脂氧素A_4调节人脐静脉内皮细胞通透性的机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:血管内皮作为机体调节心脑血管系统稳态最大的代谢和内分泌器官越来越受到重视,其重要功能之一即是作为血液和组织间物质转运的屏障,一旦血管内皮细胞受损,则必将影响甚至破坏内皮细胞正常的生物学功能,最明显的表现即是血管内皮的通透性增加,它将导致全身系统性的疾病产生,诸如动脉粥样硬化形成,高血压,先兆子痫引起的水肿等疾病。因此,如何保护内皮细胞免受损害,维持正常的内皮通透性显然成为了心脑血管等疾病预防领域的研究热点。由于炎性氧化应激引起内皮细胞通透性增加引起血栓、水肿是心血管疾病、微血管功能障碍的重要致病表现。而脂氧素(Lipoxins,LXs)作为第一个在活体内被鉴定的内源性刹车信号家族成员,具有促进炎症消退的作用,于此同时本实验室组曾报道脂氧素在脂多糖刺激的巨噬细胞中能够发挥抗氧化作用,病理性妊娠及心血管疾病患者的血中脂氧素含量相当低,这提示我们脂氧素很有可能对炎性氧化应激引起内皮细胞通透性增加起到缓解作用以维持正常的内皮功能。
     目的:探讨脂氧素对脂多糖诱导人脐静脉内皮细胞高通透性的调节及其作用机制。
     方法:培养人脐静脉内皮细胞株CRL-1730,实验分为三组:空白对照组,脂多糖(Lipopolysaccharide,LPS)刺激组,脂多糖(LPS)+脂氧素A_4(LXA_4)干预组,苏木精-伊红染色法(Hematoxylin&Eosine,HE)观察细胞的形态变化,单层内皮细胞通透性测定方法测定细胞通透性,活性氧试剂盒检测活性氧(Reactive Oxygen Species,ROS)含量,Real-time PCR检测(Formyl-peptide receptor like 2, FPRL2)受体的表达,RT-PCR法分别检测血管内皮钙粘附素(VE-cadherin)、β-catenin、瞬间受体电位通道(Transient receptor potential channel 1,TRPC1)的mRNA水平,免疫印迹法检测VE-cadherin、β-catenin的蛋白含量,荧光免疫细胞化学法观察VE-cadherin的表达,钙成像技术检测细胞内钙浓度的变化。
     结果:⑴. LXA_4刺激后,CRL-1730的FPRL2受体表达与原代HUVEC细胞受体表达量接近且LXA_4能够上调FPRL2的表达。
     ⑵与对照组相比,LPS刺激组细胞形态变圆且小,细胞与细胞之间间隙变大,LPS+LXA_4组接近正常对照组。
     ⑶与对照组相比,LPS刺激组细胞的通透性明显增加(**P<0.01).,LPS+LXA_4组能有效的抑制通透性的变化(**P<0.01),但无LXA_4剂量依赖性,LPS+LXA_4+BOC-2组通透性仍然增加(**P<0.05),进一步验证人脐静脉内皮细胞株发挥作用很可能由脂氧素受体FPRL2介导。
     ⑷与对照组相比,LPS刺激组VE-cadherin、β-catenin的mRNA及蛋白水平均下调,TRPC1的mRNA水平增加(*P<0.05),免疫荧光显示VE-cadherin表达减弱,细胞间间隙增大,LPS+LXA_4组VE-cadherin、β-catenin mRNA及蛋白水平相对于LPS刺激组表达均上调(*P<0.05),TRPC1的mRNA水平较LPS刺激组低(*P<0.05),VE-cadherin荧光也接近对照组,间隙没有明显增大。
     ⑸LPS刺激组中ROS的产量高于对照组(*P<0.05),LPS+LXA_4组ROS的产量较LPC刺激组有明显下降(*P<0.05)
     ⑹与对照组相比,LPS刺激组胞内F340/F380荧光比值明显增高(**P<0.01),LPS+LXA_4组,与LPS刺激组相比,荧光比值下降明显。(**P<0.01)
     结论:脂氧素具有减轻LPS所致的内皮细胞通透性增加的作用,其机制可能通过抑制内皮细胞胞内活性氧的产生进而阻断Ca~(2+)信号,防止VE-cadherin/β-catenin解体,来维持内皮细胞之间的紧密连接。
Background: Vascular endothelium ,the largest endocrine organ to regulate the balance in cardiocerebral vascular system, are getting more and more attention.The nomal biological function of endothelial cells will be disordered if they are damaged. The most obvious phenomenon is a mass of increase of vascular endothelial permeability ,which could result in many diseases,like atherogenesis、hypertension、edema caused by preeclampsia. Thus, how to protect endothelial cells from impairment and reduce permeability to a normal level undoubtfully becomes the hot topic in some fields invovled in preventing cardiocerebral vascular diseases.There is no doubt that inflammatory oxidative stress plays a critical role in disfunction of endothelial cells and is able to cause microvascular dysfunction and cardiovascular diseases.Meanwhile, It is well-known that lipoxins are the first endogenous anti-inflammation and pro-resolution chemical substances identified in vivo. Some studies have showed that the level of lipoxins was very low in patients’blood with preeclampsia and hypertension compared with health population.So these evidences strongly suggest that lipoxins probabley exert an important effect of anti-oxidation so as to regulate endothelial permeability.
     Objective: To explore how lipoxins could inhibite endothelial hyperpermeability induced by LPS and possible mechanism.
     Methods: Human unbilical vein endothelial cell lines (CRL-1730) were cultured and treated with LXA_4 for 30 minutes before stimulation with lipopolysaccharide (LPS). Morphological change of HUVECs was observed by hematoxylin and eosin (H&E); Endothelial permeability was measured by albumin clearance across the monolayer; The production of ROS was detected by ROS kit; the expression of FPRL2 was identified by Real-time PCR, the mRNA expression of VE-cadherin、TRPC1 was tested by RT-PCR; Western blotting method was used to measured the expression of VE-cadherin、β-catenin; Immunofluorescent assay was used to detect the expression of VE-cadherin which was also observed the change of gap size; intracellular Ca~(2+) concentration was determined by Calcium-imaging technology.
     Results:⑴The expression of FPRL2 in CRL-1730 cell lines is similar with that in primary HUVECs and LXA_4 could upregulate the expression of FPRL2.
     ⑵HUCECs became much small、out of shape and cell junctions were destroyed and even emerged very large gap by LPS treatment alone,compared with vehicle group but the morphological change was not obvious in LPS + LXA_4 group.
     ⑶Compared with control group,endothelial permeability was significantly increased in LPS group (**P<0.01) and the level of permeability was downregulated to the normal by LPS+LXA_4 treatment (**P<0.01), LXA_4 was no dose-dependent manner.
     ⑷Compared with control group,the mRNA or protein expression of VE-cadherin、β-Catenin were inhibited and the mRNA of TRPC1 was increased by LPS treatment(*P<0.05), meanwhile, all but TRPC1 expressions of them were upregulated by LPS combined with LXA_4 treatment compared with LPS alone(*P<0.05)
     ⑸The production of ROS was higher by LPS treatment than that without any treatment(*P<0.05), LPS and LXA_4 co-treatment reduced the production of ROS induced by LPS. (*P<0.05)
     ⑹LXA_4 suppressed the increase of intracellular Ca~(2+) concentration by LPS treatment(**P<0.01).
     Conclusions: Lipoxins inhibited endothelial hyperpermeability induced by LPS through decreasing the production of ROS and downregulating Ca~(2+) signaling to suppress disassembly of VE-cadherin/β-Catenin.
引文
1 Gimbrone MA, Jr.: Vascular endothelium: An integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol 1995;75:67B-70B.
    2 Ross R: Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340:115-126.
    3 Cai H, Harrison DG: Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res 2000;87:840-844.
    4 Ross R, Glomset JA: The pathogenesis of atherosclerosis (first of two parts). N Engl J Med 1976;295:369-377.
    5 Griendling KK, Alexander RW: Oxidative stress and cardiovascular disease. Circulation 1997;96:3264-3265.
    6 Redman CW, Sacks GP, Sargent IL: Preeclampsia: An excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999;180:499-506.
    7 Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-820.
    8 Serhan CN, Samuelsson B: Lipoxins: A new series of eicosanoids (biosynthesis, stereochemistry, and biological activities). Adv Exp Med Biol 1988;229:1-14.
    9 Serhan CN, Chiang N, Van Dyke TE: Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008;8:349-361.
    10 Gilroy DW, Lawrence T, Perretti M, Rossi AG: Inflammatory resolution: New opportunities for drug discovery. Nat Rev Drug Discov 2004;3:401-416.
    11 Li YS, Wu P, Zhou XY, Chen JG, Cai L, Wang F, Xu LM, Zhang XL, Chen Y, Liu SJ, Huang YP, Ye DY: Formyl-peptide receptor like 1: A potent mediator of the ca2+ release-activated ca2+ current icrac. Arch Biochem Biophys 2008;478:110-118.
    12 Jin SW, Zhang L, Lian QQ, Liu D, Wu P, Yao SL, Ye DY: Posttreatment with aspirin-triggered lipoxin a4 analog attenuates lipopolysaccharide-induced acute lung injury in mice: The role of heme oxygenase-1. Anesth Analg 2007;104:369-377.
    13 Zhou XY, Wu P, Zhang L, Xiong W, Li YS, Feng YM, Ye DY: Effects of lipoxin a(4) on lipopolysaccharide induced proliferation and reactive oxygen species production in raw264.7 macrophages through modulation of g-csf secretion. Inflamm Res 2007;56:324-333.
    14 Zhou XY, Li YS, Wu P, Wang HM, Cai ZY, Xu FY, Ye DY: Lipoxin a(4) inhibited hepatocyte growth factor-induced invasion of human hepatoma cells. Hepatol Res 2009;39:921-930.
    15 Chen Y, Hao H, He S, Cai L, Li Y, Hu S, Ye D, Hoidal J, Wu P, Chen X: Lipoxin a4 and its analogue suppress the tumor growth of transplanted h22 in mice: The role of antiangiogenesis. Mol Cancer Ther;9:2164-2174.
    16 Hotamisligil GS: Inflammation and metabolic disorders. Nature 2006;444:860-867.
    17 Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T: Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001;104:2673-2678.
    18 Muro S, Koval M, Muzykantov V: Endothelial endocytic pathways: Gates for vascular drug delivery. Curr Vasc Pharmacol 2004;2:281-299.
    19 Bonetti PO, Lerman LO, Lerman A: Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 2003;23:168-175.
    20 Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA: Transcellular diapedesis is initiated by invasive podosomes. Immunity 2007;26:784-797.
    21 Engelhardt B, Wolburg H: Mini-review: Transendothelial migration of leukocytes: Through the front door or around the side of the house? Eur J Immunol 2004;34:2955-2963.
    22 Dejana E: Endothelial cell-cell junctions: Happy together. Nat Rev Mol Cell Biol 2004;5:261-270.
    23 Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C: Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: Therapeutic implications for cardiovascular diseases. Atherosclerosis 2008;201:236-247.
    24 Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L: Atherosclerosis: Evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J 2008;22:3595-3606.
    25 Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E: Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 1995;270:30965-30972.
    26 Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E: Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A 1999;96:9815-9820.
    27 Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A, Bianco P, Wolburg H, Moore R, Oreda B, Kemler R, Dejana E: The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 2003;162:1111-1122.
    28 Harris ES, Nelson WJ: Ve-cadherin: At the front, center, and sides of endothelial cellorganization and function. Curr Opin Cell Biol
    29 Dhalla NS, Temsah RM, Netticadan T: Role of oxidative stress in cardiovascular diseases. J Hypertens 2000;18:655-673.
    30 Kim KY, Shin HK, Choi JM, Hong KW: Inhibition of lipopolysaccharide-induced apoptosis by cilostazol in human umbilical vein endothelial cells. J Pharmacol Exp Ther 2002;300:709-715.
    31 Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB: Role of ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol 2002;39:173-185.
    32 Dudek SM, Garcia JG: Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001;91:1487-1500.
    33 Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E: Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 1996;16:488-496.
    34 Sandoval R, Malik AB, Minshall RD, Kouklis P, Ellis CA, Tiruppathi C: Ca(2+) signalling and pkcalpha activate increased endothelial permeability by disassembly of ve-cadherin junctions. J Physiol 2001;533:433-445.
    35 Cioffi DL, Stevens T: Regulation of endothelial cell barrier function by store-operated calcium entry. Microcirculation 2006;13:709-723.
    36 Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB: Ca2+ signaling, trp channels, and endothelial permeability. Microcirculation 2006;13:693-708.
    37 Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C: Tumor necrosis factor-alpha-induced trpc1 expression amplifies store-operated ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2004;287:L1303-1313.
    38 Schlegel N, Baumer Y, Drenckhahn D, Waschke J: Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro. Crit Care Med 2009;37:1735-1743.
    1 Baldwin AL, Thurston G: Mechanics of endothelial cell architecture and vascular permeability. Crit Rev Biomed Eng 2001;29:247-278.
    2 Roberts WG, Palade GE: Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995;108 ( Pt 6):2369-2379.
    3 Mehta D, Malik AB: Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006;86:279-367.
    4 Wallez Y, Huber P: Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 2008;1778:794-809.
    5 Han M, Pendem S, Teh SL, Sukumaran DK, Wu F, Wilson JX: Ascorbate protects endothelial barrier function during septic insult: role of protein phosphatase type 2a. Free Radic Biol Med 2010;48:128-135.
    6 Serhan CN, Yacoubian S, Yang R: Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol 2008;3:279-312.
    7 Seybold J, Thomas D, Witzenrath M, Boral S, Hocke AC, Burger A, Hatzelmann A, Tenor H, Schudt C, Krull M, Schutte H, Hippenstiel S, Suttorp N: Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 2005;105:3569-3576.
    8 Ritter C, Moreira JC, Dal-Pizzol F: Renovascular hypertension, endothelial function, and oxidative stress. N Engl J Med 2002;347:1528-1530, 1528-1530.
    9 Lander HM: An essential role for free radicals and derived species in signal transduction. Faseb J 1997;11:118-124.
    10 Olesen SP: Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain. Acta Physiol Scand 1987;129:181-187.
    11 Barnard ML, Matalon S: Mechanisms of extracellular reactive oxygen species injury to the pulmonary microvasculature. J Appl Physiol 1992;72:1724-1729.
    12 Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E: Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 1995;270:30965-30972.
    13 Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, Vestweber D: Ve-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 1997;110 ( Pt 5):583-588.
    14 Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E: Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 1996;16:488-496.
    15 Andriopoulou P, Navarro P, Zanetti A, Lampugnani MG, Dejana E: Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arterioscler Thromb Vasc Biol 1999;19:2286-2297.
    16 Shaw SK, Bamba PS, Perkins BN, Luscinskas FW: Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. J Immunol2001;167:2323-2330.
    17 Dejana E, Spagnuolo R, Bazzoni G: Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb Haemost 2001;86:308-315.
    18 Liang TW, DeMarco RA, Mrsny RJ, Gurney A, Gray A, Hooley J, Aaron HL, Huang A, Klassen T, Tumas DB, Fong S: Characterization of hujam: evidence for involvement in cell-cell contact and tight junction regulation. Am J Physiol Cell Physiol 2000;279:C1733-C1743.
    19 Lynch AM, Hardin J: The assembly and maintenance of epithelial junctions in c. Elegans. Front Biosci 2009;14:1414-1432.
    20 Naik UP, Eckfeld K: Junctional adhesion molecule 1 (jam-1). J Biol Regul Homeost Agents 2003;17:341-347.
    21 Kamata H, Hirata H: Redox regulation of cellular signalling. Cell Signal 1999;11:1-14.
    22 Natarajan V: Oxidants and signal transduction in vascular endothelium. J Lab Clin Med 1995;125:26-37.
    23 Whisler RL, Goyette MA, Grants IS, Newhouse YG: Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in jurkat t cells. Arch Biochem Biophys 1995;319:23-35.
    24 Siflinger-Birnboim A, Lum H, Del VP, Malik AB: Involvement of ca2+ in the h2o2-induced increase in endothelial permeability. Am J Physiol 1996;270:L973-L978.
    25 Hecquet CM, Ahmmed GU, Vogel SM, Malik AB: Role of trpm2 channel in mediating h2o2-induced ca2+ entry and endothelial hyperpermeability. Circ Res 2008;102:347-355.
    26 Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB: Ca2+ signaling, trp channels, and endothelial permeability. Microcirculation 2006;13:693-708.
    27 Shasby DM, Lind SE, Shasby SS, Goldsmith JC, Hunninghake GW: Reversible oxidant-induced increases in albumin transfer across cultured endothelium: alterations in cell shape and calcium homeostasis. Blood 1985;65:605-614.
    28 Lopez-Ongil S, Torrecillas G, Perez-Sala D, Gonzalez-Santiago L, Rodriguez-Puyol M, Rodriguez-Puyol D: Mechanisms involved in the contraction of endothelial cells by hydrogen peroxide. Free Radic Biol Med 1999;26:501-510.
    29 Dang L, Seale JP, Qu X: High glucose-induced human umbilical vein endothelial cell hyperpermeability is dependent on protein kinase c activation and independent of the ca2+-nitric oxide signalling pathway. Clin Exp Pharmacol Physiol 2005;32:771-776.
    30 Duane PG, Rice KL, Charboneau DE, King MB, Gilboe DP, Niewoehner DE: Relationship of oxidant-mediated cytotoxicity to phospholipid metabolism in endothelial cells. Am J Respir Cell Mol Biol 1991;4:408-416.
    31 Bates DO, Curry FE: Vascular endothelial growth factor increases microvascular permeability via a ca(2+)-dependent pathway. Am J Physiol 1997;273:H687-H694.
    32 Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U, Vestweber D, Risau W, Dejana E: Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 1996;87:630-641.
    33 Lal BK, Varma S, Pappas PJ, Hobson RN, Duran WN: Vegf increases permeability of theendothelial cell monolayer by activation of pkb/akt, endothelial nitric-oxide synthase, and map kinase pathways. Microvasc Res 2001;62:252-262.
    34 Wu HM, Yuan Y, Zawieja DC, Tinsley J, Granger HJ: Role of phospholipase c, protein kinase c, and calcium in vegf-induced venular hyperpermeability. Am J Physiol 1999;276:H535-H542.
    35 Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA: Selective requirement for src kinases during vegf-induced angiogenesis and vascular permeability. Mol Cell 1999;4:915-924.
    36 Birukov KG, Csortos C, Marzilli L, Dudek S, Ma SF, Bresnick AR, Verin AD, Cotter RJ, Garcia JG: Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60(src). J Biol Chem 2001;276:8567-8573.
    37 Miao H, Li S, Hu YL, Yuan S, Zhao Y, Chen BP, Puzon-McLaughlin W, Tarui T, Shyy JY, Takada Y, Usami S, Chien S: Differential regulation of rho gtpases by beta1 and beta3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 2002;115:2199-2206.
    38 Mammoto A, Mammoto T, Ingber DE: Rho signaling and mechanical control of vascular development. Curr Opin Hematol 2008;15:228-234.
    39 Sun H, Breslin JW, Zhu J, Yuan SY, Wu MH: Rho and rock signaling in vegf-induced microvascular endothelial hyperpermeability. Microcirculation 2006;13:237-247.
    40 Patil SB, Bitar KN: Rhoa- and pkc-alpha-mediated phosphorylation of mypt and its association with hsp27 in colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2006;290:G83-G95.
    41 Parsons ME, Ganellin CR: Histamine and its receptors. Br J Pharmacol 2006;147 Suppl 1:S127-S135.
    42 Guo M, Breslin JW, Wu MH, Gottardi CJ, Yuan SY: Ve-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. Am J Physiol Cell Physiol 2008;294:C977-C984.
    43 Kelly M, Hwang JM, Kubes P: Modulating leukocyte recruitment in inflammation. J Allergy Clin Immunol 2007;120:3-10.
    44 Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW: Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007;101:234-247.
    45 Chiba Y, Ishii Y, Kitamura S, Sugiyama Y: Activation of rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung. Microvasc Res 2001;62:164-171.
    46 Sumagin R, Lomakina E, Sarelius IH: Leukocyte-endothelial cell interactions are linked to vascular permeability via icam-1-mediated signaling. Am J Physiol Heart Circ Physiol 2008;295:H969-H977.
    47 Usatyuk PV, Fomin VP, Shi S, Garcia JG, Schaphorst K, Natarajan V: Role of ca2+ in diperoxovanadate-induced cytoskeletal remodeling and endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol 2003;285:L1006-L1017.
    48 Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD: Intercellular adhesion molecule-1-dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability. Circ Res 2008;102:e120-e131.
    49 Murray CJ, Lopez AD: Global mortality, disability, and the contribution of risk factors: globalburden of disease study. Lancet 1997;349:1436-1442.
    50 Rocha VZ, Libby P: Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 2009;6:399-409.
    51 Hansson GK, Robertson AK, Soderberg-Naucler C: Inflammation and atherosclerosis. Annu Rev Pathol 2006;1:297-329.
    52 Victor VM, Rocha M, Sola E, Banuls C, Garcia-Malpartida K, Hernandez-Mijares A: Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des 2009;15:2988-3002.
    53 Schwartz SM, Galis ZS, Rosenfeld ME, Falk E: Plaque rupture in humans and mice. Arterioscler Thromb Vasc Biol 2007;27:705-713.
    54 Glass CK, Witztum JL: Atherosclerosis. The road ahead. Cell 2001;104:503-516.
    55 Orr AW, Stockton R, Simmers MB, Sanders JM, Sarembock IJ, Blackman BR, Schwartz MA: Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J Cell Biol 2007;176:719-727.
    56 Fryer BH, Wang C, Vedantam S, Zhou GL, Jin S, Fletcher L, Simon MC, Field J: Cgmp-dependent protein kinase phosphorylates p21-activated kinase (pak) 1, inhibiting pak/nck binding and stimulating pak/vasodilator-stimulated phosphoprotein association. J Biol Chem 2006;281:11487-11495.
    57 Goua M, Mulgrew S, Frank J, Rees D, Sneddon AA, Wahle KW: Regulation of adhesion molecule expression in human endothelial and smooth muscle cells by omega-3 fatty acids and conjugated linoleic acids: involvement of the transcription factor nf-kappab?. Prostaglandins Leukot Essent Fatty Acids 2008;78:33-43.
    58 Pennathur S, Heinecke JW: Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 2007;7:257-264.
    59 Chehade JM, Haas MJ, Mooradian AD: Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (zo-1) expression. Neurochem Res 2002;27:249-252.
    60 Davidson MK, Russ PK, Glick GG, Hoffman LH, Chang MS, Haselton FR: Reduced expression of the adherens junction protein cadherin-5 in a diabetic retina. Am J Ophthalmol 2000;129:267-269.
    61 Lee AY, Chung SS: Contributions of polyol pathway to oxidative stress in diabetic cataract. Faseb J 1999;13:23-30.
    62 Bonnardel-Phu E, Wautier JL, Schmidt AM, Avila C, Vicaut E: Acute modulation of albumin microvascular leakage by advanced glycation end products in microcirculation of diabetic rats in vivo. Diabetes 1999;48:2052-2058.
    63 Yamagishi S, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M, Makita Z: Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem 2002;277:20309-20315.
    64 Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005;54:1615-1625.
    65 Harrington EO, Brunelle JL, Shannon CJ, Kim ES, Mennella K, Rounds S: Role of protein kinase c isoforms in rat epididymal microvascular endothelial barrier function. Am J Respir CellMol Biol 2003;28:626-636.
    66 Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, Liou GI, Caldwell RW: Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 2005;6:511-524.
    67 Carden DL, Granger DN: Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000;190:255-266.
    68 Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY, Korthuis RJ: Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of nadph oxidase-derived ros. Free Radic Biol Med 2007;43:1048-1060.
    69 Chua CC, Hamdy RC, Chua BH: Upregulation of vascular endothelial growth factor by h2o2 in rat heart endothelial cells. Free Radic Biol Med 1998;25:891-897.
    70 Abumiya T, Yokota C, Kuge Y, Minematsu K: Aggravation of hemorrhagic transformation by early intraarterial infusion of low-dose vascular endothelial growth factor after transient focal cerebral ischemia in rats. Brain Res 2005;1049:95-103.
    71 Godzich M, Hodnett M, Frank JA, Su G, Pespeni M, Angel A, Howard MB, Matthay MA, Pittet JF: Activation of the stress protein response prevents the development of pulmonary edema by inhibiting vegf cell signaling in a model of lung ischemia-reperfusion injury in rats. Faseb J 2006;20:1519-1521.
    72 Nosal'Ova V, Drabikova K, Jancinova V, Pecivova J, Macickova T, Petrikova M, Sotnikova R, Nosal' R: Effect of h1 antihistamines in a model of mesenteric ischaemia/reperfusion. Inflamm Res 2008;57 Suppl 1:S55-S56.
    73 Hirahashi J, Mekala D, Van Ziffle J, Xiao L, Saffaripour S, Wagner DD, Shapiro SD, Lowell C, Mayadas TN: Mac-1 signaling via src-family and syk kinases results in elastase-dependent thrombohemorrhagic vasculopathy. Immunity 2006;25:271-283.
    74 Alexander J: Extracellular matrix, junctional integrity and matrix metalloproteinase interactions. J Anat 2002;200:525.
    75 Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002;160:985-1000.
    76 Anan K, Morisaki T, Katano M, Ikubo A, Kitsuki H, Uchiyama A, Kuroki S, Tanaka M, Torisu M: Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer. Surgery 1996;119:333-339.
    77 Lee FY, Covello KL, Castaneda S, Hawken DR, Kan D, Lewin A, Wen ML, Ryseck RP, Fairchild CR, Fargnoli J, Kramer R: Synergistic antitumor activity of ixabepilone (bms-247550) plus bevacizumab in multiple in vivo tumor models. Clin Cancer Res 2008;14:8123-8131.
    78 Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK: Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 1996;93:14765-14770.
    79 Wu MH: Endothelial focal adhesions and barrier function. J Physiol 2005;569:359-366.
    80 Kargozaran H, Yuan SY, Breslin JW, Watson KD, Gaudreault N, Breen A, Wu MH: A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across theendothelial-basement membrane barrier. Clin Exp Metastasis 2007;24:495-502.
    81 Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A: In vitro modulation of mmp-2 and mmp-9 in human cervical and ovarian cancer cell lines by cytokines, inducers and inhibitors. Oncol Rep 2010;23:605-614.
    82 Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LE: Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (vegf) using soluble vegf-receptor chimeric proteins. Proc Natl Acad Sci U S A 1995;92:10457-10461.
    83 Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N: Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 2000;60:6253-6258.
    84 Zhang J, Jia Z, Li Q, Wang L, Rashid A, Zhu Z, Evans DB, Vauthey JN, Xie K, Yao JC: Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 2007;109:1478-1486.
    85 Robinson GS, Ju M, Shih SC, Xu X, McMahon G, Caldwell RB, Smith LE: Nonvascular role for vegf: vegfr-1, 2 activity is critical for neural retinal development. Faseb J 2001;15:1215-1217.
    86 Haritoglou C, Kook D, Neubauer A, Wolf A, Priglinger S, Strauss R, Gandorfer A, Ulbig M, Kampik A: Intravitreal bevacizumab (avastin) therapy for persistent diffuse diabetic macular edema. Retina 2006;26:999-1005.
    87 Whittles CE, Pocock TM, Wedge SR, Kendrew J, Hennequin LF, Harper SJ, Bates DO: Zm323881, a novel inhibitor of vascular endothelial growth factor-receptor-2 tyrosine kinase activity. Microcirculation 2002;9:513-522.
    88 Dhainaut JF, Yan SB, Claessens YE: Protein c/activated protein c pathway: overview of clinical trial results in severe sepsis. Crit Care Med 2004;32:S194-S201.
    89 Feistritzer C, Riewald M: Endothelial barrier protection by activated protein c through par1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 2005;105:3178-3184.
    90 Bae JS, Yang L, Manithody C, Rezaie AR: The ligand occupancy of endothelial protein c receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood 2007;110:3909-3916.
    91 Franscini N, Bachli EB, Blau N, Leikauf MS, Schaffner A, Schoedon G: Gene expression profiling of inflamed human endothelial cells and influence of activated protein c. Circulation 2004;110:2903-2909.
    92 Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW: Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 2001;276:11199-11203.
    93 Wong SS, Sun NN, Hyde JD, Ruiz L, Meigs E, Herrin BR, Fastje CD, Macdonald SJ, Witten ML: Drotrecogin alfa (activated) prevents smoke-induced increases in pulmonary microvascular permeability and proinflammatory cytokine il-1beta in rats. Lung 2004;182:319-330.
    94 Duffy SJ, Gokce N, Holbrook M, Huang A, Frei B, Keaney JJ, Vita JA: Treatment ofhypertension with ascorbic acid. Lancet 1999;354:2048-2049.
    95 Verhaar MC, Honing ML, van Dam T, Zwart M, Koomans HA, Kastelein JJ, Rabelink TJ: Nifedipine improves endothelial function in hypercholesterolemia, independently of an effect on blood pressure or plasma lipids. Cardiovasc Res 1999;42:752-760.
    96 Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL: Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase c in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997;46:1473-1480.
    97 Guo M, Wu MH, Korompai F, Yuan SY: Upregulation of pkc genes and isozymes in cardiovascular tissues during early stages of experimental diabetes. Physiol Genomics 2003;12:139-146.
    98 Koksel O, Yildirim C, Tiftik RN, Kubat H, Tamer L, Cinel L, Kaplan MB, Degirmenci U, Ozdulger A, Buyukafsar K: Rho-kinase (rock-1 and rock-2) upregulation in oleic acid-induced lung injury and its restoration by y-27632. Eur J Pharmacol 2005;510:135-142.
    99 Olson MF: Applications for rock kinase inhibition. Curr Opin Cell Biol 2008;20:242-248.
    100 Yin L, Morishige K, Takahashi T, Hashimoto K, Ogata S, Tsutsumi S, Takata K, Ohta T, Kawagoe J, Takahashi K, Kurachi H: Fasudil inhibits vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Mol Cancer Ther 2007;6:1517-1525.
    101 Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC: Rhoa/rho-kinase contribute to the pathogenesis of diabetic renal disease. Diabetes 2008;57:1683-1692.
    102 van Nieuw AG, Vermeer MA, Negre-Aminou P, Lankelma J, Emeis JJ, van Hinsbergh VW: Simvastatin improves disturbed endothelial barrier function. Circulation 2000;102:2803-2809.
    103 Zeng L, Xu H, Chew TL, Eng E, Sadeghi MM, Adler S, Kanwar YS, Danesh FR: Hmg coa reductase inhibition modulates vegf-induced endothelial cell hyperpermeability by preventing rhoa activation and myosin regulatory light chain phosphorylation. Faseb J 2005;19:1845-1847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700