冠状动脉微栓塞致心肌细胞凋亡及心功能损伤的死亡受体途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨大鼠冠状动脉微栓塞(Coronary Microembolization CME)后心肌细胞凋亡及其死亡受体凋亡途径激活的动态变化规律。
     方法采用夹闭升主动脉经左室注射42μM微球(3×104/ml ,3000个)建立大鼠冠状动脉微栓塞模型。设为微栓塞组(CME组,n=63);以注射生理盐水为假手术组(S组,n=55)。每组存活大鼠按不同观察时间点随机分为0h、3h、6h、12h、24h组,每组10例。组织病理切片HE及HBFP染色进行梗死区域测量;应用心脏超声检测心功能指标;末端脱氧核糖核酸转移酶介导的dUTP切口末端标记技术(TUNEL)检测心肌细胞凋亡; Western blot检测活化Caspase-3及Caspase-8的表达。
     结果CME组3h、6h、12h、24h时间点均可见微梗死灶,分别为(7.98±2.58)%、(8.32±3.27)%、(8.40±3.41)%、(8.52±3.76)%,但各时间点之间的微梗死面积比较无统计学差异(均P>0.05);CME前,大鼠的平均LVEF为87.69±4.41%,CME后,除0h组外其余时间点LVEF均较S组明显降低(均P<0.05)。伴随着LVEF显著下降,心脏超声表现为左室短轴缩短率(FS)和心排血量(CO)下降及左室舒张期末径(LVEDd)增加(均P<0.05);与假手术组比较,微栓塞组各时间点的心肌细胞凋亡指数均显著升高(P<0.05),凋亡主要分布在微梗死区及其边缘区,冠状动脉微栓塞组各时间点,以6h组的凋亡指数最高(P<0.05),12h组开始下降; Western blot结果显示细胞凋亡过程中最主要的终末剪切酶caspase-3和死亡受体凋亡通路的关键蛋白Caspase-8的表达都是在3h开始升高,6h达高峰(P<0.05),12h开始表达减少,24h已显著下降。与相应S组比较,除0h组外CME各组caspase-3、Caspase-8的表达均显著升高(P<0.05)
     结论冠状动脉微栓塞致心肌细胞凋亡显著增加,且具有动态变化规律。死亡受体凋亡途径可能是冠状动脉微栓塞致心肌细胞凋亡及其心功能损伤的重要机制之一。
Objective To investigate the dynamic change of cardiomyocyte apoptosis and the role of death receptor apoptotic pathway after coronary microembolization(CME) in rats .
     Methods Coronary microembolization models were produced by injection of 42μm microspheres(3×104/ml, 3000) into the left ventricle while occlusion the ascending aorta. The Sprague-Dawley rats were randomly divided into the sham group(S group, n=55), coronary microembolization group(CME group, n=63), The survivors were randomly into 0h、3h、6 h、12 h、24h five groups post CME (n=10). Echocardiography was used to evaluate heart function. Sections of myocardium were stained with hematoxylin-eosin and hematoxylin-basic fuchsin-picric acid for detecting infarct areas. Cardiomyocyte apoptosis was detected with in stiu terminal deoxynucleotidyl transferase (TdT)–mediated dUTP nick end-labeling (TUNEL staining).The expression of caspase-3 and caspase-8 was detected with Western blot analysis.
     Results The infarct sizes were similar in three hour, six hour, 12 hour, and 24 hour CME groups (P>0.05). The average left ventricle ejection fraction(LVEF) in the normal control group was 87.69±4.41%. Compared with sham-operated group. The LVEF of CME group were markedly decreased( P<0.05 ) expect 0h CME group. Echocardiography showed that Left ventricular ejection fraction(LVEF)、short axis fractional shortening(FS) and Cardiac output(CO) decreased, but Left ventricular end-diastolic diameter increased after CME. The apoptosis index in CME group were significantly increased at each time point comparing to sham group(P<0.05) expect 0h CME group, whose peak level showed up at the 6h time point but markedly decreased at the 12h time point. Apoptotic cardiomyocytes were found mainly in the border zones and the infarct foci. The relative expression of caspase-3 and caspase-8 in CME group both increased at 3h post CME, peaked at 6h post CME(P<0.05), and then gradually decreased, remarkably low at 24h. Compared with sham-operated group, the relative levels of caspase-3 and caspase-8 in CME group were significantly increased(P<0.05) expect 0h CME group.
     Conclusion The amount of cardiomyocytes apoptosis was significantly increased after coronary microembolization, with dynamic changes in the law. Death receptor apoptotic pathway may be involved in coronary microembolization-induced myocardial apoptosis. Cardiomyocytes apoptosis may be one of the important mechanisms of myocardial injury after coronary microembolization in rats.
引文
[1] Kawano H, Hayashida T, Ohtani H, et al Histopathological findings of the noreflow phenomenon following coronary intervention for acute coronary syndrome[J]. Int Heart J, 2005,46(2):327–332.
    [2] Ronen Jaffe, Thierry Charron, Geoffrey Puley, et al Microvascular Obstruction and the No-Reflow Phenomenon After Percutaneous Coronary Intervention[J]. Circulation, Jun 2008; 117(24): 3152 - 3156.
    [3] Itsuro Morishima, Takahito Sone, Kenji Okumura, et al Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction[J]. J Am Coll Cardiol, 2000; 36(4):1202-1209.
    [4] Waksman R, Douglas JS, Jr., Scott NA, et al. Distal embolization is common after directional atherectomy in coronary arteries and saphenous vein grafts[J]. Am Heart J, 1995; 129(3): 430-435.
    [5] Grube E, Schofer JJ, Webb J, et al. Evaluation of a balloon occlusion and aspiration system for protection from distal embolization during stenting in saphenous vein grafts[J]. Am J Cardiol, 2002; 89(8): 941-945.
    [6]李浪,刘唐威,Tan Hauycheem, Lim YeanTeng. Primary coronary angioplasty with the use of distal embolization protection device in acute myocardial infarction patients[J].中华急诊医学杂志,2004,13(9):1-4.
    [7]李浪,Tan Hauycheem, Teo SweeGuan, Lim YeanTeng.远端保护装置在冠状动脉旁路移植术后大隐静脉桥病变介入治疗的临床效果[J].中华心血管病杂志,2004,32(7):614-617.
    [8]李浪,Tan Hauycheem, Teo SweeGuan, Lim YeanTeng.远端血栓保护装置在经皮冠状动脉介入治疗中的应用[J].中华心血管病杂志,2004,32(1):44-45.
    [9]李浪,Tan Hauycheem, Lim YeanTeng.远端血栓保护装置PercuSurge在急性冠脉综合征经皮冠脉介入治疗中的应用[J].中国介入心血管病杂志,2004,12(4):224-227.
    [10]李浪,Tan Hauycheem, Lim YeanTeng.远端血栓保护装置在冠状动脉介入治疗中的应用[J].中国循环杂志,2003,18(3):235-237.
    [11] Skyschally A, Schulz R, Erbel R,et al. Reduced coronary and inotropic reserves with coronary microembolization.[J].Am J Physiol Heart Circ Physiol, 2002, 282(2):611-614.
    [12] Skyschally A, Gres P, Hoffmann S,et al. Bidirectional role of tumor necrosis factor-αin coronary microembolization. Progressive contractile dysfunction versus delayed protection against infarction. [J].Circ Res, 2007, 100: 140-146.
    [13] Crow MT, Mani K, Nam YJ,et al. The mitochondrial death pathway and cardiac myocyte apoptosis.[J].Cir Res,2004,95:957-970.
    [14] Locksley RM,Killeen N,Lenardo MJ . The TNF and TNF receptor superfamilies : integrating mammalian biology.[J]. Cell , 2001 , 104 ( 4) :4872501.
    [15] Pan G,O′Rourke K,Chinnaiyan AM,et al . The receptor for the cytotoxic ligand TRAIL.[J] . Science ,1997 ,276 (5309) :1112113.
    [16] Pan G,Ni J,Wei YF,et al . An antagonist decoy receptor and a deathdomain-containing receptor for TRAIL.[J]. Science ,1997 ,277 (5327) :8512853.
    [17] Yeh WC , de la Pompa JL , McCurrach ME , et al. FADD: essential for embryo development and signaling from some , but not all , inducers of apoptosis.[J].Science , 1998 , 279 : 1954– 1958.
    [18] Varfolomeev EE , Schuchmann M , Luria V , et al . Targeted disruption of the mouse caspase-8 gene ablates cell death induction by the TNF receptor , Fas/ Apo1 , and DR3 and is lethal prenatally.[J]. Immnnity , 1998 , 9 : 267- 276.
    [19] Kalenikova EI,Gorodetskaya EA,Zacharova NV,et al. Perindopril effects on angiotensin I elimination in lung after experimental myocardial injury induced by intracoronary microembolization in rats. [J].J.Cardiovascular.Pharmacology, 1998, 32(4):608-615.
    [20]朱汉华,李浪,汪熠,等.大鼠冠状动脉微栓塞模型的建立.[J].中国微循环, 2008, 12 (6) : 380- 384.
    [21] Wieringa P,Stassen H,Laird J,et al. Quantification of arteriolar density and embolization by microspheres in rat myocardium. [J].Am J Physiol Heart Circ Physiol ,1988, 254( 23):636-650.
    [22] Thielmann M,D?rge H,Martin C,et al. Myocardial dysfunction with coronary microembolization: Signal transduction through a sequence of nitric oxide,tumor necrosis factor-alpha and sphingosine. [J]. Circ Res,2002, 90(7):807-813.
    [23] Canton M, Skyschally A, Menabo R, et al.Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. [J]. Eur Heart J, 2006, 27(7): 875– 881
    [24] Liuzzo G, Santamaria M, Biasucci LM, et al. Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein evidence for a direct proinflammatory effect of azide and lipopolysaccharidefree C-reactive protein on human monocyte via nuclear factor kappa-B activation.[J]. J Am Coll Cardiol, 2007, 49(2):195-197.
    [25] Grund F, Sommerschild HT, Lyberg T, et al. Microembolization in p igs: effects on coronary blood flow and myocardial ischemic tolerance [J]. Am J Physiol, 1999, 277(2) : H533 - H542.
    [26] HoriM, Tamai J , KitakazeM, et al. Adenosine– induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs [J]. Am J Physiol, 1989, 257(1) : H244 - H251.
    [27] D?rge H, Schulz R,Belosjorow S, et al. Coronary microembolization: the role of TNF-αin contractile dysfunction.[J].J Mol Cell Cardiol, 2002, 34 (1) : 51 - 62.
    [28] Holeyman CR , Larson DF. Apoptosis in the ischemic reperfusedmyocardium.[J]. Perfusion,2001,16(6):491-502.
    [29] Saikumar P,Dong Z,Mikhailov V,el a1. Apoptosis:definition,mechanism,and relevance to disease.[J].Am J Med. l999,107(5):489-506.
    [30] Porter AG, J?nicke RU. Emerging roles of caspase-3 in apoptosis.[J].Cell Death Differ,1999,6(2):99-104.
    [31] Kruppinski J,Lopex E,Marti E,et a1. Expression of caspases and their substrates in the rat model of focal cerebral ischemia.[J]. Neurobiol Dis,2000,7(4):332-342.
    [32] Kurrelmeyer KM, Michael LH, Baumgarten G, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemicinduced apoptosis in a murine model of acute myocardial infarction.[J].Proc Natl Acad Sci USA 2000, 97: 5456–5461.
    [33] Kajstura J , Cheng W , Reiss K , et al .Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats.[J].Lab Invest, 1996, 74(1):86-107.
    [34] Scarabelli TM, Knight R, Stephanou A, et al. Clinical implications of apoptosis in ischemic myocardium.[J]. Curr Probl Cardiol , 2006 ,31(3):181-264.
    [35] Gervais FG, Singaraja R , Xanthoudakis S , et al . Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. [J]. Nat Cell Biol ,2002 ,4 (2) :95-105.
    [36] Chao W, Shen Y, Li L, et al. Importance of FADD signaling in serum deprivation- and hypoxia-induced cardiomyocyte apoptosis. [J]. J BiolChem. 2002,277(35): 31639-31645.
    [37] Li H, Zhu H, Xu CJ, et al. Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. [J].Cell. 1998; 94: 491-501
    [1] Scarabelli TM, Knight R, Stephanou A, et al. Clinical implications of apoptosis in ischemic myocardium[J]. Curr Probl Cardiol , 2006,31(3):181-264.
    [2] Pchejetski D, Kunduzova O, Dayon A, et al. Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis[J]. Circ Res,2007,100: 41-49.
    [3] Shirito K,Otani H,Yamamoto F,et al. MK2-/-gene knockout mouse hearts carry anti-apoptotic signal and are resistant to ischemia reperfusion injury[J]. J Mol Cell Cardiol, 2005, 38 (1) : 93-97.
    [4] Zhang HF,Fan Q,Qian XX,et al.Role of insulin in the anti-apoptotic effect of glucose-insulin-potassium in rabbits with acute myocardial ischemia and reperfusion[J]. Apoptosis,2004,9: 777-783.
    [5] Moolman JA,Hartley S,van Wyk J,et al.Inhibition of myocardial apoptosis by ischaemic and beta-adrenergic preconditioning is dependent on p38 MAPK.[J]. Cardiovasc Drugs Ther,2006,20: 13-25.
    [6] Tsisara S, Elisaf M, Mikhailidis DP.Early vascular benefits of statin therapy[J]. Curr Med Res Opin,2007,19(6): 540-969.
    [7] Hasegawa H,Yamamoto R,Takano H,et al.3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors prevent the development of cardiachypertrophy and heart failure in rats[J]. J Mol Cell Cardiol,2003,35: 953-960.
    [8] von Harsdorf R, Li PF, Dietz R.Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis[J]. Circulation,1999,99(22): 2934-2941.
    [9] Galang N,Sasaki H,Maulik N.Apoptotic cell death during ischemia / reperfusion and its attenuation by antioxidant therapy[J]. Toxicology,2000,l48 (2-3 ): 111-118.
    [10] Yan W,Arai A,Aoki M,et al.ASK1 is activated by arsenic trioxide in leukemic cell through accumulation of reactive oxygen species and may play a negative role in induction of apotosis[J]. Biochem Biophys Res Commun,2007,20: 355(4):1038-1044.
    [11] Wyllie A.Clue in the p53 murder mystery[J]. Nature,1997,389 (6648): 237-238.
    [12] Min SC,Fang PX,Yan ZW,et al.Statins initiated after hypertrophy inhibit oxidative stress and prevent heart failure in rats with aortic stenosis[J]. J Mol Cell Cardio1,2004,37: 889-896.
    [13] Szarszoi O,Maly J,Ostadal P,et al.Effect of acute and chronic simvastatin treatment on post-ischemic contractile dysfunction in isolated rat heart[J]. Physiol Res,2008,57: 793-796.
    [14] Sven W ,Ulrich L,Kirsten M ,et al.Cellular antioxidant effects ofatorvastatin in vitro and in vivo[J]. Arterioscler Thromb Vasc Biol,2002,22: 300.
    [15] Maack C,Kartes T,Kilter H,et al.Oxygen free radical release in human failing myocardium is associated with increased activity of rac l-GTPase and represents a target for statin treatment[J]. Circ Res,2003,l08: l567-l574
    [16] Jones SP , TeshimaY , Akao M , et al . Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes[J]. Circ Res,2003,93: 697-699.
    [17] Maejima Y,Adachi S,Morikawa K,et al.Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation.[J]. J Mol Cell Cardiol,2005,38: l63-l74.
    [18] Smith RS Jr,Agata J,Xia CF,et al.Human endothelial nitric oxide synthase gene delivery protects against cardiac remodeling and reduces oxidative stress after myocardial infarction[J]. Life Sci,2005,76: 2457-2471.
    [19] Rakotoniaina Z,Guerard P,Lirussi F,et al.The protective effect of HMG-CoA reductase inhibitors against monocrotaline-induced pulmonary hypertension in the rat might not be a class effect: comparison of pravastatin and atorvastatin[J]. Naunyn Schmiedebergs Arch Pharmacol,2006,374(3): 195-206.
    [20] Abraham SS,Osorio JC,Homma S,et al.Simvastatin preserves cardiac function in genetically determined cardiomypathy[J].J Cardiovasc Pharmacol,2004,43: 454-461.
    [21] Wolfrum S,Grimn M,Heiddreder M,et al. Acute reduction of myocardial infarcted size by a hydroxymethyl glutaryl coenzyme A reductase inhibitor is mediated by endothelial nitric oxide sythase[J]. J Cardiovasc Pharmacol,2003,41: 474-480
    [22] Pericle DN,Alfouso AT,Alfredo GC,et al.Chronic treatment with rosuvastatin modulates nitric oxide sythase expression and reduces ischemia-reperfusion injury in rat hearts[J]. Cardiovasc Res,2005,66: 462-471.
    [23] Habib M,Joel AH,Qing PF,et al.Modulation of apoptosis by nitric oxide : implication in myocardial ischemia and heart failure[J]. Pharmacol Ther,2005,l06: l47-162.
    [24] Feng L,Erhe G,Ling T,et al.Critical timing of L-arginine treatment in post-ischemic myocardial apoptosis—role of NOS isoform[J]. Cardiovasc Res,2004,62: 568-577.
    [25] Bell RM,Yellon DM.Atorvastatin,administrated at the onset of reperfusion,and independent of lipid lowering,protects the myocardium by regulating a prosurvival pathway[J].J Am Coll Cardiol,2003, 41(3): 508-515.
    [26] Wolfrum S, Dendorfer A, Schutt M, et al. Simvastatin acutely reduces myocardial reperfusion injury in vivo by activating the phosphatidylinositide 3-kinase/Akt pathway[J]. J Cardiovasc Pharmacol, 2004, 44:348-355.
    [27] di Napoli P, Maggi A, Spina R, et al. Simvastatin and ischemia-reperfusion damage: its effects on apoptotic myocyte death and on the endothelial expression of nitric-oxide synthetase in an experimental model of the isolated rat heart[J]. Cardiologia , 1999, 44:69-74.
    [28] Kureishi Y,Luo Z.Shiojima I,et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals[J]. Nat Med,2000,6: l004-l0l0.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700