新型微波热疗天线的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤热疗(Hyperthermia)是一种利用热能引起的生物效应来治疗肿瘤的方法,该技术已在临床治疗中得到较为广泛的应用。在肿瘤热疗中常用的电磁能量有微波、射频和超声波等。其中,微波加热技术过热问题比较少,更安全有效,且具有并发症少、副作用小等优势。而微波热疗的核心问题在于设计辐射效率高且安全的天线。
     本文借助于基于时域有限积分(FIT)方法的CST MWS软件,研究、设计和制作了一种适合于局部肿瘤热疗需求的辐射天线,并展开了部分实验研究。论文分为三部分:
     第一部分,介绍了微波热疗的作用机理、医用微波辐射天线基本理论及其设计方法,为热疗天线的研制提供了理论依据。
     第二部分,设计了用于腔外式辐射的加脊圆波导热疗天线。通过介质填充和口面加载多层介质等方式,优化天线结构,减少天线的能量反射,改善了体模中的电场分布,增加了有效加温深度,提高了天线的辐射效率,并在热疗模型中仿真验证了热疗天线对工作频率的波动和结构参数变化的不敏感性。
     第三部分,设计并制作了天线,测量了其阻抗特性。在此基础上搭建了热疗模型,开展了体模实验得到了热疗模型的温升特性,实测数据接近仿真数据,结果表明,所设计的天线满足热疗天线的应用要求。
Hyperthermia has been widely used in tumor cure. It is a tumor therapy which is using biological heat effect. Microwaves, radiofrequency, ultrasonic are commonly used in hyperthermia treatment. Microwave heating technology has less problems of overheat, and is more safety. Furthermore, it has little side effect and other disadvantages. Designing high effective and secure microwave hyperthermia antennas is the key issue for improving of microwave hyperthermia.
     In this paper, an antenna for a local tumor hyperthermia is designed using the CAD software CST MWS which is based on Finite Integration Technique. The thesis is composed of three parts.
     In the first part, the mechanism of microwave hyperthermia, the basic theory and design methods of microwave medical radiation antennas are introduced, which provided a theoretical foundation for the choice of antenna in microwave hyperthermia field.
     In the second part, a ridged circular waveguide is designed as an external radiator. The structure of the antenna is optimized by filling the waveguide with dielectric and loading multilayer dielectric at the radiation surface, which can reduce the reflected energy, make the electric field more concentrated and the increase effective heating depth, as the same time, the radiation efficiency will be improved too. The simulation data shows that the radiation antenna is not sensitive to its working frequency and structure parameters.
     In the third part, the process of manufacturing needed antenna is showed, the reflection coefficient of the antenna is measured, and the characteristic of temperature rising is measured by building a hyperthermia model. The results show that the measured data fit close to the simulated data, and it meets the requirement of microwave hyperthermia antenna.
引文
[1] J.P.McGahan, J.M.Brock, H.Tesluk,et al. Hepatic Ablation with Use of Radio-frequency Electrocautery in the Animal Model[J]. J.Vasc.Inter.Radiol. 1992,3:291-297.
    [2]汤钊猷.原发性肝癌的研究进展[J].中国肿瘤临床, 1998,25(2):137-141.
    [3]陈代珠.医用微波技术[M].北京:国防工业出版社, 1998.
    [4] Koichi Ito, Kazuyuki Saito: Microwave Antennas for Thermal Therapy[J]. Thermal Med, 2007. 23-30.
    [5] N. M. Pothecary and C. J. Railton: Finite-Difference Time-Domain modelling of hyperthermia applicators for cancer therapy[J]. IEEE Microwave Theory and Techniques Symposium Digest, (Atlanta), 1993.1151-1154.
    [6] R. Seip and E. Ebbini, Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound[J]. IEEE Transactions Biomedical. Engineering, 1995, 42(8):828–839, Aug..
    [7] Svein Jacobsen, Paul R. Stauffer, Daniel G. Neuman, Dual-mode antenna Design for Microwave Heating and Noninvasive Thermometry of superficial Tissue Disease[J]. IEEE Transactiongs on biomedical Engineering, 2000.1500-1509.
    [8] Giorgio Arcangell, Pietro P. Lombardini, Giorgio A. Lovisolo, Guglielmo Marsiglia, Maurizio Piattelli, Focusing of 915 MHz Electromagnetic Power on Deep Human Tissues: A Mathematical Model Study[J]. IEEE Transactions on biomedical Engineering, 1984. 47-52.
    [9] Ruizhi Xu, Yu Zhang, Ming Ma, Jingguang Xia, Jiwei Liu, Quanzhong Guo, and Ning Gu, Measurement of Specific Absorption Rate and Thermal Simulation for Arterial Embolization Hyperthermia in the Maghemite-Gelled Model[J]. IEEE Transactiongs on biomedical Engineering, 2007, 42(8): 1078-1085.
    [10] Ali Nasiri Amini, Emad S. Ebbini, Tryphon T. Georgiou, Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques[J]. IEEE Transactiongs on biomedical Engineering, 2005, 52(2):221-228.
    [11] N. Siauve, L. Nicolas, C. Vollaire, A. Nicolas, J. A. Vasconcelos, Optimization of 3-D SAR distribution in local RF hyperthermia[J]. IEEE Trans. Magn., 2004, 40(2):1264–1267.
    [12] Guglielmo d’Ambrosio Marco Donald Migliore, Numerical and experimental analysis of leaky-wave microwave applicators[J]. IEEE Transactiongs on Antennas and Propagation, 2004, 52(6):221-228.
    [13] Zhong-Shan Deng, Jing Liu, Uncertainties in the Micro/nano-Particles Induced Hyperthermia Treatment on Tumor Subject to External EM Field[J]. IEEE International Conference on Nano/Micro Engineered and Molecular SystemsJanuary, Zhuhai China ,2006, 18-21.
    [14] Myerson RJ, Leybovich L, Emami B, etal. Phantom studies and preliminary experience, with the BSD2000 [J]. Int J Hyperthermia. 1991, 7:937-954.
    [15] Prevost B, Cordoue DS, Mirabel X, etal. A 915MHz microwave interstitial hyperthermia pert III[J]. Int J Hypert, 1993, 9(4):625
    [16]冯辰生,潘英俊,周大秋,吴芳.微波热疗中的温度测量技术[J].传感器技术, 2004,23(11):72-74.
    [17]林世寅,李瑞英,毛慧生等.现代肿瘤热疗学-原理、方法与临床[M].北京:学苑出版社, 1997.
    [18]任新颖.肿瘤热疗中组织温度场测量方法及关键技术研究[D].博士学位论文.北京:北京工业大学,2008.
    [19]陈树湛.肿瘤热疗的温度测控技术及应用研究[D].硕士学位论文.上海:上海交通大学, 2008.
    [20] L. Dubois, J. Bera, J. Pribetich, M. Chive, Theoretical and Experimental Determination of The Power Deposition of A Microstrip-Microslot Applicator for Biomedical Applications[J]. Microwave and Optical T&knology Leftets, 1991, 4(4):141-145.
    [21] Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. J. Dobsen, Applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D: Applied Physics, 2003, 36:167-181.
    [22] R. E. Rosensweig, Heating magnetic fluid with alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials, vol. 252, pp. 370-374, 2002.
    [23] J. Liu, Uncertainty analysis for temperature prediction of biological bodies subject to randomly spatial heating[J]. Journal of Biomechanics, 2001, 34:1637-1642.
    [24] Vrba, J., Franconi, C., Montecchia, F., Evanescent-Mode Applicators for Subcutaneous Hyperthermia[J]. IEEE Transactions on Biomedical Engineering, 1993, 40(5):397-407.
    [25] K. Saito, Y. Hayashi. H. Yoshimura and K. Ito: Heating Characteristics of Array Applicator Composed of Two Coaxial-Slot Antennas for Microwave Coagulation Therapy[J]. IEEE Trans Microwave Theory & Tech., 2000, 48(11):1801-1806.
    [26] Volker Eppert,B. Stuart Tremble, Horst J. Richter: Air Cool for an Interstitial Microwave Hyperthermia Antenna: Theory and Experiment[J]. IEEE Transactions on Biomedical Engineering, 1991. 450-460.
    [27] R.F.Harrington: Time-Harmonic Electromagnetic Fields[M]. MeGraw–Hill Book Co. 1961.
    [28]席晓莉,汪文秉,王丽黎.微波热疗天线在生物组织中温度分布的模拟[J].微波学报, 2005, 21(1):66-69.
    [29]刘于惠,橱国胜,王健琪,朱新亚,杨波.侵入式微波热疗中比吸收率的分布[J].第四军医大学学报, 2000, 21(11):1371-1374.
    [30]朱剑,汪洁,张俊发,叶春飞,张树京.妇科治疗微波辐射器设计及近场分布特性的研究[J].上海铁道大学学报, 2000, 21(8):48-52.
    [31]缪毅强,高蕴雅,张觉先,钱鸿森.高效新型微波体内辐射器的研制及临床应用[J].中国医学物理学杂志, 2000, 17(4):229-234.
    [32]王伟,丁荣林,王海磐,李迎新,林世寅.新型热疗宫颈癌微波辐射器的研制[J].生物医学工程学杂志, 2002, 19(1):175-177.
    [33]杜永兴,席晓莉.2450MHz医用微波辐射天线的设计[J].微波学报, 2006, 22:86-89.
    [34]汪瑞林,癌的微波加温疗法[J].数理医药学杂志, 1997, 10(1):63-68.
    [35]缪毅强,高蕴雅,张觉先,罗琦琨,钱鸿森.目前临床医用微波辐射器的缺陷与改进方向的研究[J].红外与毫米波学报, 2002, 21(4):297-301.
    [36]高蕴雅,缪毅强,钱鸿森.医用外照射微波辐射器的改进和临床应用[J].红外与毫米波学报, 2001, 20(2):143-146.
    [37]廖承恩.微波技术基础[M].西安:西安电子科技大学出版社,2000.
    [38]李鼎九,胡自省,钟毓斌.肿瘤热疗学[M].郑州:郑州大学出版社.2002.
    [39]张达.肿瘤的微波热疗[J].中国肿瘤临床与康复, 2001, 8(5):128-129.
    [40] Sawaji Y, Sato T, Takeuchi A, etal. Anti-angiogenic action of hyperthermia by Suppressing gene expression and production of tumor-derived vascular endothelial growth factor in vivo and invitro[J]. Br J Cancer, 2002, 86(10):1597-1603.
    [41] Bin Xu, Qing Wei, Feng Liu, Stuart Crozier. An Inverse Methodology for High-Frequency RF Coi1 Design for MRI With De-emphasized BI Fields[J]. IEEE Transactions on Biomedical Engineering. 2005, 52(9):1582-1587.
    [42] A N Amini, E S. Ebbini, T T. Georgiou. Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(2):221-228.
    [43] Rietveld PJ, Van Putten WLJ, Van Der Zee J, etal. Comparison of the clinical effectiveness of the 433MHz Lucite cone applicator with that of a conventional waveguide applicator in applications of superficia1 hyperthemia[J]. a. Int. J. Radiat. oncol. Biol. Phys.1999, 43(3):681-687.
    [44] Zeji G, Carey MR, Pau1 J W, Brian A V. A21/4-Turn Spiral Antenna for Catheter Cardiac Ablation[J]. IEEE Transactions on Biomedical Engineering. 1999, 46(12):1480-1482.
    [45]杜永兴.微波热疗天线的设计与研究[D].硕士学位论文.西安:西安理工大学,2007.
    [46]周大秋.腔内式直肠癌微波热疗辐射器的研制[D].硕士学位论文.重庆:重庆大学2004.
    [47] Svein J, P R. Stauffer, Daniel G. N. Dual-Mode Antenna Design for Microwave Heating and Noninvasive Thermometry of superficial Tissue Disease[J]. IEEE Transactions on Biomedical Engineering. 2000, 47(11):1500-1509.
    [48]刘亚宁.电磁生物效应[M].北京:北京邮电大学出版社, 2002.
    [49] ER.Lee, TR. Wilsey, Peter TH, etl. Body Conformable 915MHz Micorstrip Array Applicators for Large surface Area Hyperthermia[J]. IEEE Transactions on Biomedica1 Engineering. 2002, 39(5):470-48.
    [50] S Jacobsen, HO Rolfsnes, PR. Stauffer. Characteristics of Micorstrip Muscle-Loaded Single-Arm Archimedean Spiral Antennas as Investigated by FDTD Numerical Computations[J]. IEEE Transactions on Biomedical Engineering. 2005, 52(2):321-331.
    [51] Edward A.G, Vladimir N.M. Contact Flexible Microstrip App1icators (CFMA) in a Range From Microwaves Up to short waves[J]. IEEE Transactions on Biomedical Engineering. 2002, 49(9):1015-1023.
    [52] Paul R. Stauffer, F Rossetto, M Leoncini, GB Gentilli. Radiation Patterns of Dual Concentric conductor Microstrip Antennas for Superficial Hyperthermia[J]. IEEE Transactions on Biomedical Engineering. l998, 45(5):605-614.
    [53] P Cresson, C Michel, L Dubois, M Chive, JPribetich. Complete three-dimensional modeling of new microstrip-microslot applicators for microwave hyperthermia using the FDTD method[J]. IEEE Transactions on Microwave Theory and Techniques. 1994, 42(12):2657-2667.
    [54] I.J. Bahl, S.S. Stuchly, J.W. Lagendijk, M.A. Stuchly. Microstrip loop radiators for local hyperthermia[C]. Microwave Symposium Digest, MTT-S International. 1981, 81(1):465-467.
    [55]周晓明.移动电话与人体系统建模及其数值模拟研究[D].博士学位论文.广州:华南理工大学,2004.
    [56] H Kobayshi, Y Nikawa, F Okada, S Mori. Flexible microstrip patch applicator for hyperthermia[C]. Antennas and Propagation society International Symposium, 1989.AP-S, Digest. 1989, 1:536-539.
    [57] Michel C, Dubois L, Cresson P.Y, Chive M, Pribetich J. Design and modeling of multipatches planar applicators for microwave hyperthermia[C]. Microwave symposium Digest, 1995. IEEE MTT-S International. 1995, 1:315-318.
    [58] W Hurter, F. Reinbold, and W.J. Lorenz. A dipole antenna for interstitial Microwave hyperthermia[J]. IEEE Trans. microwave theory and tech. 1991, 39(6):1048-1054.
    [59] David WF Su, Line Kun .Input Impedance Characteristics of Coaxial Slot Antennas for Interstitial Microwave Hyperthermia[J]. IEEE Trans microwavetheory and tech. 1999, 47(3):302-308.
    [60] Pisa S, Cavagnaro M, Bernardi P, Lin JC, A 915MHz antenna for microwa ve thermal ablation treatment: Physical design computer mode1ing and experimenta1 measurement[J]. IEEE Transactions on Biomedical Engineering, 2001, 48(5):599-601.
    [61]林昌禄.天线工程手册[M].北京:电子工业出版社,2002.
    [62]康行健.天线原理与设计[M].北京:国防工业出版社,1995.
    [63] D Yang, John M. Bertram, Mark C. Converse, etal. A Floating sleeve Antenna Yields Localized Hepatic Microwave Ablation[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(3):533-537.
    [64] CL. Brace, PF. Laeseke, DW. Vander Weide, FT. Lee. Microwave AblationWith a Triaxial Antenna: Results in ex vivo Bovine Liver[J]. IEEE Trans microwave theory and tech, 2005, 53(1):215-221.
    [65] A Dietsch, JC Camart, JP sozanski. Microwave Thermo chemotherapy in the Treatment of the Bladder Carcinoma, Electromagnetic and Dielectric Studies-Clinical Protocol [J]. IEEE Transactions on Biomedica1 Engineering, 2000, 47(5):633-641.
    [66] HR Ahn, K Lee. Cspacitive-Loaded Interstitial Antennas for Perfect Matching and Desirable SAR Distributions[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(12):284-292.
    [67] J.C. Camart, J.J. Fabre, B. Prevost, etal. Coaxial antenna array for 9l5MHz interstitial hyperthermia: design and mode1ization power deposition and heating patern phased array [J]. IEEE Trans. Microwave Theory Tech. 1992,40(12):2243-2250.
    [68] James C., Shinji H., C.L. Chiang, etal. Computer simulation and experimental studies of SAR distributions of interstitial arrays of sleeved-slot microwave antennas for hyperthermia treatment of brain tumors[J]. IEEE Trans Microwave Theory Tech. 2000, 48(11):2191-2198.
    [69]江汉保.微波体模[J].中国生物医学工程学报.1992,11:199-203.
    [70]李万捷,郝晋.微波体模的制备及其介电特性[J].中国生物医学工程学报.2003,22:79-82.
    [71]邵余峰.宽带加脊喇叭天线的简化设计[J].现代雷达, 2004, 26(5):65-67.
    [72] J P Brenger. A perfectly matched layer for the absorption of electromagnetic waves[J]. J. Com. Phy. , 1994, 114(2):185-200.
    [73]刘微,韦高,侯新宇.一种新型圆极化宽带喇叭天线[J].电子测量技术, 2007, 30(5):169-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700