多花水仙类胡萝卜素生物合成途径部分酶基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多花水仙(Narcissus tazettaL.)是石蒜科水仙属植物,由于多花水仙品种匮乏、花色单一,限制了产业的发展。本研究以金盏银台、白花水仙和黄花水仙为材料,利用RT-PCR和RACE技术克隆类胡萝卜素生物合成途径中八氢番茄红素合成酶基因(PSY)、八氢番茄红素脱氢酶基因(PDS)、ζ-胡萝卜素脱氢酶基因(ZDS)、番茄红素β-环化酶基因(LCY-β)和番茄红素ε-环化酶基因(LCY-ε);并通过qRT-PCR分析该途径中PSY、PDS、ZDS和LCY-β四基因在花色形成中转录水平。本研究充实了多花水仙花色形成分子机理的背景资料,对多花水仙的花色育种探索具有重要意义。
     1多花水仙PSY基因的克隆利用GenBank已登录的中国水仙PSY基因的cDNA序列,通过RT-PCR技
     术获得三种花色类型PSY基因的ORF序列为1272-1275bp、编码423-424个氨基酸:分别命名为NtPSYJ、NtPSYW(登录号:JN991013)和NtPSYY(JN991014)。水仙属植物PSY推导的氨基酸序列同源比对发现,氨基酸存在个别位置的差异和缺失。以多花水仙基因组DNA为模板,获得三种花色类型PSY的基因组序列2667-2840bp:登录号为JN991017(金盏银台)、JN991016(白花水仙)和JN991015(黄花水仙);均含有5个内含子(A-E)、变化范围在81-926bp。序列分析发现:A、B、D、E内含子的剪切位点均符合GT-AG规律,而C内含子符合GC-AG规律。
     2多花水仙PDS基因的克隆利用GenBank已登录的中国水仙PDS基因的cDNA序列,通过RT-PCR技
     术获得三种花色类型PDS基因的ORF序列都为1713bp、编码570个氨基酸:分别命名为NtPDSJ、NtPDSW(登录号:JQ797376)和NtPDSY(JQ797377)。水仙属植物PDS推导的氨基酸序列同源比对发现,氨基酸存在个别位置的差异。以多花水仙基因组DNA为模板,获得三种花色类型PDS的部分基因组序列7167-7199bp:登录号为JQ797382(金盏银台)、JQ797383(白花水仙)和JQ797384(黄花水仙);都含有10个内含子(A-J)且符合GT-AG规律、变化范围在73-1489bp。
     3多花水仙ZDS基因的克隆利用GenBank已登录的中国水仙ZDS基因的cDNA序列,通过RT-PCR技术获得三种花色类型ZDS基因的ORF序列都为1725bp、编码574个氨基酸:分
     别命名为NtZDSJ、NtZDSW(登录号:JQ797378)和NtZDSY(JQ797379)。水仙属植物ZDS推导的氨基酸序列同源比对发现,氨基酸存在个别位置的差异。以多花水仙基因组DNA为模板,获得三种花色类型ZDS的部分基因组序列7382-9187bp:登录号为JQ797385(金盏银台)、JQ797386(黄花水仙)。序列分析发现:都含有11个内含子(A-K)且符合GT-AG规律、变化范围在87-2695bp,其中A、C、F内含子的大小存在较大差异。
     4多花水仙LCY-β基因的克隆
     利用GenBank已登录的中国水仙LCY-β基因的cDNA序列,通过RT-PCR技术获得三种花色类型LCY-β基因的ORF序列都为1715bp、编码504个氨基酸:分别命名为NtLCY-βJ、NtLCY-βW(登录号:JQ797380)和NtLCY-βY(JQ797381)。水仙属植物LCY-β推导的氨基酸序列同源比对发现,氨基酸存在个别位置的差异。以多花水仙基因组DNA为模板克隆LCY-β的基因组序列,发现三种花色类型LCY-β基因编码区内没有内含子;与cDNA序列比较同源率达98%以上。
     5多花水仙LCY-ε基因的克隆
     根据已知的中国水仙LCY-ε基因3′端序列,通过RACE技术获得其5′端序列,得到金盏银台LCY-ε基因cDNA全长1971bp,最大开放读码框为1599bp(GenBank登录号:JQ282903),编码532个氨基酸,预测分子量为59771.1,等电点为6.15,5′端有153bp长的非翻译区,3′端包含111bp的非编码序列。根据金盏银台ORF设计引物,获得白花水仙和黄花水仙LCY-ε的ORF序列(JQ282902、JQ282904)。水仙属植物LCY-ε推导的氨基酸序列同源比对发现,氨基酸存在个别位置的差异;根据cDNA全长推导氨基酸序列与柑橘、玉米、番茄等高等植物LCY-ε基因的氨基酸序列进行同源性分析并构建系统进化树。
     6qRT-PCR分析多花水仙花色形成中PSY、PDS、ZDS和LCY-B基因的表达
     以多花水仙ACTIN基因为内参基因,检测三种花色PSY、PDS、ZDS和LCY-β四基因在花苞期、花蕾期、始花期和盛花期的表达水平,结果表明金盏银台与黄花水仙四基因在在花色形成中均有表达,表达量都呈先升后降的趋势,高峰都出现在始花期或者盛花期;而白花水仙四个基因在不同时期的转录趋势大体上都是减弱的,尤其是PSY几乎不表达的;虽然白花水仙PDS和ZDS在个别时期还有上升趋势,但是相对于其它花色相对表达量而言都不高。表明随着PSY、PDS、ZDS和LCY-β表达量的相应增加,多花水仙花色由花瓣白色到花瓣黄色的转变,因此调控这些基因可以改良多花水仙的花色。
Narcissus tazetta-L.is a member of the family Amaryllidaceae. The development of the narcissus industry was restricted for the critical problems of shortages in available resource and colorful varietie. Using Jinzhanyintaim, Baihua narcissus and Huanghua narcissus as test materials, the full-length cDNA and DNA sequence of phytoene synthase(PSY), phytoene desaturase(PDS), ζ-carotene desaturase(ZDS), lycopene-β-cyclase (LCY-β) and lycopene-ε-cyclase(LCY-e) were cloned by RACE-PCR and RT-PCR in this study. The gene expression patterns in the color formation of chinese narcissus were also analyzed by Real Time PCR. The study will provide a foundation to know more about the color formation of Narcissus tazetta L., as well as facilitate color-enriched and productivity-enhanced development of the narcissus.The major results obtained from the study were summarized as followed:
     1Cloning and analysis of NtPSYgene from Narcissus tazetta L.
     The open reading frame (ORF) of PSY were obtained from the three kinds of color type narcissus, the ORF length of NtPSYwas1272bp-1275bp encoding423-424amino acids. The genes were designated as NtPSYJ,NtPSYW(GenBank accession No.JN991013) and NtPSYY(JN991014) respectively. Comparing with other PSY genes in Narcissus genus, there were some replacements and missing amino acids. The genome DNA sequence of PSY genes in three color type narcissus were cloned, the length ranged from2667bp to2840bp, the GenBank accession numbers were No.JN991017(Jinzhanyintai), No.JN991016(Baihua) and No.JN991015(Huanghua). Five introns (A-E) were found in each DNA sequence, the length ranged from81bp to926bp. Sequence nalysis showed that the splicing sites of four introns (A、B、D、E) comformed to the GT-AG rule and introns C were consistented with GC-AG rule.
     2Cloning and analysis of NtPDS from Narcissus tazetta L,.
     The open reading frame (ORF) of PDS were obtained from the three kinds of color type narcissus, The ORF length of PDS were1713bp encoding570amino acids. The genes were designated as NtPDSJ, NtPDSW(accession number:JQ797376) and N/PDSY (JQ797377) respectively. Comparing with other PDS genes in Narcissus genus, there were some replacements and missing amino acids as well. The part of genome DNA sequence of PDSgenes in the three color type narcissus were cloned, a length ranged from7167bp to7199bp, and the GenBank accession number are No. JQ797382(Jinzhanyintai), No. JQ797383(Baihua) and No. JQ797384(Huanghua).Ten intons(A-J) were found in each DNA sequence, the length ranged from73bp to1489bp. Sequence analysis showed that the splicing sites of introns comformed to the GT-AG rule.
     3Cloning and analysis of NtZDS from Narcissus tazetta L.
     The open reading frame (ORF) of ZDSwas obtained from the three kinds of color type narcissus, the ORF length of Nt ZDS was1725bp encoding574amino acids. The genes were designated as NtZDSJ, NtZDSW(GenBank accession No. JQ797378) and NtZDSY(JQ797379) respectively. Comparing with other ZDS genes in Narcissus genus, there were some replacements and missing amino acids. The part of genome DNA sequence of ZDS genes in the three color type narcissus were cloned, the length ranged from7382bp to9187bp, the GenBank accession number are No. JQ797385(Jinzhanyintai), No. JQ797386(Huanghua). Eleven introns (A-K) were found in each DNA sequence, the length ranged from87bp to2695bp. Sequence analysis showed that the splicing sites of four introns comformed to the GT-AG rule and intron A, C, F size are quite different.
     4Cloning and analysis of NtLCY-βfrom Narcissus tazetta L.
     The open reading frame (ORF) of LCY-βwere obtained from the three kinds of color type narcissus, the ORF length of NtLCY-β were1715bp encoding504amino acids. The genes were designated as NtLCY-βJ, NtLCY-βW(GenBank accession No. JQ797380) and MICY-βY (JQ797381) respectively. Comparing with other LCY-β genes in Narcissus genus, there were replacement and missing amino acid. Cloning from genomic DNA sequence of NtLCY-β showed that was no intron and the homologous rate are over98%compared with their cDNA.
     5Cloning and analysis of NtLCY-ε
     5'RACE primers were designed according to the known NtLCY-ε3'nucleotide seqence from GenBank, the5'nucleotide sequence was obtained by RACE from Jinzhanyintai narcissus. The full length cDNA of NtLCY-ε was1971bp with an opening reading frame of1659bp (GenBank accession No.JQ282903) encoding a protein with532amino acids(Mw=59771.1, pI=6.15). The5-terminal untranslated region (UTR) was153bp and the3-UTR was lllbp. The ORF sequence of LCY-ε gene in Baihua (No.JQ282902) and Huanghua narcissus (No.JQ282904). According to the ORF sequence of LCY-ε gene in Jinzhanyintai, we obtained the ORF sequences of LCY-ε gene in Baihua (No.JQ282902) and Huanghua narcissus (No.JQ282904). The nucleotide and amino acids from the three kinds of color type narcissus were similar. Replacements were found in the deduced amino acid sequence of LCY-ε gene in Narcissus genus plant with homologous comparison. The deduced amino acid sequence of NtLCY-ε was compared with that of other higher plants and phylogenetic tree was was constructed.
     4Analysis the expression of PSY、PDS、ZDS and LCY-βin the color formation of Narcissus tazetta L. by qRT-PCR
     NtACTIN was used as internal control gene, the expression patterns of NtPSY, NtPDS, NtZDS and NtLCY-β in the bud stage, alabastrum stage, early flowering stage and full-bloom stage were carried out. The results indicated that all of the four genes in Jinzhanyintai and Huanghua narcissus expressed in four stages, with higher expression level in the intermediate stages, while much lower in Baihua narcissus, especially the expression of PSY gene is almost undetectable. Additionally, the expression rate of PDS and ZDS in Baihua narcissus appears to be increasing at certain stage, but it still lower than that of other flowers. To sum up, the higher expression level of PSY、PDS、ZDS and LCY-β in Jinzhanyintai and Huanghua narcissus may cause the yellow color of the flower. Therefore, the regulation of these genes may regulate and control the color of Narcissus tazetta L. flower.
引文
[1]陈心启,吴应祥.中国水仙考[J].植物分类学报,1982,20(3).
    [2]陈心启,吴应祥.中国水仙续考—与卢履范同志商榷[J].武汉植物学研究,1991,9(1):72-74.
    [3]陈燕贤.拯救水仙品种‘百叶’[J].中国花卉园艺,2005,(001):33-33.
    [4]陈林姣,缪颖.中国水仙种质资源的遗传多样性分析[J].厦门大学学报:自然科学版,2002,41(6):810-814.
    [5]吕柳新,陈晓静,余小玲,et a1.水仙品种资源的育种基础研究Ⅰ.多花水仙若干品种类型的细胞学研究[J].福建农林大学学报(自然科学版),1989,1.
    [6]陈晓静.福建3个产地水仙的核型分析[J].植物资源与环境学报,2004,13(004):28-31.
    [7]Rivera Nunez D, De Castro C O, Rios Ruiz S, et al. The origin of cultivation and wild ancestors of daffodils (Narcissus subgenus Ajax)(Amaryllidaceae) from an analysis of early illustrations[J]. Scientia horticulturae,2003,98(4):307-330.
    [8]陈晓静,吕柳新.福建多花水仙资源[J].福建林学院学报,2006,26(001):14-17.
    [9]赵莺莺.水仙属植物形态学,解剖学,孢粉学初步研究[D]南京农业大学,2003.
    [10]Tracewell C A, Vrettos J S, Bautista J A, et al. Carotenoid photooxidation in photosystem Ⅱ[J]. Archives of biochemistry and biophysics,2001,385(1):61-69.
    [11]Bartley G E, Scolnik P A. Plant carotenoids:pigments for photoprotection, visual attraction, and human health[J]. The Plant Cell,1995,7(7):1027.
    [12]Fleischmann P, Watanabe N, Winterhalter P. Enzymatic carotenoid cleavage in star fruit (Averrhoacarambola)[J]. Phytochemistry,2003,63(2):131-137.
    [13]Bouvier F, Dogbo O, Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto)[J]. Science,2003,300(5628):2089.
    [14]Ibdah M, Azulay Y, Portnoy V, et al. Functional characterization of CmCCDl, a carotenoid cleavage dioxygenase from melon[J]. Phytochemistry,2006,67(15):1579-1589.
    [15]黄彬城,季静,王罡,et a1.植物类胡萝卜素的研究进展[J].天津农业科学,2006,12(2):13-17.
    [16]Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments:anthocyanins, betalains and carotenoids [J]. The Plant Journal,2008,54(4):733-749.
    [17]Tanaka Y, Ohmiya A. Seeing is believing:engineering anthocyanin and carotenoid biosynthetic pathways [J]. Current opinion in biotechnology,2008,19(2):190-197.
    [18]Zhu C, Yamamura S, Koiwa H, et al. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea[J]. Plant molecular biology,2002,48(3): 277-285.
    [19]Kuntz M, Romer S, Suire C, et al. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum:correlative increase in enzyme activity and transcript level during fruit ripening[J]. The Plant Journal,1992,2(1):25-34.
    [20]Rodnguez-Concepcion M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics[J]. Plant Physiology,2002,130(3):1079-1089.
    [21]Eisenreich W, Bacher A, Arigoni D, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway[J]. Cellular and molecular life sciences,2004,61(12):1401-1426.
    [22]Arabidopsis G I. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000,408(6814):796.
    [23]Cunningham Jr F X, Lafond T P, Gantt E. Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis [J]. Journal of bacteriology,2000,182(20):5841-5848.
    [24]Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development[J]. Journal of Experimental Botany,2002,53(377):2107-2113.
    [25]周雨隆,陈丽梅.高等植物类胡萝卜素代谢工程研究进展[J].生物技术通报,2008,6.
    [26]周琳,王雁,彭镇华.黄色花形成机制及基因工程研究进展[J].林业科学,2009,45(002):111-119.
    [27]Breitenbach J, Sandmann G.ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene[J]. Planta,2005,220(5):785-793.
    [28]Isaacson T, Ohad I, Beyer P, et al. Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants [J]. Plant Physiology,2004,136(4):4246-4255.
    [29]Krubasik P, Sandmann G. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids[J]. Molecular and General Genetics MGG,2000,263(3):423-432.
    [30]Krubasik P, Sandmann G. Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups[J]. Biochemical Society Transactions,2000,28(6):806-809.
    [31]Zhu C, Yamamura S, Nishihara M, et al. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2003,1625(3):305-308.
    [32]Van Dien S J, Marx C J, O'Brien B N, et al. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1and isolation of a colorless mutant[J]. Applied and environmental microbiology,2003,69(12):7563-7566.
    [33]郑阳霞,杨婉身,季静,et a1.类胡萝卜素生物合成相关基因的克隆及其遗传工程的研究进展[J].细胞生物学杂志,2006,28(3):442-446.
    [34]Grotewold E. The genetics and biochemistry of floral pigments [J]. Annu Rev Plant Biol,2006,57:761-780.
    [35]Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues[J]. Plant, cell&environment,2006,29(3):435-445.
    [36]Del Villar-Martinez A A, Garcia-Saucedo P A, Carabez-Trejo A, et al. Carotenogenic gene expression and ultrastructural changes during development in marigold[J]. Journal of plant physiology,2005,162(9):1046-1056.
    [37]Moehs C P, Tian L, Osteryoung K W, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development[J]. Plant molecular biology,2001,45(3):281-293.
    [38]高新征,言普,沈文涛,et a1.番木瓜pds基因时空表达的荧光定量PCR分析[J].广西农业科学,2009,40(006):610-613.
    [39]高新征,言普,沈文涛,et a1.番木瓜ζ-胡萝卜素脱氢酶基因时空表达的荧光定量PCR分析[J].热带作物学报,2009,(004).
    [40]Bang H J. Environmental and genetic strategies to improve carotenoids and quality in watermelon [Texas A&M University,2005.
    [41]Aggelis A, John I, Karvouni Z, et al. Characterization of two cDNA clones for mRNAs expressed during ripening of melon (Cucumis melo L.) fruits[J]. Plant molecular biology,1997,33(2):313-322.
    [42]李群睿.玉米类胡萝卜素异构酶和番茄红素e-环化酶基因的克隆与鉴定[D]东北师范大学,2010.
    [43]Guo F, Zhou W, Zhang J, et al. Effect of the Citrus Lycopene [3-Cyclase Transgene on Carotenoid Metabolism in Transgenic Tomato Fruits[J]. PLoS One,2012,7(2):e32221.
    [44]侯耀兵,康保珊,黄进勇.植物类胡萝卜素研究进展[J].中国瓜菜,2009,22(004):28-31.
    [45]Paine J A, Shipton C A, Chaggar S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content[J]. Nature biotechnology,2005,23(4):482-487.
    [46]Mann V, Harker M, Pecker I, et al. Metabolic engineering of astaxanthin production in tobacco flowers[J]. Nature biotechnology,2000,18(8):888-892.
    [47]Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals [J]. Plant Physiology,2006, 142(3):1193-1201.
    [48]Suzuki S, Nishihara M, Nakatsuka T, et al. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway[J]. Plant cell reports,2007,26(7):951-959.
    [49]Schledz M, Al-Babili S, Lintig J, et al. Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering[J]. The Plant Journal,1996,10(5):781-792.
    [50]张慧平.中国水仙遗传转化及花色素成分分析[D]福建农林大学,2010.
    [51]Booth V. β-Carotene in the flowers of Narcissus [J]. Biochemical Journal,1957,65(4):660.
    [52]Valadon L, Mummery R S. Carotenoids in floral parts of a narcissus, a daffodil and a tulip[J]. Biochemical Journal,1968,106(2):479.
    [53]周昆,周清明,胡晓兰.烤烟香气物质研究进展[J].中国烟草科学,2008,29(2):58-61.
    [54]Al-Babili S, Lintig J, Haubruck H, et al. A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation [J]. The Plant Journal,1996,9(5):601-612.
    [55]Apel W, Bock R. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion[J]. Plant Physiology,2009,151(1):59-66.
    [56]Al-Babili S, Hobeika E, Beyer P. A cDNA Encoding Lycopene Cyclase (Accession No. X98796) from Narcissus pseudonarcissus L. Plant Gene Register PGR96-107[J]. Plant Physiology,1996,112:1398.
    [57]Lu G, Zou Q, Guo D, et al. Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis[J]. Plant cell reports,2007,26(9):1585-1593.
    [58]江琳玉.中国水仙花色相关基因ZDS, LYCE的克隆[D]福建农林大学,2009.
    [59]陈段芬,彭镇华,高健.中国水仙ZDS基因的克隆及表达分析[J].林业科学研究,2009,22(1):115-119.
    [60]Sandmann G, Romer S, Fraser P D. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants[J]. Metabolic engineering,2006,8(4):291-302.
    [61]Ye X, Al-Babili S, Kloti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science,2000,287(5451):303.
    [62]Lopez A J. Alternative splicing of pre-mRNA:developmental consequences and mechanisms of regulation[J]. Annual review of genetics,1998,32(1):279-305.
    [63]Tao N, Xu J, Cheng Y, et al. Lycopene-ε-cyclase pre-mRNA is alternatively spliced in Cara Cara navel orange (Citrus sinensis Osbeck)[J]. Biotechnology letters,2005,27(11):779-782.
    [64]陶能国.甜橙(Citrus sinensis Osbeck)红肉突变体类胡萝卜素合成相关基因的克隆与特性分析[华中农业大学,2006.
    [65]徐娟.几个柑橘产区果实色泽评价及红肉脐橙(Citrus sinensis L. cv. Caracara)果肉呈色机理初探[D]武汉:华中农业大学,2002.
    [66]张建成,陶能国,周文静,et a1.红肉脐橙番茄红素β-环化酶基因的克隆及其在大肠杆菌中的功能表达[J].园艺学报,2008,35(9):1269-1276.
    [67]Devitt L C, Fanning K, Dietzgen R G, et al. Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.)[J]. Journal of Experimental Botany,2010,61(1):33.
    [68]Blas A L, Ming R, Liu Z, et al. Cloning of the Papaya Chromoplast-Specific Lycopene β-Cyclase, CpCYC-b, Controlling Fruit Flesh Color Reveals Conserved Microsynteny and a Recombination Hot Spot[J]. Plant Physiology,2010,152(4):2013.
    [69]Ronen G, Carmel-Goren L, Zamir D, et al. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato[J]. Proceedings of the National Academy of Sciences,2000,97(20):11102.
    [70]Xu R, Goldman S, Coupe S, et al. Ethylene control of E4transcription during tomato fruit ripening involves two cooperativecis elements [J]. Plant molecular biology,1996,31(6):1117-1127.
    [71]Van der Krol A R, Lenting P E, Veenstra J, et al. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation [J]. Nature,1988,333(6176):866-869.
    [72]包满珠.植物花青素基因的克隆及应用—文献综述[J].园艺学报,1997,24(3):279-284.
    [73]张传义,曹秋芬,孟玉平,et a1.一个调控葡萄花和果实色素形成的基因家族—MYB相关基因家族[J].分子植物育种,2007,5(F11):85-88.
    [74]Martin C, Gerats T. Control of pigment biosynthesis genes during petal development[J]. The Plant Cell,1993,5(10):1253.
    [75]Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis [J]. The Plant Cell,1995,7(7):1071.
    [76]Consonni G, Geuna F, Gavazzi G, et al. Molecular homology among members of the R gene family in maize [J]. The Plant Journal,1993,3(2):335-346.
    [77]Blas A L, Ming R, Liu Z, et al. Cloning of the papaya chromoplast-specific lycopene β-Cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot[J]. Plant Physiology,2010,152(4):2013-2022.
    [78]McIntosh R. A catalogue of gene symbols for wheat[A]. In,1983:1197-1255.
    [79]Himi E, Noda K. Red grain colour gene (R) of wheat is a Myb-type transcription factor[J]. Euphytica,2005,143(3):239-242.
    [80]Yoshihama M, Nguyen H D, Kenmochi N. Intron dynamics in ribosomal protein genes [J]. PLoS One,2007,2(1):e141.
    [81]Yao J L, Dong Y H, Morris B A M. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor [J]. Proceedings of the National Academy of Sciences,2001,98(3):1306.
    [82]谢先芝,黄美娟,吴乃,et al.转番茄蛋白酶抑制剂基因烟草植株的培育及其抗虫特性分析[J].2002.
    [83]Ruan M B, Liao W B, Zhang X C, et al. Analysis of the cotton sucrose synthase3(Sus3) promoter and first intron in transgenic Arabidopsis[J]. Plant Science,2009,176(3):342-351.
    [84]倪志勇,吕淑萍,李波,et al.棉花GhCADl基因结构及表达分析[J].华北农学报,2011,26(2):26-29.
    [85]Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene[J]. The Plant Cell Online,2004,16(9):2323-2334.
    [86]欧阳松应,杨冬,欧阳红生,et al.实时荧光定量PCR技术及其应用[J].生命的化学,2004,24(1):74-76.
    [87]徐小刚,刘雅婷.实时荧光定量PCR在植物病害中的应用[J].中国农学通报,2009,25(7):52-56.
    [88]Freeman W M, Walker S J, Vrana K E. Quantitative RT-PCR:pitfalls and potential[J]. Biotechniques,1999,26:112-125.
    [89]Radonic A, Thulke S, Mackay I M, et al. Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemical and biophysical research communications,2004,313(4):856-862.
    [90]李惠华,赖钟雄,苏明华,et al.龙眼体胚发生过程中两个乙烯受体基因的定量表达分析[J].热带作物学报,2011,7.
    [91]乔小燕,马春雷,陈亮.茶树黄酮合成酶Ⅱ基因全长cDNA序列的克隆和实时荧光定量PCR检测[J].茶叶科学,2009,29(005):347-354.
    [92]孙崇波,向林,施季森,et al.春兰AGL6基因的克隆及实时定量表达分析[J].分子植物育种,2010,8(005):939-944.
    [93]向林,李伯钧,秦德辉,et al.春兰GLO基因的克隆和实时定量表达分析[J].浙江农业学报,2011,23(3):517-522.
    [94]潘才博,张启翔,潘会堂,et al.菊花FT类似基因的克隆与表达分析[J].园艺学报,2010,37(5):769-776.
    [95]陈素梅,朱喜荣,陈发棣,et al.不同花色菊花品种花色素结构基因的表达特性[J].西北 植物学报,2010,(003):453-458.
    [96]田义,王强,张利义,et a1.外源腐胺促进苹果果皮花青苷积累的效应[J].植物学报,2009,44(3).
    [97]付晓燕,彭日荷,章镇,et a1.八棱海棠中转录因子基因MrDREBA6的克隆及表达分析[J].果树学报,2009,(006):761-768.
    [98]胡修峰,殷幼平,石小刚,et a1.黄龙病菌侵染过程中柑橘CsMYB基因克隆及表达分析[J].植物研究,2011,5.
    [99]张建成,陶能国,仝铸,et a1.‘红肉脐橙’八氢番茄红素合成酶基因的克隆与原核表达[J].中国农业科学,2008,41(10):3200-3207.
    [100]张建成,王鹏飞,杜俊杰,et a1.欧李八氢番茄红素合成酶cDNA克隆,序列分析及在大肠杆菌中的功能表达[J].中国农业科学,2011,44(23):4848-4857.
    [101]朱海生,李永平,温庆放.草莓八氢番茄红素合成酶基因的克隆及其表达特性[J].中国农业科学,2011,44(2):349-357.
    [102]何玮毅.双T-DNA共转化获得转基因番木瓜的研究[D]福建农林大学,2009.
    [103]邹清成,庄晓英,卢钢,et a1.反义PSY基因植物表达载体的构建及其对中国水仙的转化[J].浙江林业科技,2006,26(3):25-30.
    [104]申艳红.番木瓜若干果实成熟相关基因克隆及遗传转化的研究[D]福建农林大学,2009.
    [105]Lawton M A, Dean S M, Dron M, et al. Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1[J]. Plant molecular biology,1991,16(2):235-249.
    [106]Sessa G, Morelli G, Ruberti I. The Athb-1and-2HD-Zip domains homodimerize forming complexes of different DNA binding specificities[J]. The EMBO Journal,1993,12(9):3507.
    [107]Grotewold E, Drummond B J, Bowen B, et al. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset[J]. Cell,1994,76(3):543-553.
    [108]严媛,姜建国,宋冬林.盐藻八氢番茄红素合成酶基因组DNA的克隆及序列分析[J].海湖盐与化工,2005,34(1):22-24.
    [109]Fu Z, Yan J, Zheng Y, et al. Nucleotide diversity and molecular evolution of the PSY1gene in Zea mays compared to some other grass species[J]. TAG Theoretical and Applied Genetics,2010,120(4):709-720.
    [110]Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication [J]. Cell,2006,127(7):1309-1322.
    [111]蔡刘体,胡重怡,李继新.烤烟T-psyl基因结构及其内含子信息分析[J].贵州农业科学,2011,39(3):21-24.
    [112]薛蕾,闫贵欣,高桂珍,et a1.白菜型油菜八氢番茄红素合酶基因BrPSY的克隆与序列分析[J].中国油料作物学报,2011,33(3):210-215.
    [113]王宁,陈润生.基于内含子和外显子的系统发育分析的比较[J].科学通报,1999,44(019):2095-2102.
    [114]靳霞,吕占军.内含子的进化及基因表达调节[J].生命的化学,2008,28(001):33-35.
    [115]Liu H X, Goodall G, Kole R, et al. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the5'but not the3'splice site inhibit intron processing in Nicotiana plumbaginifolia[J]. The EMBO Journal,1995,14(2):377.
    [116]Sun Z, Cunningham F X, Gantt E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte[J]. Proceedings of the National Academy of Sciences,1998,95(19):11482.
    [117]王飞.甘薯类胡萝卜素合成酶基因pds全长cDNA的克隆[J].安徽理工大学学报(自然科学版),2007,27(1):55-58.
    [118]徐大伟,张雨良,檀根甲.棉花八氢番茄红素脱氢酶GhPDS1基因的克隆与表达谱分析[J].棉花学报,2011,23(3):200-204.
    [119]朱海生,李永平,温庆放,et a1.草莓八氢番茄红素脱氢酶基因pds的克隆及特征分析[J].园艺学报,2011,38(1):55-60.
    [120]陈段芬,彭镇华,高志民.中国水仙八氢番茄红素脱氢酶基因(PDS)的克隆及表达分析[J].分子植物育种,2008,6(3):574-578.
    [121]Solano R, Nieto C, Avila J, et al. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB. Ph3) from Petunia hybrida[J]. The EMBO Journal,1995,14(8):1773.
    [122]Fu H, Kim S Y, Park W D. High-Level Tuber Expression and Sucrose Inducibility of a Potato Sus4Sucrose Synthase Gene Require5[prime] and3[prime] Flanking Sequences and the Leader Intron[J]. The Plant Cell Online,1995,7(9):1387-1394.
    [123]赵倩,赖凡,于静娟,et a1.谷子类胡萝卜素生物合成途径中番茄红素β-环化酶基因的克隆[J].中国农业大学学报,2004,9(001):1-6.
    [124]陈选阳,袁照年,张招娟,et a1.甘薯番茄红素β-环化酶基因的克隆与转化烟草的研究[J].作物学报,2007,33(10):1724-1728.
    [125]邹清成.中国水仙花色相关基因的分离和反义Psy基因的遗传转化[D]浙江大学,2006.
    [126]李晔,赵杰,袁其朋,et a1.番茄红素环化酶基因shRNA真核表达质粒的构建及鉴定[J].生物技术通报,2006,4:104-108.
    [127]李莉,侯丽霞,施木田,et a1.番茄红素环化酶基因片段克隆及反义表达载体构建[J[.山东农业科学,2009,(001):1-3.
    [128]马超,何娟,郝青南,etal.构建番茄红素β/ε环化酶基因RNAi植物表达载体及其表达分析[J].核农学报,2010,24(3):482-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700