普通小麦—华山新麦草附加系和小麦品种N.Strampelli的抗条锈病遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由小麦条锈菌(Puccinia striiformis f.sp tritici)引起的重要小麦病害,在我国曾多次大流行。丰富小麦抗病基因库,寻找高品位的抗病基因是目前抗病育种中控制小麦条锈病的重要战略。利用栽培小麦种内抗条锈基因的抗病作用很有限,因此通过引入外源基因改变小麦抗病基因单一的现状,并深入研究持久抗锈品种发掘具有持久抗锈性的基因,延长抗病品种的使用年限,是应对小麦条锈病威胁的重要途径。本研究系统分析了3个普通小麦—华山新麦草附加系的抗条锈性及其抗病遗传机制,并对持久抗病品种N.Strampelli中一个全生育期主效抗条锈基因进行了分子标记。取得以下结果:
     1.利用CYR29、CYR30、CYR31、CYR32、Su-4、Su-11、Su-14等7个条锈菌流行小种对普通小麦-华山新麦草附加系H9014-14-16-5-5、H9014-27-1-1-13-5、H9014-14-4-6-1、H9014-14-1-9-2及其亲本华山新麦草,7182进行抗病性评价。结果表明:4个普通小麦-华山新麦草附加系的抗条锈基因均来自华山新麦草。H9014-14-16-5-5和H9014-27-1-1-13-5对7个菌系均表现抗病,H9014-14-4-6-1除对CYR29表现感病,对Su-11表现抗感分离外,对其它菌系均表现抗病;H9014-14-1-9-2除对CYR29和Su-11表现感病外,对其它5个菌系均表现近免疫。
     2.对普通小麦-华山新麦草附加系与感病品种铭贤169杂交构建的群体,接种5个当前流行小麦条锈菌生理小种进行遗传分析,结果表明:
     (1). H9014-27-1-1-13-5对CYR31和CYR32的抗病性由一对显性基因控制;对CYR30的抗病性由两对显性基因重叠或独立控制;对Su-4和Su-14的抗病性由一显一隐两对基因重叠或独立控制。
     (2). H9014-14-4-6-1对CYR30、CYR31、CYR32和Su-4的抗病性是两对显性基因重叠或独立控制的;对Su-14的抗病性是由一对显性基因独立控制;
     (3). H9014-14-1-9-2对CYR30、CYR31和CRY32的抗病性由两对显性基因重叠或独立控制;对Su-4的抗病性是由两对隐性基因重叠或独立控制;对Su-14的抗病性是由一显一隐两对基因重叠或独立控制的。
     3.遗传分析发现N.Strampelli对Su-14的抗锈性是由一对隐性基因控制的,利用SSR技术对这个抗病基因进行分子标记,找到了四个与抗病基因YrNS-1(暂时命名)紧密连锁的分子标记xwmc719、xgwm124,xwmc44和xcfa2147,并将该抗病基因定位于小麦染色体1BL上,这四对引物与YrNS-1的遗传距离分别为3.2,4.6 ,5.7和10.3cM。通过与1BL上已有基因在抗病性、基因来源及遗传距离等方面的比较,可以推断YrNS-1可能是一个与已知抗条锈基因不同的新基因。
Stripe rust caused by Puccinia striiformis f.sp tritici is a serious disease of wheat and have caused several severe epidemic in China. Identification of new resistance gene plays an important part in controlling the disease. However, the resistance in advanced lines is inadequate. Therefore, more attention has been given to wheat wild relatives and durable resistance cultivars in recent years, hoping that these genes can prolong the effectiveness to stripe rust .In this study, genetic resistance of three additional lines derived from wheat and Psathyrostachys huashanica Keng were determined , and a resistance gene in N.Strampelli was mapped by molecular marker. The results were as follows:
     1. Four wheat-Psathyrostachys huashanica Keng additional lines H9014-14-16-5-5, H9014-27-1-1-13-5, H9014-14-4-6-1, H9014-14-1-9-2, and parental line Psathyrostachys huashanica Keng ,7182 were determined by CYR29, CYR30, CYR31, CYR32, Su-4, Su-11, and Su-14.The results indicated that :the resistance genes of 4 additional lines conferring to stripe rust came from Psathyrostachys huashanica Keng ,H9014-14-16-5-5 and H9014-27-1-1-13-5 conferred resistance to all the stripe rust races; H9014-14-4-6-1 showed susceptible phenotype to CYR29 and had segregation in resistance to Su-11 and conferred resistance to all other rust races; H9014-14-1-9-2 conferred resistance to all 7 races except CYR29 and Su-11.
     Genetic analysis of the resistance in three additional lines with the five currently prevalent stripe races indicated that :
     (1) A pair of dominant resistance in H9014-27-1-1-13-5 conferred resistance to CYR31 and CYR32; two dominant resistance complementarily or independently conferred resistance to CYR30; one pair of dominant gene and one pair of recessive gene conferred resistance to Su-4 and Su-14.
     (2) Two pairs of dominant genes complementarily or independently conferred resistance to CYR30, CYR31,CYR32 and Su-4,one pair of dominant gene conferred resistance to Su-14 in H9014-14-4-6-1.
     (3) In H9014-14-1-9-2 , two pairs of dominant genes complementarily or independently conferred resistance to CYR30, CYR31, and CRY32; Two pairs of recessive genes complementarily or independently conferred resistance to Su-4; one pair of dominant gene and one pair of recessive gene conferred resistance to Su-14.
     2. In N.Strampelli,the resistance to Su-14 was determined by a single recessive gene, four SSR markers xwmc719,xgwm124,xwmc44 and xcfa2147 on the chromosome arm 1BL were found to be linked to Yr NS-1 . The genetic distances for the markers were 3.2, 4.6,5.7 and 10.3cM, respectively.Compared with the other genes on 1BL, Yr NS-1 may be a novel resistant gene to stripe rust.
引文
[1]李振岐,曾士迈.中国锈病学[M].北京:中国农业出版社, 2002.
    [2]陈漱阳,张安静,傅杰.普通小麦与华山新麦草的杂交[J].遗传学报, 1991, 18(6): 508~512.
    [3]曹张军,王献平,井金学等.小麦背景中来自华山新麦草的抗条锈病基因的遗传学分析和分子标记[J].遗传学报, 2005, 32(7): 738-743.
    [4]刘佩,杨敏娜,周新力等.普通小麦-华山新麦草易位系H9020-1-6-8-3抗条锈病基因的遗传分析和SSR标记[J].植物病理学报, 2008, 38(1): 104-107.
    [5] R.Johnson. The concept of durable resistance[J]. Phytopath, 1979, 69: 198-199.
    [6]董云,周祥椿,殷学贵等.几个小麦持久抗条锈品种病情扩展动态研究[J].甘肃农业大学学报, 2004, 39: 177-182.
    [7] Zhou.X.C. Study on Resistance Durability of Commercial Wheat Cultivar Grown in Southern Region of Gansu Province to Stripe Rust[J]. Journal of Triticeae Crops, 2006, 26(1): 108-112.
    [8]赖世龙,谢水仙.小麦持久抗性品种对中国条锈菌(系)抗病性特点的分析[J].植物保护学报, 2002, 29(1): 36-40.
    [9]万安民,赵中华,吴立人. 2002年我国小麦条锈病发生回顾[J].植物保护, 2003, 29(2): 5-8.
    [10]贾秋珍,金社林,曹世勤等.小麦条锈菌生理小种条中32号及水源14治病类型在甘肃的流行与发展趋势[J].植物保护学报, 2007, 34(3): 263-267.
    [11]李振岐.我国小麦品种抗条锈性丧失原因及其控制策略[J].大自然探索, 1998, 17(66): 21-25.
    [12] Biffen, R. H. Mendel's law of in heritance and wheat breeding[J]. Journal of Agricultural Science, 1905, 1: 4-48.
    [13] Stakman.E.C.etc. Principles of plant pathology[M]. New York: Ronald Press New York, 1957.
    [14] Flor.H.H. Mutations in flax rust induce by ultraviolet radiation[J]. Science, 1956, 124: 888-889.
    [15]彭绍裘,刘二明.作物持久抗病性的研究进展与战略[J].湖南农业科学, 1993, 1: 14-16.
    [16] Garnand.K, Nelson.M.A. The effect of DNA structure and restriction enzymes on transformation efficiencies in Neurospora crassa[J]. Fungal Genet Newslett, 1995, 42: 29-31.
    [17] Browder.L.E. Parasite, host, environment specificity in cereal rusts[J]. Ann Rev Phytopath, 1985, 23: 201-222.
    [18] Sears.E.R. The aneuploids of common wheat[J]. Missouri Agricultural Experiment Station Research,Bulletin, 1954, 57(2): pp..59.
    [19] Chen.X.M, Jones.S, Line.R.F. Chromosomal location of genes for stripe rust re sistance in spring wheat cultvars Compair,Fielder,Lee,and Lemhi and Interactions of Aneuploid wheats with Races of Puccinia striiformis[J]. Genetic, 1995, 85: 375-381.
    [20]齐莉莉,陈佩度,刘大钧,等.小麦白粉病新抗源基因Pm2l[[J].作物学报, 1995, 21(3): 257-262.
    [21]徐琼芳,马有志,辛志勇,等.应用原位杂交和RAPD技术标记抗黄矮病小麦-中间偃麦草染色体异附加系[J].遗传学报, 1999, 26(1): 49-53.
    [22]周充晨,张相岐,王献平,等.滨麦抗条锈病基因的染色体定位和分子标记[J].遗传学报, 2001, 28(9): 864-869.
    [23]王献平,初敬华,张相岐.小麦异源易位系的高效诱导和分子细胞遗传学鉴定[J].遗传学报, 2003, 30(7): 619-624.
    [24]武军,赵继新,陈新宏.普通小麦-华山新麦草衍生后代的细胞学特点及GISH分析[J].麦类作物学报, 2007, 27(5): 772-775.
    [25]马渐新.小麦抗条锈病基因的鉴定、定位及分子作图北京.
    [26] Li.Z.F, Zheng.T.C, He.Z.H, e. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheatline Zhou 8425B[J]. Theor Appl Genet, 2006, 112: 1434-1440.
    [27] Michelmore.R.W, Paran.I. Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating segregation populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 9828-9832.
    [28] Welsh, J., Michael.McClelland. Fingerprinting genomes using PCR with arbitrary prime[J]. Nucleic Acids Research, 1990, 18(24): 7214-7218.
    [29] Williams.J.G.K, Kubelik.A.R, Kenneth.J.L, e. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acide Res, 1990, 18: 6531-6535.
    [30]牛永春,刘红彦,吴立人,等.小麦品种“Lee”中抗条锈病基因的RAPD标记[J].高技术通讯, 1998, 12: 11-14.
    [31] Chague.V, Fahima.T, Dahan A, e. Isolation of microsatellite and RAPD markers flanking the Yr15 of wheat using NILs bulked segregant analysis[J]. Genome, 1999, 42: 1050-1056.
    [32] Robert.O, Abelard.C, Dedryver.F.etc. Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat[J]. Molecular Breeding, 1999, 5: 167-175.
    [33]钟鸣,牛永春,徐世昌,等.小麦品种Triticum Spelta album中抗条锈病基因Yr5的RAPD标记[J].遗传学报, 2002, 29(8): 719-722.
    [34]陈晓红,牛永春, ,,():.,胡. J.用变性PAGE-银染法鉴定小麦抗条锈基因Yr5的RAPD标记[J].遗传学报, 2004, 31(3): 270-274.
    [35] Flavell.R.B, Bennett.M.D, Smith.J.B. Genome size and proportion of repeated nucleotide sequence DNA in plants[J]. Biochemical Genetics, 1974, 12: 257-269.
    [36] Condit.RaHSP. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes[J]. Genome, 1991, 34: 66-71.
    [37] Song.Q.J, Fickus.E.W, Cregan.P.B. Characterization of trinucleotide SSR motifs in wheat[J]. TheorApplGenet, 2002, 104: 286-293.
    [38] Zhao.X, Wu.T. Genome specific repetitive sequences in the genus Oryza[J]. Theor Appl Genet, 1989, 78: 201-209.
    [39] Litt.MaJAL. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. AmJHumGenet, 1989, 44: 397-401.
    [40] Korzun.VM, Nikitin.AI. Asymmetry of the chaetae in fleas (Citellophilus tesquorum) as a possible marker of their capacity for blocking[J]. MedParazitol(Mosk), 1997, 5: 34-36.
    [41] Buerstmayr.H, Lemmens.M, Hartl.L, e. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. Resistance to fungal spread(Type II resistance)[J]. Theor Appl Genet, 2002, 104: 84-91.
    [42] Dholakia.B.B, Ammiraju.J.S, Santra.D.K, e. Molecular marker analysis of protein content using PCR-based markers in wheat[J]. BiochemGenet, 2001, 39: 325-338.
    [43] Liu.M, Smith.M, Gill.S. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6[J]. TheorApplGenet, 2002, 104: 1042-1048.
    [44] Bell.Cjaejr. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis[J]. Genomics, 1994, 19: 137-144.
    [45] Areshchenkova.Tagwm. Long tomato microsatellites are predominantly associated with centromeric regions[J]. Genome, 1999, 42: 536-544.
    [46] Cho.Y.G, SR, M., K MK, e. Intergrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.)[J]. Theor Appl Genet, 1998, 97: 370-380.
    [47] Taramino.G, Tingey.S:. Simple sequence repeats for germplasm analysis and mapping in maize[J]. Genome, 1996, 39: 277-287.
    [48] Liu.K, Somerville.S. Cloning and characterization of a highly repeated DNA sequence in Hordeum vulgare[J]. Genome, 1996, 39: 1159-1168.
    [49] R?der.M.S, Plaschke.J, Konig.S.U, e. Abundance,variability and chromosomal location of microsatellites in wheat[J]. MolGenGenet, 1995, 246: 327-333.
    [50] Nicot.N, Chiquet.V, Gandon.B, e. J. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs)[J]. Theor ApplGenet, 2004.
    [51] Gao.L.F, Jing.R.L, Huo.N.X, e. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat[J]. Theor Appl Genet, 2004, 108: 1392-1400.
    [52] Eujayl.I, Sorrells.ME, Baum.M, e. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theor Appl Genet, 2002, 104: 399-407.
    [53] Varshney.RK, Thiel.T, Stein.N, e. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species[J]. Cell MolBiolLett, 2002, 7: 537-546.
    [54] Altinkut.A, Gozukirmizi.N. Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis[J]. MolBiotechnol, 2003, 23: 97-106.
    [55] Zabeau.M, Vos.P. Selective restriction fragment amplification:a general method for DNA fingerprinting[A]. P. n. 0534858A1. European Patent Application number 924026297[C]. 1993.
    [56] Vos.P, Hogerss.R, Bleeker.M, e. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995, 23(21): 4407-4414.
    [57] Williams.CE, Collier.CC, Sardesai.N, e. Phenotypic assessment and mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera: Cecidomyiidae)[J]. Theor Appl Genet, 2003, 107: 1516-1523.
    [58] Xing.Q.H, Ru.Z.G, Zhou.C.J, e. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat[J]. Theor Appl Genet, 2003, 107: 1500-1504.
    [59] Singrun.C, Hsam.SL, Hartl.L, e. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat(Triticum aestivum L. em Thell.)[J]. Theor Appl Genet, 2003, 106: 1420-1424.
    [60] Guo.P.G, Bai.G.H, Shaner.G.E. AFLP and STS tagging of a major QTL for Fusarium head blightresistance in wheat[J]. Theor Appl Genet, 2003, 106: 1011-1017.
    [61] Gervais.L, Dedryver.F, Morlais.J.Y, e. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat[J]. Theor Appl Genet, 2003, 106: 961-970.
    [62] Williams.J, Taylor.P, Bogacki.P, e. Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat[J]. Theor Appl Genet, 2002, 104: 874-879.
    [63] Raman.H, Moroni.S, Sato.K, e. Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley ( Hordeum vulgare L.)[J]. Theor Appl Genet, 2002, 105: 458-464.
    [64] Bednarek.PT, Lewandowska.R, Golas.T, e. The chromosomal location of rye AFLP bands[J]. Cell MolBiolLett, 2003, 8: 955-961.
    [65] Ozkan.H, Brandolini.A, Schafer-Pregl.R, e. AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey[J]. MolBiolEvol, 2002, 19: 1797-1801.
    [66] Serizawa.N, Nasuda.S, Endo.T.R. Barley chromosome addition lines of wheat for screening of AFLP markers on barley chromosomes[J]. Genes Genet Syst, 2001, 76: 107-110.
    [67] Anamthawat-Jonsson.K. Genetic and genomic relationships in Leymus Hochst[J]. Hereditas, 2001, 135: 247-253.
    [68] Milla.R, Gustafson.J.P. Genetic and physical characterization of chromosome 4DL in wheat [J]. Genome, 2001, 44: 883-892.
    [69] Smith.P.H, Korbner.R, Michin.P.N, e. The isolation of yellow rust resistance genes from wheat: 35:91-93.
    [70]张超,徐如宏,思彬彬,等.用AFLP标记来自偏凸山羊草的抗条锈病新基因YrG775[J].中国农业科学, 2006, 39(4): 673-678.
    [71]张娜,杨文香,阎红飞,等.小麦抗叶锈病基因Lr45的AFLP标记[J].中国农业科学, 2005, 38(7): 1364-1368.
    [72] Yan.G.P, Chen.X.M, Line.R.F, e. Resistance gene-analog polymorphism markers cosegregating with the Yr5 gene for resistance to wheat stripe rust[J]. Theor appl Genet, 2003, 106(4): 636-643.
    [73] Shi.Z.X, Chen.X.M, Line.R.F, e. Development of resistance gene analog polymorphism markers for the Yr9 Gene resistance to wheat stripe rust[J]. Genome, 2001, 44(4): 509-516.
    [74] Yong.G.Y, Glenn.R.B, Saghaim.M.A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site[J]. Proc Natl Sci USA, 1993: 11751-11756.
    [75] Leister.D, Kurth.J, Laurie.D.A, e. a. Rapid reorganization of resistance gene homologues in cereal genomes[J]. Proc Natl Acad Sci USA, 1998, 95: 370-375.
    [76] Catherine.F, Christophe.R, Per.K. Molecular characterization of a new type of receptor-like kinase(wlrk)gene family in wheat[J]. Plant Molecular Bilology, 1998, 37: 943-953.
    [77] Mark.G.M.A, Bas.T.L.H, Eric.B.H. Identification of R-gene homologous DNA fragment genetically linked to disease resistance loci in Arabidopsis thaliana[J]. MPMI, 1998, 11(4): 251-258.
    [78] Vasu.Kuraparthy, Parveen.Chhuneja, Harcharan.S.Dhaliwal, e. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistancegenes Lr57 and Yr40 in wheat[J]. Theor Appl Genet, 2007, 114: 1379-1389.
    [79] Simon.G, Krattinger.Evans.S, Lagudah. A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat[J]. Science, 2009, 323: 1360.
    [80] Chicaiza.O, Khan.I.A, Zhang.X.et. Registrationg of five wheat isogenic lines for leaf rust and strip rust resistance genes[J]. Crop Science, 2006, 46: 485-487.
    [81] Daolin.Fu, Cristobal.Uauy. A Kinase-START Gene Confers StripeTemperature-Dependent Resistance to Wheat Rust.[J]. Science, 2009, 323: 1357.
    [82] R?der.M.S, Korzun.V, Wendehake.K, e. A microeatcllite map of wheat[J]. Genetics, 1998, 149: 2007-2023.
    [83] Stephenson.P, Bryan.G, Kirby.J, e. Fifty new microsatellite loci for the wheat genetic map[J]. Theor Appl Genet, 1998, 97: 946-949.
    [84] Pestsova.E, Ganal.MW, Roder.MS. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat[J]. Genome, 2000, 43: 689-697.
    [85] Somers.D.J, Isaac.P, Edwards.K. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.)[J]. TheorApplGenet, 2004, 109: 1105-1114.
    [86] Song.Q.J, Shi.J.R, Sigh.S, e. Development and mapping of microsatellite (SSR) markers in wheat[J]. Theor Appl Genet, 2005, 110(3): 550-560.
    [87] Rzun.V, R?der.M.S, wendehake.K, e. Integration of dinucleotide microsatellite from hexaploid bread wheat into a genetic linkage map of durum wheat[J]. Theor Appl Genet, 1999, 98: 1202-1207.
    [88] Nachit.M.M, Elouafi.L, Pagnotta.M.A, e. Molecular linkage map for an Intraspecific recombinant inbred population of durum wheat(triticum turgidum L.)[J]. Theor Appl Genet, 2001, 102: 177-186.
    [89] Ma.J.X, Zhou.R.H, Dong.Y.S, e. Molecular mapping and detection of the stripe rust resistance gene Yr26 in wheat transferred from Triticum turgidumL Using microsatellite markers[J]. Euphyica, 2001, 120: 219-226.
    [90]程颖,宋伟,刘志勇,等.小麦品种贵农21抗条锈病基因的SSR标记[J].中国农业科学, 2006, 32(12): 1867-1872.
    [91]杨敏娜,徐智斌,王美南等.小麦品种中梁22抗条锈病基因的遗传分析和分子作图[J]. ACTA AGRONOMICA SINICA, 2008, 34(7): 1-5.
    [92]林凤,徐世昌,张立军,等.小麦抗条锈病基因Yr2的SSR标记[J].麦类作物学报, 2005, 25(1): 17-19.
    [93]翁东旭,徐世昌,万安民,等.小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记[J].遗传学报, 2005, 32: 937-941.
    [94]刘亚萍,曹双河,王献平,等.小麦抗条锈病基因Yr24的SSR标记[J].植物病理学报, 2005, 35(5): 478-480.
    [95] Bariana.H.S, Parry.N, Barclay.I.R.etc. Identification and characterization of stripe rust resistance gene Yr34 in common wheat[J]. Theor Appl Genet, 2006, 112: 1143-1148.
    [96] Li.G.Q, Li.Z.F, Yang.W.Y, e. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26[J]. Theor Appl Genet, 2006, (112): 1434-1440.
    [97]井金学,傅杰,袁红旭等.三个小麦野生近缘种抗条锈性传递的初步研究[J].植物病理学报,1999, 29(2): 147-150.
    [98]周新力,吴会杰,张如佳,等.来自簇毛麦抗条锈病新基因的SSR标记[J].植物病理学报, 2008, 38(1): 69-74.
    [99]杨敏娜,井金学,刘佩,等.普通小麦-柔软滨麦草易位系抗条锈病基因的遗传分析和微卫星标记[J].西北农林科技大学学报(自然科学版), 2008, 36(4): 187-192.
    [100]王美南,商鸿生.华山新麦草对小麦全蚀病菌的抗病性研究[J].西北农业大学学报, 2000, 28(6).
    [101] Lin.X.H, Wang.L.M, Li.X.F.etc. Identification of octoploid trititrigia and alien disomic addition line with powdery mildew resistance[J]. ACTA AGRONOMICA SINICA, 2005, 31(8): 1035-1040.
    [102] Wang.Ch.Y, Ji.W.Q, Zhang.G.Sh, lynnetwwwdagriorglynnet. Molecular cytogenetics identifications on Triticum aestivum-Elymus rectisetus alien addition line[J]. ACTA AGRONOMICA SINICA, 2006, 32(12): 1898-1901.
    [103]吴金华,王新茹,王长有等.含抗白粉病新基因普通小麦-黑麦1R二体异附加系的遗传学鉴定[J]. Journal of Agricultural Biotechnology, 2009, 17(1): 153-158.
    [104] Johnson, R., Priestley, R., Taylor, E. Occurrence of virulence in Puccinia striiformis for Compare wheat in England[J]. Cereal Rust Bull, 1978, 6: 11-13.
    [105]孙涛,简桂良,卢美光.等.植物持久抗病性分子水平研究进展[J].辽宁农业科学, 2006, (2): 49-52.
    [106] Johnson.R, Law.C.N. Genetic control of durable resistance to yellow rust (Fuccinia striiformis) in the wheat cultivar Hybridede Bersee[J]. Ann appl Biol, 1975, 81: 385-391.
    [107]侯文邦.小麦对条锈病的成株抗病性研究:西北农业大学.
    [108] singh.P.R. Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat[J]. Plant Disease, 1993, 77: 1103-1106.
    [109]万安民,牛永春,徐世昌等.持久抗条锈病小麦品种抗性特点及其在我国的利用价值[J].作物学报, 2000, 26(6): 6-9.
    [110]徐世昌,张敬源,赵文生等.小麦京核891-1抗条锈主效、微效基因的遗传分析[J].中国农业科学, 2001, 34(3): 272-276.
    [111] Milus.E.A, Line.R.F. Gene action for inheritance of durable, high-temperature, adult-plant resistance to stripe rust in wheat[J]. Phytopath, 1986, 76: 435-441.
    [112]王凤乐,吴立人,徐世昌等.持久抗条锈小麦品种抗病性特点分析[J].植物保护, 1997, 23(3): 3-6.
    [113]阎秋洁,尚勋武,殷学贵等.小麦持久抗条锈品种的抗性特点及鉴定指标[J].甘肃农业大学学报, 2006, 41(6): 24-28.
    [114] YIN.X.G, ZHANG.Y.H, [J], Y. Q. J. Resistant Characteristics to Stripe Rust and Genetic Analysis of Durable Resistance on Wheat Cultivar N.strampelli[J]. Journal of Plant Genetic Resources, 2005, 6(4): 390-393.
    [115] Hu.M.L, Li.Q, Hou.L. Inheritance and location of stripe rust resistance in wheat cultivar N.Strampelli. [J]. Acta Phytophylacica Sinica, 2008, 35(6): 569~570.
    [116]刘孝坤.小麦抗源对条锈病的抗性遗传研究初报[J].植物保护学报, 1988, 15(1): 33-39.
    [117]万永芳,颜济,杨俊良.等.小麦近缘野生植物的赤霉病抗性研究[J].植物病理学报, 1997, 27 (2): 107- 111.
    [118]王关林,方宏筠.植物基因工程[第二版] [M].北京:科学出版社, 2001.
    [119] William.M, Singh.RP, Huerta-Espino J, e. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat.[J]. Phytopathology, 2003, 93: 153 159.
    [120] Lupton.F.G.H., Macer.R.C.F. MacerInheritance of resistance to yellow rust (Puccincia glumarrum erikss. Henn) in seven varieties of wheat[J]. TransBritMycolSoc, 1962, 45: 21-45.
    [121] Zeller.F.J. 1B/1R Wheat-rye chromosome substitutions and translocations[C]. Proceedings of the 4th International Wheat Genetics Symposium. Columbia, Missouri, USA,, 1973.
    [122] Ma.J.X, Zhou.R.H, Dong.Y.S. Progress of Studies on Chromosomal Location and Molecular Markers of Yellow Rust Resistance Genes in Wheat.[J]. Biotechnology Information, 1999 1: 1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700