西北厚松散层矿区开采沉陷预计与可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开采沉陷预计是开采沉陷学的核心内容之一。西北矿区是我国重要的煤炭生产基地,该区地貌复杂,地表黄土层覆盖厚度大,地下采煤引起的地表变形破坏具有特殊性。对厚松散层覆盖条件下的开采沉陷问题进行深入研究,建立合理的地表移动预计模型并开发相应的预计程序,对于西北矿区安全采煤及其地面保护具有重要意义。
     本文基于厚松散层矿区开采沉陷预计的理论模型,采用C#语言开发了相应的预计程序,并利用Visual Studio 2005实现了预计结果的可视化。论文的主要研究结果如下:
     (1)针对厚黄土覆盖条件下的矿区开采沉陷双层介质模型,依据随机介质理论原理导出了地表沉陷的双重概率积分预计公式。新的预计模型将上覆地层按土层和基岩两种不同介质分别选取预计参数,克服了常规概率积分法在选取综合预计参数时的不确定性,提高了预计结果的可靠性,在西北黄土覆盖矿区具有较好的实用性。
     (2)利用可视化的程序开发工具Visual Studio2005,基于C#语言完成了厚松散层开采沉陷预计模型的程序实现,程序可以对近水平煤层或缓倾斜煤层在充分采动或非充分采动情况下的地表下沉、倾斜、曲率、水平移动及水平变形分别进行预计,同时可以计算出地表沉陷盆地内任意一点的地表移动变形值。
     (3)基于C#语言并结合开源控件ZedGraph,实现了主断面上的各种移动变形预计曲线和沉陷盆地内移动变形等值线图的绘制。利用OpenGL图形接口,实现了地表移动变形数据的三维显示。
     (4)以彬长矿区大佛寺煤矿40301工作面为研究实例,利用所编制的程序完成了地表移动变形预计与数据可视化。通过与该工作面地表沉陷观测结果的对比,证实了本文预计模型及程序计算的可靠性,预计结果可满足西北矿区开采沉陷预计的要求。本文的研究成果为西北矿区开采沉陷的准确预测及其地面保护研究提供了新的技术手段和有力的信息支持。
Mining subsidence prediction is one of the core contents in mining subsidence subject. Northwest area of China which is covered by loess layer is an important coal production base. As the topography is complex and the thickness of loess layer is great, overburden failure and surface movement caused by underground mining has particularity. Studying prediction theory in thick unconsolidated layer covered mining areas, establishing specific theoretical model of surface movement, and developing the software have great significance to study mining subsidence and its protection.
     Based on mining subsidence model in thick unconsolidated layer covered mining areas, the prediction program of mining subsidence is developed by use of C# programming language. Meanwhile, visualization of prediction results is implemented. The main findings of this paper are shown as follows:
     (1) Aiming at the double mediums mining subsidence model in thick loess layer covered mining areas, probability integration prediction model for double mediums is derived by using basic ideas of stochastic medium theory. New prediction model overcomes the uncertainty of selecting prediction parameters and makes the prediction results become more close to actual because overlying strata is decomposed into two mediums which are loess layer and bedrock in the new model. The model is expected to extend the application region of stochastic medium theory in the prediction of mining subsidence in western mining areas and has practical values.
     (2) Based on C# programming language, program implementation of mining subsidence prediction model in thick unconsolidated layer covered mining areas is implemented by using Visual Studio 2005. Surface subsidence values, inclination values, curvature values, horizontal movement values and horizontal deformation values of approximate horizontal coal seam or medial tipping coal seam can be predicted and calculated by using this computer program. Meanwhile, surface displacement and deformation values of any points in mining subsidence basin can be calculated by this program.
     (3) Based on C # language and combined with open source control ZedGraph, curve drawing of surface displacement and deformation is implemented. Prediction curves of various deformation values on the main section can be outputted. Meanwhile, contours of surface displacement and deformation in mining subsidence basin can be drawn. Three-dimensional display of surface displacement and deformation is implemented by using graphics interface of OpenGL.
     (4) 40301 working face of Big Temple coal mine in Bingchang mining area is selected as example for this study. Surface movement and deformation of this working face is predicted by using the computer program. Through the comparison between the prediction results and observation results of 40301 working face, it is confirmed that the computational accuracy of program is in the allowable scope and can meet the application requirements.
     The results of this research provide a new technology method and strong information support for accurate prdicction of mining subsidence and surface protection in Northwest mining areas.
引文
[1]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社, 1994.
    [2]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报, 2007, 32(1): 1-7.
    [3]杨伦.矿山开采沉陷对环境的损害比地震严重[J].科技导报, 2001, (9): 53-55.
    [4]卞正富,许家林,雷少刚.论矿山生态建设[J].煤炭学报, 2007, 32(1): 13-19.
    [5] Fred A Ripley, Robert E Redman, and Adele A Crowder. Environmental effects of mining [M]. Florida: St. Lucie Press, 2006. 63-66.
    [6]夏玉成,石平五.关于环境变迁和矿业工程环境效应的讨论[J].中国矿业, 2002, 11(1): 63-66.
    [7]党明,李瑞斌.西部煤炭开采损害及防治对策[J].中国煤炭, 2008, 34(3): 50-52.
    [8]余学义,吴教锟.中国西部湿陷性黄土层采动损害控制与生态环境重建[A].中国西部环境问题与可持续发展国际学术研讨会论文集[C].北京:中国环境科学出版社, 2004. 363-366.
    [9] Chen WF, Limit Analysis and Soil Plasticity, [M]. New York, EI sevier Scientific Publishing Company, 1975.
    [10] [波]M.鲍莱茨基, M.胡戴克著,于振海,刘天泉译,矿山岩体力学,北京:煤炭工业出版社, 1985.
    [11]麻风海,岩层移动及动力学过程的理论与实践[M]..北京:煤炭工业出版社,1997.
    [12]郝庆旺.采动岩体的空隙扩散模型及其开采沉陷中的应用[D].徐州:中国矿业大学, 1988.
    [13]余学义,张恩强.开采损害学[M].北京:煤炭工业出版社, 2004. 27-35.
    [14]李增琪.用傅式变换计算开挖引起的地表移动[J].煤炭学报, 1982, (2): 20-25.
    [15]杨硕,张有祥.水平移动曲面的力学预测法[J].煤炭学报, 1995, 20(2): 214-217.
    [16]颜荣贵.地基开采沉陷及其地表建筑[M].北京:冶金工业出版社, 1995.63-66.
    [17]戴华阳,王金庄.非充分开采地表移动预计模型[J].煤炭学报, 2003, 28(6): 583-587.
    [18]郭增长,谢和平.极不充分开采地表移动和变形预计的概率密度函数法[J].煤炭学报, 2004, 29(2):155-158.
    [19]汤伏全,姚顽强,夏玉成.薄基岩下浅埋煤层开采地表沉陷预测方法[J].煤炭科学技术, 2007, 35(6): 103-105.
    [20]吴侃.矿区沉陷预测预报系统[M].徐州:中国矿业大学出版社, 1999.
    [21]栾元重,吕法奎,班训海.动态变形观测与预报[M].北京:中国农业科学技术出版社, 2007.
    [22]余学义.采动地表沉陷破坏预计评价方法[J].煤炭设计, 1997, (5): 7-9.
    [23] Yu Xue-yi.Studying theory of displacement and deformation in the mountain areas under the influence of underground exploitation[D].Dissertation.Kracow(in Poland): AGH University of Science and Technology, Poland, 1999.
    [24]李永树.地表移动预计方法及信息处理(SPDP)系统研究[D].北京:中国矿业大学,1997.
    [25]毛善君.煤矿信息系统的理论与方法研究[D].北京:中国矿业大学,1997.
    [26]康建荣.采动覆岩动态移动破坏规律及开采沉陷预计系统(MSPS)[D].北京:中国矿业大学,1999.
    [27]戴华阳.基于倾角变化的开采沉陷模型及其GIS可视化应用研究[D].北京:中国矿业大学, 2000.
    [28] L. Donati, M.C. Turrini. An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy). Geology Engineering, 2002, 63(3):53-57.
    [29]阳军生,刘宝深等.城市隧道施工引起的地表移动及变形[M].北京:中国铁道出版社, 2002. 77-85.
    [30]汤伏全.渭北黄土覆盖矿区采煤沉陷机理与预计方法研究[D].西安:西安科技大学, 2010.
    [31]栾元重,吕法奎,班训海.动态变形观测与预报[M].北京:中国农业科学技术出版社,2007.
    [32]汤伏全.厚黄土层矿区地表移动预计方法[J].西安科技大学学报, 2005, 25(3), 317-321.
    [33] Fuquan Tang, Jupeng Dai, Guisheng Wang. Application of Ordinary Digital Photography Technology in Data Collection of Similar Material Model Experiment[A], Proceedings of 2010 International Conference on Measurement and Control Engineering[C]. New York: IEEE Press, 2010, 559-563.
    [34]林丽娜.油田等值线图形绘制方法与应用[D].长春:吉林大学, 2005.
    [35]王轶宏.等值线的自动绘制方法及在计算机上的实现[D].长春:吉林大学, 2006.
    [36]于国卿.李趁趁,赵雨森. ZedGraph控件在水闸监测系统开发中的应用研究[J].南水北调与水利科技, 2008, 6(3): 43- 45.
    [37]朱亦钢.应用Zedgraph高效开发数据图表[J].数据库和信息管理, 2009: 59- 61.
    [38] Tom McReynolds, David Blythe. Advanced Graphis Programming Using OpenGL[M], 2005: 23-28.
    [39] Victor J.D. Delaunay triangulation in TIN creation: A overview and a linear-time algorithm.Int.[J] GIS, 1993, 7(6):501-524.
    [40]余华中等.厚松散层放顶煤开采条件下地表移动参数研究[J].焦作工学院学报(自然科学版), 2003, 22(6): 413-416.
    [41]张恒.复杂地质界面三维建模方法研究[D].西安:西安科技大学. 2005.
    [42]薛安,马蔼乃,李天宏.基于OpenGL实现真实感地形表现的研究[J].中国图像图形学报, 2001,8. 6(8): 800-805.
    [43]和平鸽工作室编. OpenGL高级编程与可视化系统开发(高级编程篇)[M].北京:中国水利水电出版社, 2003
    [44]韩李涛.矿区地表变形预计与可视化研究[D].山东泰安:山东科技大学,2003.
    [45]韩丽娜.数据可视化技术及其应用展望[J].煤矿现代化, 2005,(6): 39-40.
    [46]夏玉成,孙学阳,汤伏全.煤矿区构造控灾机理及地质环境承载能力研究[M].北京:科学出版社, 2008. 250-254.
    [47]刘敏莺,黄文赛.基于OpenGL的地形三维可视化[J].海洋测绘, 2002,3.22(2):26-29.
    [48]谢飞鸿.开采沉陷地表变形可视化计算分析系统[J].矿业快报, 2004,(3): 47-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700