杜氏藻类胡萝卜素合成关键酶基因的分子克隆及外源表达系统的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
突出的功能效果和人们日益追求天然健康的理念,使得天然类胡萝卜素有着巨大的市场需求。目前,类胡萝卜素已被广泛应用于营养、医药、食品、化妆品以及饲料等方面。耐盐真核绿藻——杜氏藻因其具有高度累积天然β-胡萝卜素的特性而倍受人们的青睐。自上世纪八十年代起,杜氏藻已在多个国家地区被商业开发应用于天然β-胡萝卜素和富含p-胡萝卜素的杜氏藻干粉生产上。然而,杜氏藻生产p-胡萝卜素的传统工艺优化已不能满足当前日益增长的市场需求。从分子生物学角度了解和掌握杜氏藻高度累积β-胡萝卜素的分子机制,借助相关的分子遗传育种手段,从基因水平上提高目的类胡萝卜素在宿主中的产量是缓解当前紧张的市场需求行之有效的方法。此外,具有重要社会意义的是类胡萝卜素合成途径的遗传育种研究有利于增强农作物对土地盐碱化环境的耐受性,保证和提高粮食的产量。
     利用遗传育种手段提高目的类胡萝卜素产量的前提条件是具有一个高效多样性的类胡萝卜素合成酶基因库以供遗传操作选择。杜氏藻在环境胁迫条件下能够大量累积β-胡萝卜素,这暗示着杜氏藻类胡萝卜素合成途径相关酶类具有较高的催化效能。根据当前的类胡萝卜素合成途径研究进展,结合本研究室多年来对杜氏藻类胡萝卜素的研究成果,本论文对杜氏藻类胡萝卜素合成途径相关酶类的基因核酸序列进行了克隆。期间,利用简并PCR、cDNA末端快速扩增法(RACE)和重叠延伸PCR等分子克隆技术,首次获得了巴氏杜氏藻类胡萝卜素合成途径中的八氢番茄红素脱氢酶(PDS)、ζ-胡萝卜素脱氢酶(ZDS)、番茄红素β-环化酶(LCY-B)以及杜氏盐藻ZDS的核酸序列。接着,利用各种生物信息学工具对杜氏藻和巴氏杜氏藻类胡萝卜素合成酶类的核酸和蛋白序列进行分析,了解基因的编码情况、蛋白的氨基酸组成和相关的物理化学性质以及蛋白的亚细胞定位等情况。通过密码子偏好性分析和蛋白结构域的特殊性,在基因表达水平和酶催化反应角度解析杜氏藻高度累积β-胡萝卜素的原因。结合蛋白相互作用关系、亚细胞定位分析以及蛋白跨膜结构域预测,推测杜氏藻的类胡萝卜素合成酶是以多亚基聚合物形式行使功能的,而LCY-B起到桥连多亚基聚合物和叶绿体类囊体膜的作用。最后对杜氏藻类胡萝卜素合成酶进行同源建模,了解其的高级结构,为后续的功能研究以及酶工程操作打下基础。
     对杜氏藻和欧文氏菌类胡萝卜素合成酶相关基因核酸序列进行不同的组合,构建pACCRT-EIB-DbL、pPaEIDbS-I、pPaEBDbZ-I、pPaEBDbDZ-I、pPaEDbSDZ-I、pPaEIBY-I、pPaEIBDbL-I、pPaEIDbSL-I、pPaEDbSDZL-I、pPaEIYDbS-I、pPaEYDbSDZ-I、 pPaEBYDbDZ-I和pPaEBDbDZL-I等一系列类胡萝卜素外源表达载体于大肠杆菌DH5a中表达以检验杜氏藻类胡萝卜素合成酶的功能和效能。功能性分析显示,杜氏藻DbPDS和DbZDS不能直接代替欧文氏菌crtl实现八氢番茄红素到番茄红素的转化,而产物为中间体ζ-胡萝卜素,推测杜氏藻类胡萝卜素合成途径需要Z-ISO和CRTISO两个异构酶基因的参与。类胡萝卜素的定量分析显示杜氏藻DbLCY-B (pACCRT-EIB-DbL转化子)代替欧文氏菌crtY (pACCAR16AcrtX转化子)使得外源表达系统的β-胡萝卜素含量提高了48.78%。通过单因素实验和响应面分析法优化了转化子产β-胡萝卜素的培养条件和提取工艺。结果显示最佳的培养基成分为16.17g/L胰蛋白胨、10g/L酵母提取物、5g/LNaCl、21.15g/L甘油、78.95g/L NH4Cl和12.68g/L Na2HPO4-7H2O,最佳的培养温度为29℃。在该培养条件下,pACCRT-EIB-DbL转化子的类胡萝卜素实际产量为2.82±0.07mg/L。在最佳培养条件下,发酵罐培养结果显示pACCRT-EIB-DbL转化子的最大β-胡萝卜素产量出现在56h,为6.30mg/L。
Natural carotenoids are high in demand in the global market owing to its effectivefunctional characteristics and the growing natural and healthy preference of consumers today.Currently, carotenoids have been widely applied in fields of nutrition, medicine, food,cosmetic, and feed. The halotolerant eukaryotic green alga Dunaliella has been the people’sfavor for its massive accumulation of natural-carotene. This valuable alga has beenexploited commercially for natural-carotene and-carotene-rich Dunaliella powder in anumber of countries and regions since1980s. However, the traditional process optimization of
     -carotene production with Dunaliella can not meet the increasing market demand nowadays.It is an effective method to alleviate the current tense market demand by means of moleculargenetic and breeding techniques to improve the desired carotenoids yield on theunderstanding and mastery of the mechanism of highly-carotene accumulation of Dunaliellafrom the perspective of molecular biology. In addition, it has an important social significanceto ensure and improve food production by enhancing the saline and alkali tolerance of cropthat benefits from genetic breeding study of carotenogenic pathway.
     A multiple and efficient carotenogenic genes pool is the prerequisite in genetic breeding forenhancing the production of desired carotenoids. Since the green alga Dunaliella accumulatemassive-carotene under stress conditions, it is implied that the carotenogenic enzymes ofDunaliella have high catalytic activity in the conversion of carotenoids. Considering theprogress of carotenogenic pathway and the results of our groups these years, genes ofcarotenogenic pathway of Dunaliella have been cloned in this work. Based on the molecularcloning techniques, including degenerate PCR, rapid amplification of cDNA end (RACE),and gene splicing by overlap extension PCR (SOE PCR), nucleotide sequences respectivelyfor the phytoene desaturase (PDS),-carotene desaturase (ZDS), and lycopene-cyclase(LCY-B) of Dunaliella bardawil, as well as for the ZDS of Dunaliella salina were firstcloned presently. Subsequently, a series of bioinformatics tools have been used for theanalysis of nucleotide and protein sequences of carotenogenic enzymes of D. salina and D.bardawil to display the coding scheme of carotenogenic genes, amino acid composition andits physicochemical property of carotenogenic enzymes, the subcellular localization of theseenzymes, and so on. A potential mechanism of the massive-carotene accumulation ofDunaliella was defined at the level of gene expression and enzyme catalytic reactionattributing to codon preference analysis and protein domain specificity respectively.According to the results of protein interactions, subcellular localization, and prediction for the transmembrane domain, it was hypothesized that in Dunaliella carotenoids biosynthesis wasperformed by the multisubunit aggregate of carotenogenic enzymes, and LCY-B acts as theconnection point between this multisubunit aggregate and thylakoid membrane. Finally,homology modeling was employed to predict the advanced structures of carotenogenicenzymes of Dunaliella, which would promote study of enzyme function and engineering.
     A series of carotenoids-generated vectors, including pACCRT-EIB-DbL, pPaEIDbS-I,pPaEBDbZ-I, pPaEBDbDZ-I, pPaEDbSDZ-I, pPaEIBY-I, pPaEIBDbL-I, pPaEIDbSL-I,pPaEDbSDZL-I, pPaEIYDbS-I, pPaEYDbSDZ-I, pPaEBYDbDZ-I, and pPaEBDbDZL-I,were constructed with different combinations of nucleotide sequences of carotenogenic genesof Dunaliella and Pantoea ananatis to expressed in host cell Escherichia coli DH5for theanalysis of catalytic efficacy and efficiency of carotenogenic enzymes of Dunaliella. It wasproposed that two isomerases, Z-ISO and CRTISO, were required during the carotenogenesisof Dunaliella, because the substitution for the P. ananatis crtI with Dunaliella DbPDS orDbZDS could not achieve the conversion from phytoene to lycopene, but the intermediate-carotene. Interestingly, results also displayed that the substitution for the P. ananatis crtY(pACCAR16crtX) with Dunaliella DbLCY-B (pACCRT-EIB-DbL) leads to a remarkableincreased-carotene accumulation of transformant, by48.78%. Subsequently, univariateanalysis method and response surface methodology have been used to optimize the culturalcondition and extraction process for the-carotene yield of transformant. Results showed thatthe optimal medium composition contained16.17g/L tryptone,10g/L yeast extract,5g/LNaCl,21.15g/L glycerol,78.95g/L NH4Cl, and12.68g/L Na2HPO4·7H2O, and the optimalcultural temperature was29°C. Actually, in this optimal cultural condition the-caroteneyield of pACCRT-EIB-DbL transformant was2.82±0.07mg/L. The experimental data offermentation displayed that the max-carotene yield of pACCRT-EIB-DbL transformant was6.30mg/L at56h under the optimal cultural condition.
引文
[1] Fraser P.D., Bramley P.M. The biosynthesis and nutritional uses of carotenoids [J]. ProgLipid Res,2004,43(3):228-265
    [2] Ladislav F., Vera P., Karel S., et al. Reliability of carotenoid analyses: a review [J]. CurrAnal Chem,2005,1(1):93-102
    [3] Ye Z.W., Jiang J.G., Wu G.H. Biosynthesis and regulation of carotenoids in Dunaliella:progresses and prospects [J]. Biotechnol Adv,2008,26(4):352-360
    [4] Lu S., Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond [J]. J IntegrPlant Biol,2008,50(7):778-785
    [5] Walter M.H., Strack D. Carotenoids and their cleavage products: biosynthesis andfunctions [J]. Nat Prod Rep,2011,28(4):663-692
    [6] DellaPenna D., Pogson B.J. Vitamin synthesis in plants: tocopherols and carotenoids [J].Annu Rev Plant Biol,2006,57:711-738
    [7] Maoka T. Recent progress in structural studies of carotenoids in animals and plants [J].Arch Biochem Biophys,2009,483(2):191-195
    [8] Feher G., Allen J.P., Okamura M.Y., et al. Structure and function of bacterialphotosynthetic reaction centres [J]. Nature,1989,339(6220):111-116
    [9] McDermott G., Prince S.M., Freer A.A., et al. Crystal structure of an integral membranelight-harvesting complex from photosynthetic bacteria [J]. Nature,1995,374(6522):517-521
    [10] Kuhlbrandt W., Wang D.N., Fujiyoshi Y. Atomic model of plant light-harvestingcomplex by electron crystallography [J]. Nature,1994,367(6464):614-621
    [11] de Groot H.J., Gebhard R., van der Hoef I., et al.13C magic angle spinning NMRevidence for a15,15'-cis configuration of the spheroidene in the Rhodobactersphaeroides photosynthetic reaction center [J]. Biochemistry,1992,31(49):12446-12450
    [12] Cunningham F.X., Gantt E. Genes and enzymes of carotenoid biosynthesis in plants [J].Annu Rev Plant Physiol Plant Mol Biol,1998,49:557-583
    [13] Auldridge M.E., McCarty D.R., Klee H.J. Plant carotenoid cleavage oxygenases andtheir apocarotenoid products [J]. Curr Opin Plant Biol,2006,9(3):315-321
    [14] Britton G. Structure and properties of carotenoids in relation to function [J]. FASEB J,1995,9(15):1551-1558
    [15] Demmig-Adams B., Gilmore A.M., Adams W.W.,3rd. Carotenoids3: in vivo functionof carotenoids in higher plants [J]. FASEB J,1996,10(4):403-412
    [16] Frank H.A., Cogdell R.J. Carotenoids in photosynthesis [J]. Photochem Photobiol,1996,63(3):257-264
    [17] Blass U., Anderson J.M., Calvin M. Biosynthesis and possible functional relationshipsamong the carotenoids; and between chlorophyll a and chlorophyll b [J]. Plant Physiol,1959,34(3):329-333
    [18] Siefermann-Harms D. Light-induced changes of the carotenoid levels in chloroplastenvelopes [J]. Plant Physiol,1978,61(4):530-533
    [19] Mimuro M., Katoh T. Carotenoids in photosynthesis: absorption, transfer anddissipation of light energy [J]. Pure Appl Chem,1991,63(1):123-130
    [20] Lichtenthaler H.K., Prenzel U., Kuhn G. Carotenoid composition ofchlorophyll-carotenoid-proteins from radish chloroplasts [J]. Z Naturforsch C,1982,37c:10-12
    [21] Deisenhofer J., Michel H. The photosynthetic reaction center from the purplebacterium Rhodopseudomonas viridis [J]. Science,1989,245(4925):1463-1473
    [22] Lichtenthaler H.K. Zur synthese der lipophilen plastidenchinone undsekund r-carotinoide w hrend der chromoplastenentwicklung [J]. Ber Dtsch Bot Ges,1969,82:483-497
    [23] Lesser M.P. Oxidative stress in marine environments: biochemistry and physiologicalecology [J]. Annu Rev Physiol,2006,68:253-278
    [24] Okamoto O.K., Pinto E., Latorre L.R., et al. Antioxidant modulation in response tometal-induced oxidative stress in algal chloroplasts [J]. Arch Environ Contam Toxicol,2001,40(1):18-24
    [25] Bouvier F., Backhaus R.A., Camara B. Induction and control of chromoplast-specificcarotenoid genes by oxidative stress [J]. J Biol Chem,1998,273(46):30651-30659
    [26] Foyer C.H., DescourvièRes P., Kunert K.J. Protection against oxygen radicals: animportant defence mechanism studied in transgenic plants [J]. Plant Cell Environ,1994,17(5):507-523
    [27] Fryer M.J. The antioxidant effects of thylakoid Vitamin E (-tocopherol)[J]. Plant CellEnviron,1992,15(4):381-392
    [28] Terao J. Antioxidant activity of beta-carotene-related carotenoids in solution [J]. Lipids,1989,24(7):659-661
    [29] Maresca J.A., Graham J.E., Bryant D.A. The biochemical basis for structural diversityin the carotenoids of chlorophototrophic bacteria [J]. Photosynth Res,2008,97(2):121-140
    [30] Maoka T. Carotenoids in marine animals [J]. Mar Drugs,2011,9(2):278-293
    [31] Trench R. The cell biology of plant-animal symbiosis [J]. Annu Rev Plant Physiol,1979,30:485-531
    [32] Lane C.E., Archibald J.M. The eukaryotic tree of life: endosymbiosis takes its TOL [J].Trends Ecol Evol,2008,23(5):268-275
    [33] Venn A.A., Loram J.E., Douglas A.E. Photosynthetic symbioses in animals [J]. J ExpBot,2008,59(5):1069-1080
    [34] Kerney R., Kim E., Hangarter R.P., et al. Intracellular invasion of green algae in asalamander host [J]. Proc Natl Acad Sci U S A,2011,108(16):6497-6502
    [35] kerney R. Symbioses between salamander embryos and green algae [J]. Symbiosis,2011,54(3):107-117
    [36] Moran N.A., Jarvik T. Lateral transfer of genes from fungi underlies carotenoidproduction in aphids [J]. Science,2010,328(5978):624-627
    [37] Palmer L.S. The biological and chemical nomenclature for the carotenoids [J]. Science,1934,79(2056):488-490
    [38] Naik P.S., Chanemougasoundharam A., Khurana S.M.P., et al. Genetic manipulation ofcarotenoid pathway in higher plants [J]. Curr Sci India,2003,85(10):1423-1430
    [39] Chen Q., Jiang J.G., Wang F. Molecular phylogenies and evolution of crt genes in algae[J]. Crit Rev Biotechnol,2007,27(2):77-91
    [40] Wang F., Jiang J.G., Chen Q. Progress on molecular breeding and metabolicengineering of biosynthesis pathways of C30, C35, C40, C45, C50carotenoids [J].Biotechnol Adv,2007,25(3):211-222
    [41] Umeno D., Arnold F.H. A C35carotenoid biosynthetic pathway [J]. Appl EnvironMicrobiol,2003,69(6):3573-3579
    [42] Ritz T., Damjanovic A., Schulten K., et al. Efficient light harvesting throughcarotenoids [J]. Photosynth Res,2000,66(1-2):125-144
    [43] Graham J.E., Bryant D.A. The biosynthetic pathway for synechoxanthin, an aromaticcarotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcussp. strain PCC7002[J]. J Bacteriol,2008,190(24):7966-7974
    [44] Frengova G.I., Beshkova D.M. Carotenoids from Rhodotorula and Phaffia: yeasts ofbiotechnological importance [J]. J Ind Microbiol Biotechnol,2009,36(2):163-180
    [45] Pelz A., Wieland K.P., Putzbach K., et al. Structure and biosynthesis of staphyloxanthinfrom Staphylococcus aureus [J]. J Biol Chem,2005,280(37):32493-32498
    [46] Krubasik P., Kobayashi M., Sandmann G. Expression and functional analysis of a genecluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50carotenoid formation [J]. Eur J Biochem,2001,268(13):3702-3708
    [47] Dembitsky V.M. Astonishing diversity of natural surfactants:3. Carotenoid glycosidesand isoprenoid glycolipids [J]. Lipids,2005,40(6):535-557
    [48] Shaish A., Harari A., Hananshvili L., et al.9-cis beta-carotene-rich powder of the algaDunaliella bardawil increases plasma HDL-cholesterol in fibrate-treated patients [J].Atherosclerosis,2006,189(1):215-221
    [49] Gupta S.K., Trivedi D., Srivastava S., et al. Lycopene attenuates oxidative stressinduced experimental cataract development: an in vitro and in vivo study [J]. Nutrition,2003,19(9):794-799
    [50] Michaud D.S., Feskanich D., Rimm E.B., et al. Intake of specific carotenoids and riskof lung cancer in2prospective US cohorts [J]. Am J Clin Nutr,2000,72(4):990-997
    [51] Tapiero H., Townsend D.M., Tew K.D. The role of carotenoids in the prevention ofhuman pathologies [J]. Biomed Pharmacother,2004,58(2):100-110
    [52] Hipfner J.M., Hobson K.A., Dale J., et al. Stable isotopes link diet to avian yolkcarotenoid allocation: a comparative study of five auk species (Charadriiformes:Alcidae)[J]. Physiol Biochem Zool,2010,83(3):481-489
    [53] Garcia-de Blas E., Mateo R., Vinuela J., et al. Identification of carotenoid pigments andtheir fatty acid esters in an avian integument combining HPLC-DAD and LC-MSanalyses [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2011,879(5-6):341-348
    [54] Lorenz R.T., Cysewski G.R. Commercial potential for Haematococcus microalgae as anatural source of astaxanthin [J]. Trends Biotechnol,2000,18(4):160-167
    [55] Rao A.V., Rao L.G. Carotenoids and human health [J]. Pharmacol Res,2007,55(3):207-216
    [56] Rice-Evans C., Miller N.J. Antioxidants-the case for fruit and vegetables in the diet[J]. Brit Food J,1995,97(9):35-40
    [57] Erdman J.W., Jr., Bierer T.L., Gugger E.T. Absorption and transport of carotenoids [J].Ann N Y Acad Sci,1993,691:76-85
    [58] Parker R.S. Absorption, metabolism, and transport of carotenoids [J]. FASEB J,1996,10(5):542-551
    [59] Parker R.S. Carotenoid and tocopherol composition of human adipose tissue [J]. Am JClin Nutr,1988,47(1):33-36
    [60] Gerster H. The potential role of lycopene for human health [J]. J Am Coll Nutr,1997,16(2):109-126
    [61] Miller H.I. A golden opportunity, squandered [J]. Trends Biotechnol,2009,27(3):129-130
    [62] Yan J., Kandianis C.B., Harjes C.E., et al. Rare genetic variation at Zea mays crtRB1increases beta-carotene in maize grain [J]. Nat Genet,2010,42(4):322-327
    [63] Lindqvist A., Andersson S. Biochemical properties of purified recombinant humanbeta-carotene15,15'-monooxygenase [J]. J Biol Chem,2002,277(26):23942-23948
    [64] Johnson E.J. The role of carotenoids in human health [J]. Nutr Clin Care,2002,5(2):56-65
    [65] Agarwal S., Rao A.V. Carotenoids and chronic diseases [J]. Drug Metabol DrugInteract,2000,17(1-4):189-210
    [66] Elliott R. Mechanisms of genomic and non-genomic actions of carotenoids [J].Biochim Biophys Acta,2005,1740(2):147-154
    [67] Paiva S.A., Russell R.M. Beta-carotene and other carotenoids as antioxidants [J]. J AmColl Nutr,1999,18(5):426-433
    [68] Bertram J.S. Carotenoids and gene regulation [J]. Nutr Rev,1999,57(6):182-191
    [69] Trekli M.C., Riss G., Goralczyk R., et al. Beta-carotene suppresses UVA-induced HO-1gene expression in cultured FEK4[J]. Free Radic Biol Med,2003,34(4):456-464
    [70] The alpha-tocopherol, beta carotene cancer prevention study group. The effect ofvitamin E and beta carotene on the incidence of lung cancer and other cancers in malesmokers [J]. N Engl J Med,1994,330(15):1029-1035
    [71] Albanes D., Heinonen O.P., Taylor P.R., et al. Alpha-tocopherol and beta-carotenesupplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancerprevention study: effects of base-line characteristics and study compliance [J]. J NatlCancer Inst,1996,88(21):1560-1570
    [72] Omenn G.S., Goodman G.E., Thornquist M.D., et al. Effects of a combination of betacarotene and vitamin A on lung cancer and cardiovascular disease [J]. N Engl J Med,1996,334(18):1150-1155
    [73] Misawa N., Nakagawa M., Kobayashi K., et al. Elucidation of the Erwinia uredovoracarotenoid biosynthetic pathway by functional analysis of gene products expressed inEscherichia coli [J]. J Bacteriol,1990,172(12):6704-6712
    [74] Sieiro C., Poza M., de Miguel T., et al. Genetic basis of microbial carotenogenesis [J].Int Microbiol,2003,6(1):11-16
    [75] Leon R., Couso I., Fernandez E. Metabolic engineering of ketocarotenoids biosynthesisin the unicelullar microalga Chlamydomonas reinhardtii [J]. J Biotechnol,2007,130(2):143-152
    [76] Hirschberg J. Carotenoid biosynthesis in flowering plants [J]. Curr Opin Plant Biol,2001,4(3):210-218
    [77] Schwender J., Seemann M., Lichtenthaler H.K., et al. Biosynthesis of isoprenoids(carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novelpyruvate/glyceraldehyde3-phosphate non-mevalonate pathway in the green algaScenedesmus obliquus [J]. Biochem J,1996,316(Pt1):73-80
    [78] Lange B.M., Rujan T., Martin W., et al. Isoprenoid biosynthesis: the evolution of twoancient and distinct pathways across genomes [J]. Proc Natl Acad Sci U S A,2000,97(24):13172-13177
    [79] Bloch K. Sterol molecule: structure, biosynthesis, and function [J]. Steroids,1992,57(8):378-383
    [80] Newman J.D., Chappell J. Isoprenoid biosynthesis in plants: carbon partitioning withinthe cytoplasmic pathway [J]. Crit Rev Biochem Mol Biol,1999,34(2):95-106
    [81] Rohmer M., Seemann M., Horbach S., et al. Glyceraldehyde3-phosphate and pyruvateas precursors of isoprenic units in an alternative non-mevalonate pathway forterpenoid biosynthesis [J]. J Am Chem Soc,1996,118(11):2564-2566
    [82] Seemann M., Tse Sum Bui B., Wolff M., et al. Isoprenoid biosynthesis in plantchloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependentphotoreduction of GcpE/IspG [J]. FEBS Lett,2006,580(6):1547-1552
    [83] Disch A., Hemmerlin A., Bach T.J., et al. Mevalonate-derived isopentenyl diphosphateis the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2cells [J].Biochem J,1998,331(Pt2):615-621
    [84] Shewmaker C.K., Sheehy J.A., Daley M., et al. Seed-specific overexpression ofphytoene synthase: increase in carotenoids and other metabolic effects [J]. Plant J,1999,20(4):401-412X
    [85] Walter M.H., Fester T., Strack D. Arbuscular mycorrhizal fungi induce thenon-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesiscorrelated with accumulation of the 'yellow pigment' and other apocarotenoids [J].Plant J,2000,21(6):571-578
    [86] Eisenreich W., Bacher A., Arigoni D., et al. Biosynthesis of isoprenoids via thenon-mevalonate pathway [J]. Cell Mol Life Sci,2004,61(12):1401-1426
    [87] Rohdich F., Kis K., Bacher A., et al. The non-mevalonate pathway of isoprenoids:genes, enzymes and intermediates [J]. Curr Opin Chem Biol,2001,5(5):535-540
    [88] Bramley P., Teulieres C., Blain I., et al. Biochemical characterization of transgenictomato plants in which carotenoid synthesis has been inhibited through the expressionof antisense RNA to pTOM5[J]. Plant J,1992,2(3):343-349
    [89] Albrecht M., Klein A., Hugueney P., et al. Molecular cloning and functional expressionin E. coli of a novel plant enzyme mediating zeta-carotene desaturation [J]. FEBS Lett,1995,372(2-3):199-202
    [90] Schmidt-Dannert C. Engineering novel carotenoids in microorganisms [J]. Curr OpinBiotechnol,2000,11(3):255-261
    [91] Cunningham F.X., Jr., Pogson B., Sun Z., et al. Functional analysis of the beta andepsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control ofcyclic carotenoid formation [J]. Plant Cell,1996,8(9):1613-1626
    [92] Cunningham F.X., Gantt E. One ring or two? Determination of ring number incarotenoids by lycopene epsilon-cyclases [J]. Proc Natl Acad Sci U S A,2001,98(5):2905-2910
    [93] Hirschberg J., Cohen M., Harker M., et al. Molecular genetics of the carotenoidbiosynthesis pathway in plants and algae [J]. Pure Appl Chem,1997,69(10):2151-2158
    [94] Schmidt-Dannert C., Umeno D., Arnold F.H. Molecular breeding of carotenoidbiosynthetic pathways [J]. Nat Biotechnol,2000,18(7):750-753
    [95] Lee P.C., Momen A.Z., Mijts B.N., et al. Biosynthesis of structurally novel carotenoidsin Escherichia coli [J]. Chem Biol,2003,10(5):453-462
    [96] Al-Babili S., Beyer P. Golden Rice--five years on the road--five years to go?[J]. TrendsPlant Sci,2005,10(12):565-573
    [97] Paine J.A., Shipton C.A., Chaggar S., et al. Improving the nutritional value of GoldenRice through increased pro-vitamin A content [J]. Nat Biotechnol,2005,23(4):482-487
    [98] Kim Y.S., Lee J.H., Kim N.H., et al. Increase of lycopene production by supplementingauxiliary carbon sources in metabolically engineered Escherichia coli [J]. ApplMicrobiol Biotechnol,2011,90(2):489-497
    [99] Ye V.M., Bhatia S.K. Pathway engineering strategies for production of beneficialcarotenoids in microbial hosts [J]. Biotechnol Lett,2012,34(8):1405-1414
    [100] Misawa N. Pathway engineering for functional isoprenoids [J]. Curr Opin Biotechnol,2011,22(5):627-633
    [101] Giuliano G., Tavazza R., Diretto G., et al. Metabolic engineering of carotenoidbiosynthesis in plants [J]. Trends Biotechnol,2008,26(3):139-145
    [102] Armstrong G.A. Genetics of eubacterial carotenoid biosynthesis: a colorful tale [J].Annu Rev Microbiol,1997,51:629-659
    [103] Sandmann G. Carotenoid biosynthesis in microorganisms and plants [J]. Eur JBiochem,1994,223(1):7-24
    [104] Armstrong G.A., Hearst J.E. Carotenoids2: Genetics and molecular biology ofcarotenoid pigment biosynthesis [J]. FASEB J,1996,10(2):228-237
    [105] Verdoes J.C., Misawa N., van Ooyen A.J. Cloning and characterization of theastaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomycesdendrorhous [J]. Biotechnol Bioeng,1999,63(6):750-755
    [106] Zhu X.F., Suzuki K., Okada K., et al. Cloning and functional expression of a novelgeranylgeranyl pyrophosphate synthase gene from Arabidopsis thaliana inEscherichia coli [J]. Plant Cell Physiol,1997,38(3):357-361
    [107] Kajiwara S., Kakizono T., Saito T., et al. Isolation and functional identification of anovel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, andastaxanthin synthesis in Escherichia coli [J]. Plant Mol Biol,1995,29(2):343-352
    [108] Pecker I., Gabbay R., Cunningham F.X., Jr., et al. Cloning and characterization of thecDNA for lycopene beta-cyclase from tomato reveals decrease in its expression duringfruit ripening [J]. Plant Mol Biol,1996,30(4):807-819
    [109] Martin V.J., Pitera D.J., Withers S.T., et al. Engineering a mevalonate pathway inEscherichia coli for production of terpenoids [J]. Nat Biotechnol,2003,21(7):796-802
    [110] Sandmann G. Combinatorial biosynthesis of carotenoids in a heterologous host: apowerful approach for the biosynthesis of novel structures [J]. Chembiochem,2002,3(7):629-635
    [111] Raisig A., Sandmann G. Functional properties of diapophytoene and relateddesaturases of C30and C40carotenoid biosynthetic pathways [J]. Biochim BiophysActa,2001,1533(2):164-170
    [112] Sandmann G., Misawa N. New functional assignment of the carotenogenic genes crtBand crtE with constructs of these genes from Erwinia species [J]. FEMS MicrobiolLett,1992,90(3):253-257
    [113] Linden H., Misawa N., Chamovitz D., et al. Functional complementation inEscherichia coli of different phytoene desaturase genes and analysis of accumulatedcarotenes [J]. Z Naturforsch C,1991,46(11-12):1045-1051
    [114] Hausmann A., Sandmann G. A single five-step desaturase is involved in the carotenoidbiosynthesis pathway to beta-carotene and torulene in Neurospora crassa [J]. FungalGenet Biol,2000,30(2):147-153
    [115] Linden H., Vioque A., Sandmann G. Isolation of a carotenoid biosynthesis genecoding for-carotene desaturase from Anabaena PCC7120by heterologouscomplementation [J]. FEMS Microbiol Lett,1993,106(1):99-104
    [116] Breitenbach J., Vioque A., Sandmann G. Gene sll0033from Synechocystis6803encodes a carotene isomerase involved in the biosynthesis of all-E lycopene [J]. ZNaturforsch C,2001,56(9-10):915-917
    [117] Masamoto K., Wada H., Kaneko T., et al. Identification of a gene required forcis-to-trans carotene isomerization in carotenogenesis of the cyanobacteriumSynechocystis sp. PCC6803[J]. Plant Cell Physiol,2001,42(12):1398-1402
    [118] Albrecht M., Takaichi S., Misawa N., et al. Synthesis of atypical cyclic and acyclichydroxy carotenoids in Escherichia coli transformants [J]. J Biotechnol,1997,58(3):177-185
    [119] Ruther A., Misawa N., Boger P., et al. Production of zeaxanthin in Escherichia colitransformed with different carotenogenic plasmids [J]. Appl Microbiol Biotechnol,1997,48(2):162-167
    [120] Misawa N., Satomi Y., Kondo K., et al. Structure and functional analysis of a marinebacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathwayproposed at the gene level [J]. J Bacteriol,1995,177(22):6575-6584
    [121] Fernandez-Gonzalez B., Sandmann G., Vioque A. A new type of asymmetricallyacting beta-carotene ketolase is required for the synthesis of echinenone in thecyanobacterium Synechocystis sp. PCC6803[J]. J Biol Chem,1997,272(15):9728-9733
    [122] Sandmann G., Woods W.S., Tuveson R.W. Identification of carotenoids in Erwiniaherbicola and in a transformed Escherichia coli strain [J]. FEMS Microbiol Lett,1990,71(1-2):77-82
    [123] Albrecht M., Misawa N., Sandmann G. Metabolic engineering of the terpenoidbiosynthetic pathway of Escherichia coli for production of the carotenoids-caroteneand zeaxanthin [J]. Biotechnol Lett,1999,21(9):791-795
    [124] Farmer W.R., Liao J.C. Precursor balancing for metabolic engineering of lycopeneproduction in Escherichia coli [J]. Biotechnol Prog,2001,17(1):57-61
    [125] Dunal M.F. Extrait d'un mémoire sur les algues qui colorent en rouge certains eauxdes marais salants méditerranéens [J]. Ann Sc Nat Bot2Sér,1838,9:172
    [126] Teodoresco E.C. Organisation et développement du Dunaliella, nouveau genre deVolvocacée-Polyblepharidée [J]. Beihefte zum Botanischen Centralblatt,1905,18(Abt.1):215-232
    [127] Oren A. A hundred years of Dunaliella research:1905-2005[J]. Saline Systems,2005,1:2
    [128] Ben-Amotz A., Avron M. Glycerol and-carotene metabolism in the halotolerant algaDunaliella: a model system for biosolar energy conversion [J]. Trends Biochem Sci,1981,6:297-299
    [129] Chen H., Jiang J.G. Osmotic responses of Dunaliella to the changes of salinity [J]. JCell Physiol,2009,219(2):251-258
    [130] Ben-Amotz A., Katz A., Avron M. Accumulation of-carotene in halotolerant alge:purification and characterization of-carotene-rich globules from Dunaliella bardawil(Chlorophyceae)[J]. J Phycol,1982,18(4):529-537
    [131] Borowitzka M.A. Commercial production of microalgae: ponds, tanks, tubes andfermenters [J]. J Biotechnol,1999,70(1–3):313-321
    [132] Johnson E.A., Schroeder W.A. Microbial carotenoids [J]. Adv Biochem EngBiotechnol,1996,53:119-178
    [133] Raja R., Hemaiswarya S., Rengasamy R. Exploitation of Dunaliella for beta-caroteneproduction [J]. Appl Microbiol Biotechnol,2007,74(3):517-523
    [134] Ramos A.A., Polle J., Tran D., et al. The unicellular green alga Dunaliella salina Teod.as a model for abiotic stress tolerance: genetic advances and future perspectives [J].Algae,2011,26(1):3-20
    [135] Aasen A.J., Eimhjellen K.E., Liaaen-Jensen S. An extreme source of beta-carotene [J].Acta Chem Scand,1969,23(7):2544-2545
    [136] Ramos A.A., Marques A.R., Rodrigues M., et al. Molecular and functionalcharacterization of a cDNA encoding4-hydroxy-3-methylbut-2-enyl diphosphatereductase from Dunaliella salina [J]. J Plant Physiol,2009,166(9):968-977
    [137] Bartley G.E., Scolnik P.A., Giuliano G. Molecular biology of carotenoid biosynthesisin plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1994,45:287-301
    [138] Vidhyavathi R., Venkatachalam L., Sarada R., et al. Regulation of carotenoidbiosynthetic genes expression and carotenoid accumulation in the green algaHaematococcus pluvialis under nutrient stress conditions [J]. J Exp Bot,2008,59(6):1409-1418
    [139] Patrick L. Beta-carotene: the controversy continues [J]. Altern Med Rev,2000,5(6):530-545
    [140] Jimenez C., Pick U. Differential reactivity of-carotene isomers from Dunaliellabardawil toward oxygen radicals [J]. Plant Physiol,1993,101(2):385-390
    [141] Liu X., Osawa T. Cis astaxanthin and especially9-cis astaxanthin exhibits a higherantioxidant activity in vitro compared to the all-trans isomer [J]. Biochem BiophysRes Commun,2007,357(1):187-193
    [142] Levin G., Mokady S. Antioxidant activity of9-cis compared to all-trans beta-carotenein vitro [J]. Free Radic Biol Med,1994,17(1):77-82
    [143] Yan Y., Zhu Y.H., Jiang J.G., et al. Cloning and sequence analysis of the phytoenesynthase gene from a unicellular chlorophyte, Dunaliella salina [J]. J Agric FoodChem,2005,53(5):1466-1469
    [144] Zhu Y.H., Jiang J.G., Yan Y., et al. Isolation and characterization of phytoenedesaturase cDNA involved in the beta-carotene biosynthetic pathway in Dunaliellasalina [J]. J Agric Food Chem,2005,53(14):5593-5597
    [145] Ye Z.W., Jiang J.G. Analysis of an essential carotenogenic enzyme: zeta-carotenedesaturase from unicellular alga Dunaliella salina [J]. J Agric Food Chem,2010,58(21):11477-11482
    [146] Ye Z.W., Liu G.N., Jiang J.G. Structural and phylogenetic analysis of a novel-carotene desaturase from Dunaliella bardawil, a unicellular alga that accumulateslarge amounts of-carotene [J]. Limnol Oceanogr,2011,56(1):133-138
    [147] Zhu Y.H., Jiang J.G., Chen Q. Characterization of cDNA of lycopene beta-cyclaseresponsible for a high level of beta-carotene accumulation in Dunaliella salina [J].Biochem Cell Biol,2008,86(3):285-292
    [148] Ramos A., Coesel S., Marques A., et al. Isolation and characterization of astress-inducible Dunaliella salina Lcy-beta gene encoding a functional lycopenebeta-cyclase [J]. Appl Microbiol Biotechnol,2008,79(5):819-828
    [149] Elstner E.F., Wagner G.A., Schütz W. Activated oxygen in green plants in relation onstress situations [J]. Curr Top Plant Biochem Physiol,1988,7:159-187
    [150] Hideg é. Environmental UV radiation: impact on ecosystems and human health andpredictive models [M]. Netherlands: Springer,2006:147-157
    [151] Nikookar K., Moradshahi A., Hosseini L. Physiological responses of Dunaliellasalina and Dunaliella tertiolecta to copper toxicity [J]. Biomol Eng,2005,22(4):141-146
    [152] Lers A., Biener Y., Zamir A. Photoinduction of massive beta-carotene accumulationby the alga Dunaliella bardawil: kinetics and dependence on gene activation [J]. PlantPhysiol,1990,93(2):389-395
    [153] Shaish V., Avron M., Pick U., et al. Are active oxygen species involved in induction of-carotene in Dunaliella bardawil?[J]. Planta,1993,190(3):363-368
    [154] Rabbani S., Beyer P., Lintig J., et al. Induced beta-carotene synthesis driven bytriacylglycerol deposition in the unicellular alga Dunaliella bardawil [J]. Plant Physiol,1998,116(4):1239-1248
    [155] Sanchez-Estudillo L., Freile-Pelegrin Y., Rivera-Madrid R., et al. Regulation of twophotosynthetic pigment-related genes during stress-induced pigment formation in thegreen alga, Dunaliella salina [J]. Biotechnol Lett,2006,28(11):787-791
    [156] Katz A., Jimenez C., Pick U. Isolation and characterization of a protein associatedwith carotene globules in the alga Dunaliella bardawil [J]. Plant Physiol,1995,108(4):1657-1664
    [157] Ben-Amotz A., Lers A., Avron M. Stereoisomers of beta-carotene and phytoene in thealga Dunaliella bardawil [J]. Plant Physiol,1988,86(4):1286-1291
    [158] Ben-Amotz A. Effect of low temperature on the stereoisomer composition of-carotene in the halotolerant alga, Dunaliella bardawil (Chlorophyta)[J]. J Phycol,1996,32(2):272-275
    [159] Ajikumar P.K., Xiao W.H., Tyo K.E., et al. Isoprenoid pathway optimization for Taxolprecursor overproduction in Escherichia coli [J]. Science,2010,330(6000):70-74
    [160] Yoon S.H., Lee S.H., Das A., et al. Combinatorial expression of bacterial wholemevalonate pathway for the production of beta-carotene in E. coli [J]. J Biotechnol,2009,140(3-4):218-226
    [161] Misawa N., Shimada H. Metabolic engineering for the production of carotenoids innon-carotenogenic bacteria and yeasts [J]. J Biotechnol,1997,59(3):169-181
    [162] Verwaal R., Wang J., Meijnen J.P., et al. High-level production of beta-carotene inSaccharomyces cerevisiae by successive transformation with carotenogenic genesfrom Xanthophyllomyces dendrorhous [J]. Appl Environ Microbiol,2007,73(13):4342-4350
    [163] Araya-Garay J.M., Feijoo-Siota L., Rosa-dos-Santos F., et al. Construction of newPichia pastoris X-33strains for production of lycopene and beta-carotene [J]. ApplMicrobiol Biotechnol,2012,93(6):2483-2492
    [164] Beuttler H., Hoffmann J., Jeske M., et al. Biosynthesis of zeaxanthin in recombinantPseudomonas putida [J]. Appl Microbiol Biotechnol,2011,89(4):1137-1147
    [165] Wang C.W., Oh M.K., Liao J.C. Engineered isoprenoid pathway enhances astaxanthinproduction in Escherichia coli [J]. Biotechnol Bioeng,1999,62(2):235-241
    [166] Leon R., Vila M., Hernanz D., et al. Production of phytoene by herbicide-treatedmicroalgae Dunaliella bardawil in two-phase systems [J]. Biotechnol Bioeng,2005,92(6):695-701
    [167] Hejazi M.A., Holwerda E., Wijffels R.H. Milking microalga Dunaliella salina forbeta-carotene production in two-phase bioreactors [J]. Biotechnol Bioeng,2004,85(5):475-481
    [168] Geng D., Wang Y., Wang P., et al. Stable expression of hepatitis B surface antigengene in Dunaliella salina (Chlorophyta)[J]. J Appl Phycol,2003,15(6):451-456
    [169] Tan C., Qin S., Zhang Q., et al. Establishment of a micro-particle bombardmenttransformation system for Dunaliella salina [J]. J Microbiol,2005,43(4):361-365
    [170] Bohm F., Edge R., Truscott T.G. Interactions of dietary carotenoids with singletoxygen (1O2) and free radicals: potential effects for human health [J]. Acta BiochimPol,2012,59(1):27-30
    [171] Sindhu E.R., Preethi K.C., Kuttan R. Antioxidant activity of carotenoid lutein in vitroand in vivo [J]. Indian J Exp Biol,2010,48(8):843-848
    [172] Quilliot D., Forbes A., Dubois F., et al. Carotenoid deficiency in chronic pancreatitis:the effect of an increase in tomato consumption [J]. Eur J Clin Nutr,2011,65(2):262-268
    [173] Bondi A., Sklan D. Vitamin A and carotene in animal nutrition [J]. Prog Food Nutr Sci,1984,8(1-2):165-191
    [174] Lamers P.P., Janssen M., De Vos R.C., et al. Exploring and exploiting carotenoidaccumulation in Dunaliella salina for cell-factory applications [J]. Trends Biotechnol,2008,26(11):631-638
    [175] Telenius H., Carter N.P., Bebb C.E., et al. Degenerate oligonucleotide-primed PCR:general amplification of target DNA by a single degenerate primer [J]. Genomics,1992,13(3):718-725
    [176] White T.J., Arnheim N., Erlich H.A. The polymerase chain reaction [J]. Trends Genet,1989,5(6):185-189
    [177] Frohman M.A., Dush M.K., Martin G.R. Rapid production of full-length cDNAs fromrare transcripts: amplification using a single gene-specific oligonucleotide primer [J].Proc Natl Acad Sci U S A,1988,85(23):8998-9002
    [178] Zhang Y., Frohman M.A. Using rapid amplification of cDNA ends (RACE) to obtainfull-length cDNAs [J]. Methods Mol Biol,1997,69:61-87
    [179] Schaefer B.C. Revolutions in rapid amplification of cDNA ends: new strategies forpolymerase chain reaction cloning of full-length cDNA ends [J]. Anal Biochem,1995,227(2):255-273
    [180] Higuchi R., Krummel B., Saiki R.K. A general method of in vitro preparation andspecific mutagenesis of DNA fragments: study of protein and DNA interactions [J].Nucleic Acids Res,1988,16(15):7351-7367
    [181] Ho S.N., Hunt H.D., Horton R.M., et al. Site-directed mutagenesis by overlapextension using the polymerase chain reaction [J]. Gene,1989,77(1):51-59
    [182] Ben-Amotz A., Avron M. The biotechnology of cultivating the halotolerant algaDunaliella [J]. Trends Biotechnol,1990,8:121-126
    [183] Sambrook J., Russell D.W. Molecular cloning: a laboratory manual [M]. Third ed.North Carolina: Cold Spring Harbor Laboratory Press,2001:1.112-1.115
    [184] Marchuk D., Drumm M., Saulino A., et al. Construction of T-vectors, a rapid andgeneral system for direct cloning of unmodified PCR products [J]. Nucleic Acids Res,1991,19(5):1154
    [185] Armstrong G.A. Eubacteria show their true colors: genetics of carotenoid pigmentbiosynthesis from microbes to plants [J]. J Bacteriol,1994,176(16):4795-4802
    [186] Lindgren L.O., Stalberg K.G., Hoglund A.S. Seed-specific overexpression of anendogenous Arabidopsis phytoene synthase gene results in delayed germination andincreased levels of carotenoids, chlorophyll, and abscisic acid [J]. Plant Physiol,2003,132(2):779-785
    [187] Li F., Tsfadia O., Wurtzel E.T. The phytoene synthase gene family in the Grasses:subfunctionalization provides tissue-specific control of carotenogenesis [J]. PlantSignal Behav,2009,4(3):208-211
    [188] Li F., Vallabhaneni R., Wurtzel E.T. PSY3, a new member of the phytoene synthasegene family conserved in the Poaceae and regulator of abiotic stress-induced rootcarotenogenesis [J]. Plant Physiol,2008,146(3):1333-1345
    [189] Tran D., Haven J., Qiu W.G., et al. An update on carotenoid biosynthesis in algae:phylogenetic evidence for the existence of two classes of phytoene synthase [J]. Planta,2009,229(3):723-729
    [190] Lohr M., Im C.S., Grossman A.R. Genome-based examination of chlorophyll andcarotenoid biosynthesis in Chlamydomonas reinhardtii [J]. Plant Physiol,2005,138(1):490-515
    [191] Steinbrenner J., Linden H. Regulation of two carotenoid biosynthesis genes coding forphytoene synthase and carotenoid hydroxylase during stress-induced astaxanthinformation in the green alga Haematococcus pluvialis [J]. Plant Physiol,2001,125(2):810-817
    [192] Sandmann G. Evolution of carotene desaturation: the complication of a simplepathway [J]. Arch Biochem Biophys,2009,483(2):169-174
    [193] Klassen J.L. Phylogenetic and evolutionary patterns in microbial carotenoidbiosynthesis are revealed by comparative genomics [J]. PLoS One,2010,5(6): e11257
    [194] Cazzonelli C.I., Pogson B.J. Source to sink: regulation of carotenoid biosynthesis inplants [J]. Trends Plant Sci,2010,15(5):266-274
    [195] Zhu C., Bai C., Sanahuja G., et al. The regulation of carotenoid pigmentation inflowers [J]. Arch Biochem Biophys,2010,504(1):132-141
    [196] Zdobnov E.M., Apweiler R. InterProScan--an integration platform for thesignature-recognition methods in InterPro [J]. Bioinformatics,2001,17(9):847-848
    [197] Mulder N., Apweiler R. InterPro and InterProScan: tools for protein sequenceclassification and comparison [J]. Methods Mol Biol,2007,396:59-70
    [198] Goujon M., McWilliam H., Li W., et al. A new bioinformatics analysis toolsframework at EMBL-EBI [J]. Nucleic Acids Res,2010,38(Web Server issue):W695-699
    [199] von Mering C., Jensen L.J., Snel B., et al. STRING: known and predictedprotein-protein associations, integrated and transferred across organisms [J]. NucleicAcids Res,2005,33(Database issue): D433-437
    [200] von Mering C., Jensen L.J., Kuhn M., et al. STRING7--recent developments in theintegration and prediction of protein interactions [J]. Nucleic Acids Res,2007,35(Database issue): D358-362
    [201] Kumar S., Blaxter M.L. Comparing de novo assemblers for454transcriptome data [J].BMC Genomics,2010,11:571
    [202] Feldmeyer B., Wheat C.W., Krezdorn N., et al. Short read Illumina data for the denovo assembly of a non-model snail species transcriptome (Radix balthica,Basommatophora, Pulmonata), and a comparison of assembler performance [J]. BMCGenomics,2011,12:317
    [203] Huang Y., Zhang L. Rapid and sensitive dot-matrix methods for genome analysis [J].Bioinformatics,2004,20(4):460-466
    [204] Gasteiger E., Hoogland C., Gattiker A., et al. The proteomics protocols handbook [M].New York: Humana Press,2005:571-607
    [205] Mount D.W. Using the Basic Local Alignment Search Tool (BLAST)[J]. CSH Protoc,2007,2007: pdb top17
    [206] Altschul S.F., Gish W., Miller W., et al. Basic local alignment search tool [J]. J MolBiol,1990,215(3):403-410
    [207] Tamura K., Peterson D., Peterson N., et al. MEGA5: molecular evolutionary geneticsanalysis using maximum likelihood, evolutionary distance, and maximum parsimonymethods [J]. Mol Biol Evol,2011,28(10):2731-2739
    [208] Klee E.W., Sosa C.P. Computational classification of classically secreted proteins [J].Drug Discov Today,2007,12(5-6):234-240
    [209] Qian W., Zhang J. Protein subcellular relocalization in the evolution of yeast singletonand duplicate genes [J]. Genome Biol Evol,2009,1:198-204
    [210] Horton P., Park K.J., Obayashi T., et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Res,2007,35(Web Server issue): W585-587
    [211] McGuffin L.J., Bryson K., Jones D.T. The PSIPRED protein structure predictionserver [J]. Bioinformatics,2000,16(4):404-405
    [212] Sonnhammer E.L., von Heijne G., Krogh A. A hidden Markov model for predictingtransmembrane helices in protein sequences [J]. Proc Int Conf Intell Syst Mol Biol,1998,6:175-182
    [213] Petersen T.N., Brunak S., von Heijne G., et al. SignalP4.0: discriminating signalpeptides from transmembrane regions [J]. Nat Methods,2011,8(10):785-786
    [214] Thangapandian S., John S., Lee Y., et al. Dynamic structure-based pharmacophoremodel development: a new and effective addition in the histone deacetylase8(HDAC8) inhibitor discovery [J]. Int J Mol Sci,2011,12(12):9440-9462
    [215] Mohamed N.A., Mohamed R., Chong T.T. Homology Modeling of Coagulase inStaphylococcus aureus [J]. Bioinformation,2012,8(9):412-414
    [216] Kleywegt G.J., Jones T.A. Phi/psi-chology: Ramachandran revisited [J]. Structure,1996,4(12):1395-1400
    [217] Hooft R.W., Sander C., Vriend G. Objectively judging the quality of a proteinstructure from a Ramachandran plot [J]. Comput Appl Biosci,1997,13(4):425-430
    [218] Montero L.M., Salinas J., Matassi G., et al. Gene distribution and isochoreorganization in the nuclear genome of plants [J]. Nucleic Acids Res,1990,18(7):1859-1867
    [219] Matassi G., Montero L.M., Salinas J., et al. The isochore organization and thecompositional distribution of homologous coding sequences in the nuclear genome ofplants [J]. Nucleic Acids Res,1989,17(13):5273-5290
    [220] Medigue C., Rouxel T., Vigier P., et al. Evidence for horizontal gene transfer inEscherichia coli speciation [J]. J Mol Biol,1991,222(4):851-856
    [221] Chiapello H., Lisacek F., Caboche M., et al. Codon usage and gene function arerelated in sequences of Arabidopsis thaliana [J]. Gene,1998,209(1-2): GC1-GC38
    [222] Li F., Vallabhaneni R., Yu J., et al. The maize phytoene synthase gene family:overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermalstress tolerance [J]. Plant Physiol,2008,147(3):1334-1346
    [223] Welsch R., Wust F., Bar C., et al. A third phytoene synthase is devoted to abioticstress-induced abscisic acid formation in rice and defines functional diversification ofphytoene synthase genes [J]. Plant Physiol,2008,147(1):367-380
    [224] Chaudhary N., Nijhawan A., Khurana J.P., et al. Carotenoid biosynthesis genes in rice:structural analysis, genome-wide expression profiling and phylogenetic analysis [J].Mol Genet Genomics,2010,283(1):13-33
    [225] Demmig-Adams B., Adams Iii W.W. The role of xanthophyll cycle carotenoids in theprotection of photosynthesis [J]. Trends Plant Sci,1996,1(1):21-26
    [226] Cunningham F.X. Regulation of carotenoid synthesis and accumulation in plants [J].Pure Appl Chem,2002,74(8):1409-1417
    [227] Niyogi K.K. Photoprotection revisited: genetic and molecular approaches [J]. AnnuRev Plant Physiol Plant Mol Biol,1999,50:333-359
    [228] Demmig-Adams B., Adams W.W.,3rd. Antioxidants in photosynthesis and humannutrition [J]. Science,2002,298(5601):2149-2153
    [229] Davison P.A., Hunter C.N., Horton P. Overexpression of beta-carotene hydroxylaseenhances stress tolerance in Arabidopsis [J]. Nature,2002,418(6894):203-206
    [230] Kleinig H., G. B. Carotenoid biosynthesis in higher plants [J]. Physiol Veg,1982,20:735-755
    [231] Camara B. Plant phytoene synthase complex: component enzymes, immunology, andbiogenesis [J]. Methods Enzymol,1993,214:352-365
    [232] Candau R., Bejarano E.R., Cerda-Olmedo E. In vivo channeling of substrates in anenzyme aggregate for beta-carotene biosynthesis [J]. Proc Natl Acad Sci U S A,1991,88(11):4936-4940
    [233] Nishida Y., Adachi K., Kasai H., et al. Elucidation of a carotenoid biosynthesis genecluster encoding a novel enzyme,2,2'-beta-hydroxylase, from Brevundimonas sp.strain SD212and combinatorial biosynthesis of new or rare xanthophylls [J]. ApplEnviron Microbiol,2005,71(8):4286-4296
    [234] Chandler L.A., Schwartz S.J. Isomerization and losses of trans-carotene in sweetpotatoes as affected by processing treatments [J]. J Agric Food Chem,1988,36:129-133
    [235] Khangura B.S., Gill K.S., Phul P.S. Combining ability analysis of beta-carotene, totalcarotenoids and other grain characteristics in pearl millet [J]. Theor Appl Genet,1980,56:91-96
    [236] Britton G., Liaaen-Jensen S., Pfander H. Carotenoids hand book [M]. Basel,Switzerland: Birkh user,2004
    [237] Kim S.W., Kim J.B., Ryu J.M., et al. High-level production of lycopene inmetabolically engineered E. coli [J]. Process Biochem,2009,44(8):899-905
    [238] Alper H., Miyaoku K., Stephanopoulos G. Construction of lycopene-overproducing E.coli strains by combining systematic and combinatorial gene knockout targets [J]. NatBiotechnol,2005,23(5):612-616
    [239] Schwieter U., Englert G., Rigassi N., et al. Physical organic methods in carotenoidresearch [J]. Pure Appl Chem,1969,20(4):365-420
    [240] Takaichi S., Shimada K. Characterization of carotenoids in photosynthetic bacteria [J].Methods Enzymol,1992,213:374-385
    [241] Rodriguez-Amaya D.B. A guide to carotenoid analysis in foods [M]. United States ofAmerica, Washington, D. C.: ILSI,2001
    [242] Yu Q., Schaub P., Ghisla S., et al. The lycopene cyclase CrtY from Pantoea ananatis(formerly Erwinia uredovora) catalyzes an FADred-dependent non-redox reaction [J]. JBiol Chem,2010,285(16):12109-12120
    [243] Bouvier F., d'Harlingue A., Camara B. Molecular analysis of carotenoid cyclaseinhibition [J]. Arch Biochem Biophys,1997,346(1):53-64
    [244] Mialoundama A.S., Heintz D., Jadid N., et al. Characterization of plant carotenoidcyclases as members of the flavoprotein family functioning with no net redox change[J]. Plant Physiol,2010,153(3):970-979
    [245] Kim S.W., Kim J.B., Jung W.H., et al. Over-production of beta-carotene frommetabolically engineered Escherichia coli [J]. Biotechnol Lett,2006,28(12):897-904
    [246] Sandmann G., Albrecht M., Schnurr G., et al. The biotechnological potential anddesign of novel carotenoids by gene combination in Escherichia coli [J]. TrendsBiotechnol,1999,17(6):233-237
    [247] Kim J., Kong M., Lee S., et al. Carbon sources-dependent carotenoid production inmetabolically engineered Escherichia coli [J]. World J Microbiol Biotechnol,2010,26(12):2231-2239
    [248] Lee P.C., Mijts B.N., Schmidt-Dannert C. Investigation of factors influencingproduction of the monocyclic carotenoid torulene in metabolically engineeredEscherichia coli [J]. Appl Microbiol Biotechnol,2004,65(5):538-546
    [249] Yoon S.H., Park H.M., Kim J.E., et al. Increased beta-carotene production inrecombinant Escherichia coli harboring an engineered isoprenoid precursor pathwaywith mevalonate addition [J]. Biotechnol Prog,2007,23(3):599-605
    [250] Guzman L.M., Belin D., Carson M.J., et al. Tight regulation, modulation, andhigh-level expression by vectors containing the arabinose PBAD promoter [J]. JBacteriol,1995,177(14):4121-4130
    [251] Montgomery D.C. Design and analysis of experiments: response surface method anddesigns [M]. United States of America, New Jersey: John Wiley and Sons,2005
    [252] Novick A. Growth of bacteria [J]. Annu Rev Microbiol,1955,9:97-110
    [253] Zwietering M.H., Jongenburger I., Rombouts F.M., et al. Modeling of the bacterialgrowth curve [J]. Appl Environ Microbiol,1990,56(6):1875-1881
    [254] Skarstad K., Steen H.B., Boye E. Cell cycle parameters of slowly growingEscherichia coli B/r studied by flow cytometry [J]. J Bacteriol,1983,154(2):656-662
    [255] Giovannucci E. A review of epidemiologic studies of tomatoes, lycopene, and prostatecancer [J]. Exp Biol Med (Maywood),2002,227(10):852-859
    [256] Bignotto L., Rocha J., Sepodes B., et al. Anti-inflammatory effect of lycopene oncarrageenan-induced paw oedema and hepatic ischaemia-reperfusion in the rat [J]. BrJ Nutr,2009,102(1):126-133
    [257] Erdman J.W., Jr., Ford N.A., Lindshield B.L. Are the health attributes of lycopenerelated to its antioxidant function?[J]. Arch Biochem Biophys,2009,483(2):229-235
    [258] Bramley P.M. Is lycopene beneficial to human health?[J]. Phytochemistry,2000,54(3):233-236
    [259] Ansari M.S., Gupta N.P. Lycopene: a novel drug therapy in hormone refractorymetastatic prostate cancer [J]. Urol Oncol,2004,22(5):415-420
    [260] Sadler G., Davis J., Dezman D. Rapid extraction of lycopene and-carotene fromreconstituted tomato paste and pink grapefruit homogenates [J]. J Food Sci,1990,55(5):1460-1461
    [261] Baysal T., Ersus S., Starmans D.A. Supercritical CO2extraction of-carotene andlycopene from tomato paste waste [J]. J Agric Food Chem,2000,48(11):5507-5511
    [262] Choudhari S.M., Ananthanarayan L. Enzyme aided extraction of lycopene fromtomato tissues [J]. Food Chem,2007,102(1):77-81
    [263] Bernhard K., Mayer H. Recent advances in the synthesis of achiral carotenoids [J].Pure Appl Chem,1991,63(1):35-44
    [264] Kim S.W., Keasling J.D. Metabolic engineering of the nonmevalonate isopentenyldiphosphate synthesis pathway in Escherichia coli enhances lycopene production [J].Biotechnol Bioeng,2001,72(4):408-415
    [265] Alper H., Miyaoku K., Stephanopoulos G. Characterization oflycopene-overproducing E. coli strains in high cell density fermentations [J]. ApplMicrobiol Biotechnol,2006,72(5):968-974
    [266] Mantzouridou F., Tsimidou M.Z. Lycopene formation in Blakeslea trispora. Chemicalaspects of a bioprocess [J]. Trends Food Sci Tech,2008,19(7):363-371
    [267] Manchand P.S., Ruegg R., Schwieter U., et al. Carotenoids and related compounds.Part XI. Syntheses of-carotene and-carotene [J]. J Chem Soc,1965:2019-2026
    [268] Harada J., Nagashima K.V., Takaichi S., et al. Phytoene desaturase, CrtI, of the purplephotosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene andlycopene [J]. Plant Cell Physiol,2001,42(10):1112-1118
    [269] Tzouganaki Z.D., Atta-Politou J., Koupparis M.A. Development and validation ofliquid chromatographic method for the determination of lycopene in plasma [J]. AnalChim Acta,2002,467(1-2):115-123
    [270] Kuwabara T., Hasegawa M., Kawano M., et al. Characterization of violaxanthinde-epoxidase purified in the presence of Tween20: effects of dithiothreitol andpepstatin A [J]. Plant Cell Physiol,1999,40(11):1119-1126
    [271] Takaichi S. Characterization of carotenes in a combination of a C18HPLC columnwith isocratic elution and absorption spectra with a photodiode-array detector [J].Photosynth Res,2000,65(1):93-99
    [272] Chen Y., Li F., Wurtzel E.T. Isolation and characterization of the Z-ISO gene encodinga missing component of carotenoid biosynthesis in plants [J]. Plant Physiol,2010,153(1):66-79
    [273] Harashima K., Nakada H. Carotenoids and ubiquinone in aerobically grown cells ofan aerobic photosynthetic bacterium, Erythrobacter species OCh114[J]. Agric BiolChem,1983,47(5):1057-1063
    [274] Bartley G.E., Scolnik P.A., Beyer P. Two Arabidopsis thaliana carotene desaturases,phytoene desaturase and zeta-carotene desaturase, expressed in Escherichia coli,catalyze a poly-cis pathway to yield pro-lycopene [J]. Eur J Biochem,1999,259(1-2):396-403
    [275] Mounter L.A. Studies of the effects of radiation on enzymes. I. Inactivation ofchymotrypsin and chymotrypsinogen by x-rays [J]. Radiat Res,1960,12:487-494
    [276] Kempner E.S., Whittaker J.W., Miller J.H. Radiation inactivation of galactose oxidase,a monomeric enzyme with a stable free radical [J]. Protein Sci,2010,19(2):236-241
    [277] Breitenbach J., Sandmann G.-Carotene cis isomers as products and substrates in theplant poly-cis carotenoid biosynthetic pathway to lycopene [J]. Planta,2005,220(5):785-793
    [278] Yu Q., Ghisla S., Hirschberg J., et al. Plant carotene cis-trans isomerase CRTISO: anew member of the FADRED-dependent flavoproteins catalyzing non-redox reactions[J]. J Biol Chem,2011,286(10):8666-8676
    [279] Lerche W. Untersuchungen über Entwicklung und Fortpflanzung in der GattungDunaliella [J]. Archiv für Protistenkunde,1937,88:236-268
    [280] Massyuk N.P. New taxa of the genus Dunaliella Teod [J]. I Ukr Bot Zhur,1993,30:175
    [281] Naustvoll L.J. Prey size spectra in naked heterotrophic dinoflagellates [J]. Phycologia,2000,39(5):448-455
    [282] Borowitzka M.J., Siva C.J. The taxonomy of the genus Dunaliella (Chlorophyta,Dunaliellales) with emphasis on the marine and halophilic species [J]. J Appl Phycol,2007,19:567-590
    [283] Afsharzadeh S., Nejadsatari T., Rahiminejad M.R., et al. Study of algal flora inZayanderood river [J]. Iranian J Biol,2003,14:32-45
    [284] Farhat N., Rabhi M., Falleh H., et al. Optimization of salt concentrations for a highercarotenoid production in Dunaliella salina (Chlorophyceae)[J]. J Phycol,2011,47(5):1072-1077
    [285] Papenfuss G.F. A history, catalogue, and bibliography of the Red Sea benthic algae [J].Israel J Bot,1968,17:1-118
    [286] Alvárez Cobelas M., Gallardo T. Catálogo de las algas continentales espa olas. IV.Chlorophyceae Wille in Warming1884. Prasinophyceae T. Christensen ex Silva1980[J]. Acta Bot Malacitana,1986,11:17-38
    [287] Scholz B., Liebezeit G. Screening for competition effects and allelochemicals inbenthic marine diatoms and cyanobacteria isolated from an intertidal flat (southernNorth Sea)[J]. Phycologia,2012,51(4):432-450
    [288] Aboal M. Aportación al conocimiento de las algas epicontinentales del S.E. de Espa a.VII. Clorofíceas (Chlorophyceae Wille in Warming1884)[J]. Candollea,1988,43:521-548
    [289] González M.A., Gómez P.I., Montoya R. Comparison of PCR-RFLP analysis of theITS region with morphological criteria of various strains of Dunaliella [J]. J ApplPhycol,1999,10(6):573-580
    [290] González M.A., Coleman A.W., Gómez P.I., et al. Phylogenetic relashionship amongvarious strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences[J]. J Phycol,2001,37(4):604-611
    [291] Borowitzka M.A., Siva C.J. The taxonomy of the genus Dunaliella (Chlorophyta,Dunaliellales) with emphasis on the marine and halophilic species [J]. J Appl Phycol,2007,19(5):567-590
    [292] Kajiwara S., Fraser P.D., Kondo K., et al. Expression of an exogenous isopentenyldiphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli [J].Biochem J,1997,324:421-426
    [293] Sandmann G., Kuhn S., Boger P. Evaluation of structurally different carotenoids inEscherichia coli transformants as protectants against UV-B radiation [J]. Appl EnvironMicrobiol,1998,64(5):1972-1974
    [294] Matthews P.D., Wurtzel E.T. Metabolic engineering of carotenoid accumulation inEscherichia coli by modulation of the isoprenoid precursor pool with expression ofdeoxyxylulose phosphate synthase [J]. Appl Microbiol Biotechnol,2000,53(4):396-400
    [295] Zhang L.J., Yang Y. The study on lycopene produced by microorganisms [J].Biotechnol Bull,2006,4:61-60
    [296] Phillips M.A., Leon P., Boronat A., et al. The plastidial MEP pathway: unifiednomenclature and resources [J]. Trends Plant Sci,2008,13(12):619-623
    [297] Howitt C.A., Cavanagh C.R., Bowerman A.F., et al. Alternative splicing, activation ofcryptic exons and amino acid substitutions in carotenoid biosynthetic genes areassociated with lutein accumulation in wheat endosperm [J]. Funct Integr Genomics,2009,9(3):363-376
    [298] Busch M., Seuter A., Hain R. Functional analysis of the early steps of carotenoidbiosynthesis in tobacco [J]. Plant Physiol,2002,128(2):439-453
    [299] Maunders M.J., Holdsworth M.J., Slater A., et al. Ethylene stimulates theaccumulation of ripening-related mRNAs in tomatoes [J]. Plant Cell Enviro,1987,10(2):177-184
    [300] Bird C.R., Ray J.A., Fletcher J.D., et al. Using antisense RNA to study gene function:inhibition of carotenoid biosynthesis in transgenic tomatoes [J]. Nat Biotechnol,1991,9(7):635-639
    [301] Bartley G.E., Scolnik P.A. cDNA cloning, expression during development, andgenome mapping of PSY2, a second tomato gene encoding phytoene synthase [J]. JBiol Chem,1993,268(34):25718-25721
    [302] Skopelitis D.S., Paranychianakis N.V., Paschalidis K.A., et al. Abiotic stress generatesROS that signal expression of anionic glutamate dehydrogenases to form glutamatefor proline synthesis in tobacco and grapevine [J]. Plant Cell,2006,18(10):2767-2781
    [303] Fierce Y., de Morais Vieira M., Piantedosi R., et al. In vitro and in vivocharacterization of retinoid synthesis from beta-carotene [J]. Arch Biochem Biophys,2008,472(2):126-138
    [304] White P.J., Brown P.H. Plant nutrition for sustainable development and global health[J]. Ann Bot,2010,105(7):1073-1080
    [305] Cane D.E., Walsh C.T., Khosla C. Harnessing the biosynthetic code: combinations,permutations, and mutations [J]. Science,1998,282(5386):63-68
    [306] Lau J., Fu H., Cane D.E., et al. Dissecting the role of acyltransferase domains ofmodular polyketide synthases in the choice and stereochemical fate of extender units[J]. Biochemistry,1999,38(5):1643-1651
    [307] Hunter C.N., Hundle B.S., Hearst J.E., et al. Introduction of new carotenoids into thebacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathwaysof Erwinia herbicola and Rhodobacter sphaeroides [J]. J Bacteriol,1994,176(12):3692-3697

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700