵宝、田广平:ECV304细胞用于三维血管新生的研究,中国现代普通外科进展,2004,7:165-167.
    11.董平、刘执玉、毕玉顺、田铧、丁兆习:VEGF-C真核表达载体的构建和体外表达,山东大学基础医学院学报,2004,18:129-132.
    12.丁兆习、刘执玉、王东关等:人结直肠癌VEGF-C的表达及与淋巴结转移之间的关系,中国现代普通外科进展,2003,6:100-103.
    13.丁兆习、刘执玉、毕玉顺等:M21黑色素瘤与淋巴管内皮细胞相互作用的形态学研究,山东大学学报(医学版),2003,41:32-34.
    14.高杰、刘执玉、毕玉顺等:血管内皮生长因子C在人乳腺癌细胞胚珠MDA—MB—231中的表达,解剖学杂志。2003,26:114-116.
    15.高杰、刘执玉、董平等:人血管内皮生长因子C基因真核表达载体的构建,山东大学学报,2003,41:151-154.
    16. Liu Zhiyu, Gao Jie, Fang Yuhai at all: Expression of vascular endothelial growth factor C in human breast cancer cell lines MCF-& and MCF—7/Adr, Chin J Curr Adv Gen Surg, 2002, 5:152-155.
    17. Liu Zhiyu, Gao Jie, Fang Yunhai: Construction of Eukaryotic Expression Vector for Human Vascular Endothelial Growth Factor C Gene. Chin J Curr Adv Gen Surg, 2002, 5: 220-224.
    18.高杰、刘执玉、王伟等,血管内皮生长因子C在人乳腺癌细胞株MCF-7及中MCF-7/Adr的表达,癌症,2002,21:163-166.
    19.高杰、刘执玉、毕玉顺等,血管内皮生长因子C mRNA在人乳腺癌细胞株中的表达,山东大学学报(医学版),2002,40:219—221.
    20.丁兆习、刘执玉、毕玉顺:淋巴管内皮细胞的特异性标志物的研究,Progess Anatomical Sciences,2002.8:355—357.
    21.孟海伟、毕玉顺、丁兆习等:血管内皮生长因子C在胃癌组织中的表达及对肿瘤淋巴转移的影响,山东医科大学学报,2002,40:13-14.
    22. Yushun Bi, Zhong guo, Zhiyu Liu.. Expression of Vascular Endothelial Growth Factor C and Its Relationship with Lymph Nodes Metastasis in Breast Cancer. U.S. Chinese Journal of Lymphology and Ontology, 2002, 1:21-23.
    23. Xiaoguang Xie, Li Zhaohong, Zhiyu Liu: Molecular Biology Foundation for Lymphoid Metastasis of the Gastric Cancer. U.S.Chinese Journal of Lymphology and Oncology. 2002, 1:56-59.
    24.王伟、刘执玉、丁洪基等:血管内皮生长因子C在乳腺癌中的表达及其与淋 巴结转移的关系,解剖学杂志,2001,24:425-428.
    25. Yang JF, Zhou WW, Tang T, et al. Transfection of human VEGF165 gene into bone marrow mesenchymal stem cells in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2006,31:313-318.
    26. Wu M, Yang L, Liu S, et al. Differentiation potential of human embryonic mesenchymal stem cells for skin-related tissue. Br J Dermatol. 2006,155:282-291.
    27. Marion NW, Mao JJ. Mesenchymal stem cells and tissue engineering. Methods Enzymol. 2006,420:339-361.
    28. Gang EJ, Jeong JA, Han S, Yan Q, Jeon CJ, Kim H. In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy. 2006,8:215-227.
    29. Fu X, Fang L, Li X, Cheng B, Sheng Z. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen. 2006,14:325-335.
    30. Zhang X, Groopman JE, Wang JF. Extracellular matrix regulates endothelial functions through interaction of VEGFR-3 and integrin alpha5betal. J Cell Physiol. 2005,202:205-214.
    31. Song L, Young NJ, Webb NE, Tuan RS. Origin and characterization of multipotential mesenchymal stem cells derived from adult human trabecular bone. Stem Cells Dev. 2005,14:712-721.
    32. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005,111:150-156.
    33. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005,65:3307-3318.
    34. Covas DT, Piccinato CE, Orellana MD, et al. Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res. 2005,309:340-344.
    35. Bhatia R, Hare JM. Mesenchymal stem cells: future source for reparative medicine. Congest Heart Fail. 2005,11:87-91.
    36. Roufosse CA, Direkze NC, Otto WR, Wright NA. Circulating mesenchymal stem cells. Int J Biochem Cell Biol. 2004,36:585-597.
    37. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004,95:9-20.
    38. Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004,22:377-384.
    39. Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol. 2004,287:H2670-2676.
    40. Kassem M, Kristiansen M, Abdallah BM. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol. 2004,95:209-214.
    41. Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells. 2004, 6:369-374.
    42. Veikkola T, Lohela M, Ikenberg K, et al. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. Faseb J. 2003, 17:2006-2013.
    43. Rissanen TT, Markkanen JE, Gruchala M, et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res. 2003, 92:1098-1106.
    44. Lohela M, Saaristo A, Veikkola T, Alitalo K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost. 2003, 90:167-184.
    45. Gojo S, Umezawa A. Plasticity of mesenchymal stem cells—regenerative medicine for diseased hearts. Hum Cell. 2003, 16:23-30.
    46. Joukov V., Pajusda K., Kaipainen A., et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand of the Flt4(VEGFR-3) and KDR(VEGFR-2) receptor tyrosine kinnases. EMBO J, 1996, 15:290-298.
    47. Salven P, Lymboussaki A, Heikkila P, et al. Vascular endotheliar growth factors VEGF-B and VEGF-C are expressed in human tumors .Am J Psthol ,1998, 153:103-108.
    48. Neuffld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. The FASEB Journal,1999, 13:9-12.
    49. Olofsson B, Jeltsch M, Eriksson U, et al. Current biology of VEGF-B and VEGF-C. Curr Opin Biotechnol,1999, 10: 528-35.
    50. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science, 1997 May, 276:1423-1425.
    51. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292: 154-156.
    52. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282:1145-1147.
    53. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA, 1998, 95:13726-13731.
    54. Joukov, V, Kumar V, Sorsa T, et al. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J. Biol. Chem. 1998, 273:6599-6602.
    55.郑卫,霍勇,刑德智等。血管内皮生长因子基因治疗犬闭塞性血管病的初步研究,中华心血管病杂志,1998,26:62-64.
    56.张曼,郭启煜,张福春等。血管内皮生长因子基因对兔左冠状动脉前降支结扎心肌侧支循环建立的影响,中华重病急救医学,1999,11:15-17.
    1. Yang J, Zhou W, Zheng W, et al. Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology. 2007,107:17-29.
    2. Zeng Y, Opeskin K, Goad J, Williams ED. Tumor-Induced Activation of Lymphatic Endothelial Cells via Vascular Endothelial Growth Factor Receptor-2 Is Critical for Prostate Cancer Lymphatic Metastasis. Cancer Res. 2006,66:9566-9575.
    3. Wu M, Yang L, Liu S, et al. Differentiation potential of human embryonic mesenchymal stem cells for skin-related tissue. Br J Dermatol. 2006,155:282-291.
    4. Marion NW, Mao JJ. Mesenchymal stem cells and tissue engineering. Methods Enzymol. 2006,420: 339-361.
    5. Fu X, Fang L, Li X, Cheng B, Sheng Z. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen. 2006,14:325-335.
    6. Zhang X, Groopman JE, Wang JF. Extracellular matrix regulates endothelial functions through interaction of VEGFR-3 and integrin alpha5betal. J Cell Physiol. 2005,202:205-214.
    7. Song L, Young NJ, Webb NE, Tuan RS. Origin and characterization of multipotential mesenchymal stem cells derived from adult human trabecular bone. Stem Cells Dev. 2005,14:712-721.
    8. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005,111:150-156.
    9. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005,65:3307-3318.
    10. Bhatia R, Hare JM. Mesenchymal stem cells: future source for reparative medicine. Congest Heart Fail. 2005,11:87-91, quiz 92-83.
    11. Roufosse CA, Direkze NC, Otto WR, Wright NA. Circulating mesenchymal stem cells. Int J Biochem Cell Biol. 2004,36:585-597.
    12. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004,95:9-20.
    13. Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004,22:377-384.
    14. Kassem M, Kristiansen M, Abdallah BM. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol. 2004,95:209-214.
    15. Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells. 2004,6:369-374.
    16. Veikkola T, Lohela M, Ikenberg K, et al. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. Faseb J. 2003,17:2006-2013.
    17. Rissanen TT, Markkanen JE, Gruchala M, et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res. 2003,92:1098-1106.
    18. Lohela M, Saaristo A, Veikkola T, Alitalo K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost. 2003,90:167-184.
    19. Gojo S, Umezawa A. Plasticity of mesenchymal stem cells—regenerative medicine for diseased hearts. Hum Cell. 2003,16:23-30.
    20. Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res. 2003,288: 51-59.
    21. Saaristo A, Veikkola T, Tammela T, et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J Exp Med. 2002,196:719-730.
    22. Veikkola T, Jussila L, Makinen T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. Embo J. 2001,20:1223-1231.
    23. Fleming JE, Jr., Haynesworth SE, Cassiede P, Baber MA, Caplan AI. Monoclonal antibody against adult marrow-derived mesenchymal stem cells recognizes developing vasculature in embryonic human skin. Dev Dyn. 1998,212:119-132.
    1. Joukov V, Pajusola K, et al A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996,15:1751.
    2. Jeltsch M, Kaipainen A, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997, 276:1423-1425.
    3. Mattila MM, Ruohola JK, et al. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer. 2002,98:946-951.
    4. Yanai Y, Furuhata T, et al. Vascular endothelial growth factor C promotes gastric carcinoma lymph node metastasis in mice. J Exp Clin Cancer Res 2001, 20: 419-428.
    5. He Y, Karpanen T, et al. Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta. 2004,1654:3-12.
    6. Yoon YS, Murayama T, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. 2003,111:717-725.
    7.高杰、刘执玉、毕玉顺等。血管内皮生长因子C mRNA在人乳腺癌细胞株中的表达,山东医科大学学报,2002,40:219-221.
    8.邓珏琳,黄德嘉。基因治疗促进冠脉侧支循环形成,中国医刊,2001,36:53.
    9.朱洪。血管生成因子治疗缺血性心脏病,中国脑心血管外科临床杂志,2001, 8:54-54-56.
    10.卢圣栋.现代分子生物学实验技术(第二版).中国协和医科大学出版社.
    11. Saaristo A, Veikkola T, Tammela T, et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J Exp Med. 2002,196:719-730.
    12.Joseph S,David W.R分子克隆实验指南 (第二版)Cold Spring Habor Laboratory Press.
    13. Saaristo A, Tammela T, Timonen J,et al Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J. 2004, 18:1707-1709.
    14. Rockson, SG. Lymphedema. Am. J. Med. 2001, 110:288-295.
    15. Piller, NB. Macrophage and tissue changes in the developmental phases of secondary lymphoedema and during conservative therapy with benzopyrone. Arch. Histol. Cytol. 1990, 53:209-218.
    16. Szuba, A, and Rockson SG. Lymphedema: classification, diagnosis and therapy. Vasc. Med. 1998, 3:145-156.
    17. Mortimer, PS. The pathophysiology of lymphedema. Cancer 1998,83: 2798-2802.
    18. Chen, HC, Pribaz, JJ, O'Brien, BM, Knight, KR, and Morrison, WA. Creation of distal canine limb lymphedema. Plast. Reconstr. Surg. 1989,83:1022-1026.
    19. Kanter, MA, Slavin, SA, and Kaplan W. An experimental model for chronic lymphedema. Plast. Reconstr. Surg. 1990,85:573-580.
    20. Lee-Donaldson, L, Witte, MH, Bernas, M, Witte, CL, Way, D, and Stea, B. Refinement of a rodent model of peripheral lymphedema. Lymphology 1999,32:111-117.
    21. Saharinen P, Tammela T, Karkkainen MJ,et al Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 2004,25:387-395.
    22. Saharinen P, Petrova TV. Molecular regulation of lymphangiogenesis. Ann N Y Acad Sci. 2004,1014:76-87.
    23. Shimizu K, Kubo H, Yamaguchi K,et al,Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci. 2004,95:328-333.
    24. Enholm B, Jussila L, Karkkainen M, et al. Vascular endothelial growth factor-C, a growth factor for lymphatic and blood vascular endothelial cells. Trends Cardiovasc Med. 1998,8:292-297.
    25. Stacker SA, Hughes RA, Achen MG. Molecular targeting of lymphatics for therapy. Curr Pharm Des. 2004,10:65-74.
    26. Koyama Y, Kaneko K, Akazawa K,et al. Vascular endothelial growth factor-C and vascular endothelial growth factor-d messenger RNA expression in breast cancer: association with lymph node metastasis. Clin Breast Cancer. 2003,4:354-360.
    27. Folkman J, Kaipainen A. Genes tell lymphatics to sprout or not. Nat Immunol. 2004,5:11-12.
    28. Karkkainen M J, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004,5:74-80.
    29. Nisato RE, Tille JC, Pepper MS. Lymphangiogenesis and tumor metastasis. Thromb Haemost. 2003,90:591-597.
    30. Lohela M, Saaristo A, Veikkola T, Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost. 2003,90:167-184.
    31. Nathanson SD. Insights into the mechanisms of lymph node metastasis. Cancer. 2003,98:413-423.
    32. Yoon YS, Murayama T, Gravereaux E, et al VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. 2003,111:717-725.
    33. Saaristo A, Karkkainen MJ, Alitalo K. Insights into the molecular pathogenesis and targeted treatment of lymphedema. Ann N Y Acad Sci. 2002,979:94-110.
    34. Rockson SG. Preclinical models of lymphatic disease: the potential for growth factor and gene therapy. Ann N Y Acad Sci. 2002,979:64-75.
    35. Ferrell RE. Research perspectives in inherited lymphatic disease. Ann N Y Acad Sci. 2002,979:39-51.
    36. Reis-Filho JS, Schmitt FC, et al Lymphangiogenesis in tumors: what do we know? Microsc Res Tech. 2003,60:171-180.
    37. Daniels CB, Lewis BC, Tsopelas C, et,al Regenerating lizard tails: a new model for investigating lymphangiogenesis. FASEB J. 2003,17:479-481.
    38. Giguere CM, Bauman NM, Smith RJ. New treatment options for lymphangioma in infants and children. Ann Otol Rhinol Laryngol. 2002,111:1066-1075.
    39. Podgrabinska S, Braun P, Velasco P, et al. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci U S A. 2002,99:16069-16074.
    40. Szuba A, Skobe M, Karkkainen MJ et al, Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 2002,16:1985-1987.
    41. Baldwin ME, Stacker SA, Achen MG. Et al, Molecular control of lymphangiogenesis. Bioessays. 2002,24:1030-1040.
    42. Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell. 2002, 1:219-27.
    43. Karkkainen MJ, Makinen T, Alitalo K. Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol. 2002,4:E2-5.
    44. Karkkainen MJ, Saaristo A, Jussila L, et al, A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A. 2001,98:12677-12682.
    45. Karpanen T, Alitalo K. Lymphatic vessels as targets of tumor therapy? J Exp Med. 2001,194:F37-42.
    46. Karkkainen MJ, Jussila L, Ferrell RE, et al. Molecular regulation of lymphangiogenesis and targets for tissue oedema. Trends Mol Med. 2001,7:18-22.
    47. Enholm B, Karpanen T, Jeltsch M, et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res. 2001,88:623-629.
    48. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001,7:199-205.
    49. Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost. 2000,26:561-569.
    50. Karkkainen MJ, Ferrell RE, Lawrence EC, Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000,25:153-159.
    51. Wilting J, Neeff H, Christ B. Embryonic lymphangiogenesis, ell Tissue Res. 1999,297:1-11.
    52. Cao Y, Linden P, Farnebo J,m et, al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci U S A. 1998,95:14389-14394.
    53. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998, 282:946-949.
    54. Fitz L J, Morris JC, Towler P, et al. Characterization of murine Flt4 ligand/VEGF-C. Oncogene. 1997, 15:613-618.
    55. Joukov V, Sorsa T, Kumar V, et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997, 16:3898-3911.
    56. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997,276:1423-1425.
    57. Kukk E, Lymboussaki A, Taira S, et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 199, 122:3829-3837.
    58. Joukov V, Pajusola K, Kaipainen A, A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 199, 15:290-298.
    59. Paavonen K, Horelli-Kuittmen N, Chilov D, Novel human vascular endothelial growth factor genes VEGF-B and VEGF-C localize to chromosomes 11q13 and 4q34, respectively. Circulation. 1996, 93:1079-1082.
    1. Baldwin ME, Stacker SA, Achen MG. Molecular control of lymphangiogenesis. Bioessays. 2002,24:1030-1040.
    2. Gerdes HH, Kaether C. Green fluorescent protein: applications in cell biology. FEBS Lett. 1996,389:44-47.
    3. He Y, Karpanen T, Alitalo K. Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta. 2004,1654:3-12.
    4. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. Embo J. 1996,15:1751.
    5. Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev. 2002,82:673-700.
    6. Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 2000,19:5598-5605.
    7. Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A. 2001,98:12677-12682.
    8. Lohela M, Saaristo A, Veikkola T, Alitalo K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost. 2003,90:167-184.
    9. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001,7:199-205.
    10. Mandriofa SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. Embo J. 2001,20:672-682.
    11. Saharinen P, Petrova TV. Molecular regulation of lymphangiogenesis. Ann N Y Acad Sci. 2004,1014:76-87.
    12. Scavelli C, Weber E, Agliano M, et al. Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. J Anat. 2004,204:433-449.
    13. Shimomura O. The discovery of aequorin and green fluorescent protein. J Microsc. 2005,217:1-15.
    14. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001,7:192-198.
    15. Streit M, Detmar M. Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene. 2003,22:3172-3179.
    16. Tsurusaki T, Kanda S, Sakai H, et al. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer. 1999,80:309-313.
    17. Vailhe B,Vittet D,Feige J J. In vitro models of vasculogenesis and angiogenesis.La b Invest,2001A pr,81 (4):439-452.
    18. VernonR Ba ndS ageE H.B etweenm oleculesa ndm orphology-Extracellularm atdxan dcreationof vascular form. Am J Pathol1995, 147:873-883.
    19.许志强,刘平.《细胞外基质的结构和功能》.中国肝病杂志.1999 vol.42,92-93.
    20.余海。鼠尾肌健胶原蛋白的提取以及凝胶的制备。海南医学,2001,H卷,3,64-65.
    1. Alessandrini, C., Gerli, R., Sacchi, G., Ibba, L., Pucci, A.M. and Fruschelli, C. Cholinergic and adrenergic innervation of mesenterial lymph vessels in guinea pig. Lymphology 14:1-6, 1981.
    2. Alhan, E., Calik, A., Kucuktulu, U. and Cinel, A. The effects of variously performed vagotomies on gastric secretion and gastric emptying in rats. Acta Chir. Hung. 35:277-284, 1995-1996.
    3. Amerini, S., Ziche, M., Greiner, S.T. and Zawieja, D.C. Effects of substance P on mesenteric lymphatic contractility in the rat. Lymphat. Res. Biol. 2:2-10, 2004.
    4. Armenio, S., Cetta, F., Tanzini, G. and Guercia, C. Spontaneous contractility in the human lymph vessels. Lymphology 14:173-178, 1981.
    5. Chang, T.M., Chan, D.C., Liu, Y.C., Tsou, S.S., Chen, T.H. Long-term results of duodenectomy with highly selective vagotomy in the treatment of complicated duodenal ulcers. Am. J.. Surg. 181:372-376, 2001.
    6. Eisenhoffer, J., Elias, R.M. and Johnston, M.G. Effect of outflow pressure on lymphatic pumping in vitro. Am. J, Physiol. 265:R97-102, 1993.
    7. Fox, J.L. and von der Weid, P.Y. Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea pig mesentery. Br. J. Pharmacol. 136:1210-1218,2002.
    8. Gashev, A.A., Davis, M.J. and Zawieja, D.C. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J. Physiol. 540:1023-1037, 2002.
    9. Goto, Y. and Kato, T. On the quantitative expression of mesenterial microlymphatic dynamics in the rat influenced by endotoxin. In: Tsuchiya M. eds. Microcirculation-an update 1:571-572, 1987.
    10. Ji, R.C. Characteristics of lymphatic endothelial cells in physiological and pathological conditions. Histol. Histopathol. 20:155-75, 2005.
    11. Ji, R.C. Lymphatic endothelial cells, lymphangiogenesis, and extracellular matrix. Lymphat Res Biol. 4:83-100, 2006.
    12. Ji, R.C. and Kato S. Lymphatic network and lymphangiogenesis in the gastric wall. J. Histochem. Cytochem. 51:331-338, 2003.
    13. Ji, R.C. and Kato S. Intrinsic interrelation of lymphatic endothelia with nerve elements in the monkey urinary bladder. Anat Rec. 259:86-96, 2000.
    14. Johston, M.G. The intrinsic lymph pump: progress and problems. Lymphology 22:116-122, 1989.
    15. McHale, N.G., Roddie, I.C. and Thornbury, K.D. Nervous modulation of spontaneous contraction in bovine mesenteric lymphatics. J. Physiol. 309:461-472, 1980.
    16. Nakabayashi, H., Sagara, H., Usukura, N., Yoshimitsu, K., Imamura, T., Seta, T., Yanase, E., Kawato, M., Hiraiwa, Y., Sakato, S. and Takeda, R. Effect of somatostatin on the flow rate and triglyceride levels of thoracic duct lymph in normal and vagotomized dogs. Diabetes 30:440-445, 1981.
    17. Nomura, E., Isozaki, H., Fujii, K., Toyoda, M., Niki, M., Sako, S., Mabuchi, H., Nishiguchi, K. and Tanigawa, N. Postoperative evaluation of function-preserving gastrectomy for early gastric cancer. Hepatogastroenterology 50:2246-2250, 2003.
    18. Hollander, D. and Rim, E. Effect of luminal constituents on vitamin K1 absorption into thoracic duct lymph. Am. J. Physiol. 234:E54-59, 1978.
    19. Onizuka, M., Flatebo, T., Nicolaysen, G. Lymph flow pattern in the intact thoracic duct in sheep. J. Physiol. 503:223-234, 1997.
    20. Reeder, L.B., Yang, L.H. and Ferguson, M.K. Modulation of lymphatic spontaneous contractions by EDRF. J. Surg. Res. 56:620-625, 1994.
    21. Roddie, I.C., Mawhinney, H.J., McHale, N.G., Kirkpatrick, C.T. and Thornbury, K. Lymphatic motility. Lymphology 13:166-172, 1980.
    22. Spring, B.I. and Schiebler, M.L. Normal anatomy of the thoracic inlet as seen on transaxial MR images. Am. J. Roentgenol. 157:707-710, 1991.
    23. Tso, P., Lee, T. and DeMichele, S.J. Randomized structured triglycerides increase lymphatic absorption of tocopherol and retinol compared with the equivalent physical mixture in a rat model of fat malabsorption. J. Nutr. 131:2157-2163, 2001.
    24. Yasuda, A. and Ohshima, N. In situ observations of spontaneous contractions of the peripheral lymphatic vessels in the rat mesentery: effect of temperature. Experimentia 40:342-343, 1984.
    25. Zittel, T.T., Glatzle, J., Muller, M., Kreis, M.E., Raybould, H.E., Becker, H.D. and Jehle, E.C. Total gastrectomy severely alters the central regulation of food intake in rats. Ann. Surg. 236:166-176, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700