多胺类化合物WJ01对PC12细胞拟缺血性损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨多胺类化合物(polyamine analogues ,WJ01)对缺氧缺糖,天然多胺(putrescine,Put)和谷氨酸(glutamate,Glu)诱导的PC12细胞(大鼠嗜铬细胞瘤细胞,pheochromocytoma cell)损伤的保护作用及其机制。
     方法:运用不同的方法造成PC12细胞损伤模型,通过倒置显微镜观察细胞的形态,MTT法检测PC12细胞存活率,研究多胺类化合物的细胞保护作用;采用吖啶橙(Acridine Orange,AO)和溴化乙锭(Ethidium bromide,EB)双染色法观察细胞凋亡形态和特征;用DCFH-DA检测细胞内ROS的水平,罗丹明123(Rh123)染色法测定细胞线粒体膜电位的变化;用钙离子敏感的荧光探针Fura-2/AM检测细胞内游离Ca~(2+)浓度;从而进一步研究多胺类化合物的细胞保护作用的可能性机制。
     结果:1.经缺糖缺氧培养后,细胞存活率显著降低,多胺化合物能明显改善受损细胞形态,显著提高MTT值及细胞存活率,对连二亚硫酸钠造成PC12细胞缺氧损伤表现出保护作用。2.天然多胺可诱导PC12细胞损伤,提高细胞内的ROS水平,增加细胞内Ca~(2+)内流,降低线粒体膜电位,多胺类化合物可改善细胞形态,提高细胞存活率,降低ROS水平,减少细胞内Ca~(2+)内流,抑制线粒体膜降低,减少细胞凋亡。3.经谷氨酸毒性损伤,多胺类化合物可改善细胞形态,提高细胞存活率,减少细胞内Ca~(2+)内流,降低ROS水平,抑制线粒体膜降低,减少细胞凋亡。
     结论:通过离体实验证明多胺类化合物对缺氧缺糖、天然多胺及谷氨酸诱导的PC12细胞损伤有保护作用,为进一步揭示其对脑缺血损伤的作用机制提供依据。
Objective: To investigate the protective effect of polyamine analogues (WJ01) on the oxygen-glucose deprivation, glutamate (Glu) and putrescine (Put) induced cytotoxicity in rat pheochromocytoma cells (PC12).
     Methods: Different models were used to induce the cytotoxicity in PC12 cells, the morphology of PC12 cells was observed by microscope and the cell damage was measured by MTT assay. The reactive oxygen species (ROS) were monitored combined with DCFH-DA by High-Content Screening Reader. DNA-binding dye Acridine Orange (AO) and Ethidium bromide (EB) were used to determine the morphological characteristic of apoptotic cells. Mitochondrial membrane potential (MMP) in PC12 cells were monitored by fluorospectrophotometer combining with Rh123. Fura-2/AM, a cell permeable fluorescent probe, was employed to detect intracellular Ca~(2+) concentration ([Ca~(2+)]i).
     Results: 1. After treatment with 2 mM Na_2S_2O_4 in PC12 cells for 30 min, the cell viability decreased markedly, while WJ01 at the different concentrations (1μM, 5μM, 10μM) could elevate the cell viability obviously. 2. The results suggested that 12.5μM Put decreased the cell viability and the mitochondrial membrane potential, in contrast, Put increased ROS and intracellular [Ca~(2+)]i. WJ01 significantly decreased ROS and intracellular [Ca~(2+)]i, increased MMP in PC12 cells. 3. After the treatment with 50 mM Glu, the mitochondrial membrane potential significantly decreased while ROS and intracellular [Ca~(2+)]i increased, and microscopic observation showed that PC12 cells exhibited morphological alterations such as cell shrinkage and membrane blabbing, the typical characteristics of apoptotic cell death, which was reduced with co-treatment of WJ01.
     Conclusions: The study shows that WJ01 at the different concentration has a protective effects against Na_2S_2O_4, Put and Glu-induced cytotoxicity and apoptosis in PC12 cells, which may represent the cellular mechanisms including scavenging ROS, increasing MMP, inhibiting the cell apoptosis and overload of Ca~(2+) in PC12 cells. WJ01 may represent a potential treatment strategy for attenuating ischemia injury in PC12 cells.
引文
[1] Ohtaki H, Yin L, Nakamachi T, Dohi K, Kudo Y, Makino R, Shioda S. Expression of tumor necrosis factor alpha in nerve fibers and oligodendrocytes after transient focal ischemia in mice.Neurosci Lett. 2004, 9(2):23-368.
    [2] Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice.J Neuroinflammation. 2008, 10(23):5-46.
    [3] Zhao-Hui GUO, Feng LI, Wei-Zhi WANG. The mechanisms of brain ischemic insult and potential protective interventions.Neurosci Bull June.2009, 25(3):139- 152.
    [4] Lutsep HL, Clark WM. Neuroprotection in acute ischemic stroke. Current status and future potential.Drugs R D. 2002, 1(1):3-8.
    [5] Okamura N, Reinscheid RK, Ohgake S, Iyo M, Hashimoto K. Neuropeptide S attenuates neuropathological, neurochemical and behavioral changes induced by the NMDA receptor antagonist MK-801. Neuropharmacology. 2009, 1(1):1-8.
    [6]王竞等.缺血性脑损伤机制的研究进展.国际药学研究杂志.2008,35 (4):302-304.
    [7] Stuchlik A, Petrasek T, Vales K. Effect of alpha1-adrenergic antagonist prazosin on behavioral alterations induced by MK-801 in a spatial memory task in long evans rats. Physiol Res. 2008, 11(4):27-32.
    [8] Aimee K. Bence, Dennis T. Rogers, David R. Worthen, May Fu, John M. Littleton and Peter A. Crooks. John M. Littleton and Peter A. Crooks Aminoanthraquinones as Novel Ligands at the Polyamine Binding Site on the N-Methyl-D-aspartate Receptor Complex.Bioorganic & Medicinal Chemistry Letters. 2000, 10(10):2621-2623.
    [9] Michael L. Berger, Alex R. Khomutov, Patrick Rebernik. Aminooxy-analogues of spermidine: new partial agonists and antagonists at the polyamine site of the rat hippocampal NMDA receptor complex. Neuroscience Letters.1996, 203:25-28.
    [10] Acute hypoxia increases ornithine decarboxylase activity and polyamine concentrations in fetal rat brain. Proc. Nati. Acad. Sci. USA Vol.1993, 1(90): 692-696.
    [11] Anna Porcella, Christopher Carter, Dominique Fage, Carole Voltz, Kenneth G. Lloyd, Andr Serrano and Bernard Scatton.The effects of N-methyl-D-aspartate and kainate lesions of the rat striatum on striatal ornithine decarboxylase activity and polyamine levels. Brain Research.1991, 549:205-212.
    [12] Ivanova S, Botchkina GI, Al-Abed Y, Batliwalla F, Dubinsky JM, Iadecola C, Wang H, Gregersen PK, Eaton JW, Tracey KJ. Cerebral Ischemia Enhances Polyamine Oxidation: Identification of Enzymatically Formed 3-Aminopropanal as an Endogenous Mediator of Neuronal and Glial Cell Death. J Exp Med. 1998, 188(2):327-40.
    [13] Jun Li, Martin C. Henman, etal. The preischaemic neuroprotective effect of a novel polyamine antagonist,N1 -dansy-l-spermine in a permanent focal cerebral ischaemia model in mice. Brain Research.2004, 10(29):84-92.
    [14] Jun Li, Martin C. Henman, Jeffrey Atkinson, Solomon Fixon-Owoo, Turgut Tatlisumak, eatl. The preischaemic neuroprotective effects of the polyamine analogues BU43b and BU36b in permanent and transient focal cerebral ischaemia- models in mice. Brain Research.2006, 1076:209-215.
    [1] Dian-Wei Ma, Xue-Jun Xie, Xiao-Wei Li. Research development of experimentel model with hypoxia.Medical recapitulate.2007,13(23)32-33.
    [2] Yi Deng, Ning Wang, Quan Zhu, Xiao-Mei Xie, Jin-Ao Dun. Survey of cell models in studying neuron damage.Chinese Archives of Traditional Chinese Medicine.2009, (2):2-61.
    [3]甘照儒.中药对缺血性脑损伤保护作用的分子机制研究进展.中西医结合心脑血管病杂志.2009, 7(7):28-43.
    [4] Xiao-xia Xu, Zuo Luan, Gui-xiong Gu, Li-jun Zhang. The establishment of severe hypoxic-ischemic brain damage model in neonatal rat. Chinese Journal of Neonatology.2009, 24(3):65-97.
    [5] Salvterra CG, GoldmanWF. Direct effectof hypoxia on apparent intracellular calcium levels in cultured pulmonary vascular smoothmuscule cells.Am Rev Respir Dis, 1991, 143:373.
    [6] Mi-Xiang Gao, Qing He, Wen-Yong Han, Zun-Ting Zhang. Synthesis of 2-amino-4,5-diarylpyrimidines and their protective effects against oxygen-glucose deprivation in PC12 cells. Acta Pharmaceutica Sinica. 2010, 9(1)1:10.
    [7] Mustafa K. Baskaya A. Muralikrishna Rao, Aclan Dogan, David Donaldson, RobertJ.Dempsey. Regional brain polyamine levels in permanent focal cerebral ischemia. Brain Research.1997, (174):302-308.
    [8] Xiao-Dong Qian, Yu-Mei Yuan, Heng-Bin Cao. Protective effect of etoricoxib on OGD-induced injuries in PC12 cells.China Medical Herald.2010, 1(9):9-10.
    [9]赵涌琪,蒋晓江.多胺与缺血性脑血管疾病研究进.重庆医学. 2009, 2(1)2-94.
    [10] Lesley D. Morrison, Stephen J.Kish. Brain polyamine levels are altered in Alzheimer's disease. Neuroscience Letters.1995, (197):5-8.
    [11] RaoMuralikrishna, Adibhatla, James F. Hatcher, Kurt Sailor, RobertJ. Dempsey.Polyamines and central nervous system injury: spermine and spermidine decrease following transient focal cerebral ischemiain spontaneously hypertensive rats. Brain Research.2002, (938):81-86.
    [12] Rong Su, Yin-ping Yi, Li-li Lu, Xiao Yu, Su-Juan Qin. Protective effects of muskiness ketone on anoxia injury in cultured PC12 cells. Pharmacology and Clinics of Chinese Materia Medica.2008, 1(1):1-8.
    [1]刘艳霞,李金荣.谷氨酸受体拮抗剂对大鼠实验性脑缺血的保护作用.中国医药.2009, 4(6):6-15.
    [2]梅和珊,王永利.脑缺血时谷氨酸释放机制.中国药理学通报.2005, 21(4):91-96.
    [3] Wei-Guo Dai, Zhong-Xin Xu, Yong-Hong Song. Morphological changes of glutamate neurons at the early stage of cerebral ischemia in rats. Chinese Journal of clinical rehabilitation. 2004, 8(22):65-74.
    [4]吴喆,赵宇阳,康秋君,陈为龙.谷氨酸代谢变化与脑缺血损伤.中国实用医药.2008, 3(2):44-81.
    [5] Xiao F, Pardue S, Arnold T, Carden D, Alexander JS, Monroe J, Sharp CD, Turnage R, Conrad S. Effect of ifenprodil, a polyamine site NMDA receptor antagonist, on brain edema formation following asphyxial cardiac arrest in rats. Resuscitation. 2004, 61(2):209-19.
    [6] Mellor IR, Brier TJ, Pluteanu F, Str?mgaard K, etal. Modification of the philanthotoxin-343 polyamine moiety results in different structure-activity profiles at muscle nicotinic ACh, NMDA and AMPA receptors. Neuropharmacology. 2003, 44(1):70-80.
    [7] Guroff G, Dickens G. The effects of nerve growth factor on polyamine metabolism in PC12 cells. Neurochem. 1983, 40(5):1271-7.
    [8] Watanabe C, Orito T, Watanabe H, Mizoguchi H, etal. Intrathecal high-dose histamine induces spinally-mediated nociceptive behavioral responses through a polyamine site of NMDA receptors.Eur J Pharmacol. 2008, 581(1):54-63.
    [9] Hong-Yan Yuan, Shu-Xiang Zhang, etal. Observation of the role of Acridine Orange-Propidium iodide in the identification of Hair cell status in a laboratory. Condition Journal of Audiology and Speech Pathology. 2006, 5:19.
    [10] Xiao-Dong Zhou, Shu-Kui Qin, etal. Observing the apoptotic changes of the cancer cell lines under the action of cinobufacini by the acridine orange (AO)/ethidium bromide(EB) staining.Chinese Clinical Oncology. 1999, 3:19.
    [11] Wei Wang, Jin Zhou. Effect of ROS on parthenolide-induced apoptosis in multiple myeloma cell. Chinese Pharmacological Bulletin. 2009, 1:24.
    [12] Yu Lin, etal. Role of ROS on the cytosolic free calcium in vascular endothelial cells. Journal of Qiqihar Medical College.2009, 15:4.
    [13] Mao QQ, Zhong XM, Feng CR, Pan AJ, Li ZY, Huang Z. Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca(2+) antagonism. Cell Mol Neurobiol.2010, 30(7):1059-66.
    [14] Ting-Ting Guan, Xin-Min Xin. Effect of propofol on the changes in intraceHular free calcium ion concentration in cultured hippocampal neurons induced by N-methyl-D-aspartate. Chinese Journal of Anesthesiology. 2006, 9:15.
    [15]罗鹏,王赟,张爱华,张开菊,曾小盼.活性氧、线粒体膜电位在亚砷酸钠诱导凋亡中作用.中国公共卫生.2010, 5:46.
    [16] Guo Meng, Ming-Gao Li, Gui-Xi Ma, Yu Liu, Jing Li. Effects of hypoxia on the mitochondrial membrane potential in vascular endothelial cells and protection of ginaton. Modern Medical Journal. 2009, 2:10.
    [17] Saransaari P, Oja SS. Modulation of taurine release in ischemia by glutamate receptors in mouse brain stem slices. Amino Acids. 2010, 38(3):739-46.
    [18] Grewer C, Gameiro A, Zhang Z, etal. Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. Iubmb Life. 2008, 60(9):609-19.
    [19] Xu L, Sun J, Lu R, Ji Q, Xu JG. Effect of glutamate on inflammatory responses of intestine and brain after focal cerebral ischemia. World J Gastroenterol. 2005, 11(5):733-6.
    [20] Xiao F, Pardue S, Arnold T, Carden D, Alexander JS, Monroe J, Sharp CD, Turnage R, Conrad S.Effect of ifenprodil, a polyamine site NMDA receptor antagonist, on brain edema formation following asphyxial cardiac arrest in rats. Resuscitation. 2004, 61(2):209-19.
    [21] Zhu MY, Piletz JE, Halaris A, Regunathan S. Effect of agmatine against cell death induced by NMDA and glutamate in neurons and PC12 cells. Cell Mol Neurobiol. 2003, 23(4-5):865-72.
    [22] Lee E, Williams Z, Goodman CB, Oriaku ET, Harris C, Thomas M, Soliman KF.Effects of NMDA receptor inhibition by phencyclidine on the neuronal differentiation of PC12 cells. Neurotoxicology. 2006, 27(4):558-66.
    [23] Rahbar-Roshandel N, Razavi L, Tavakoli-Far B, Mahmoudian M. Mebudipine and dibudipine protect PC12 cells against oxygen-glucose deprivation and glutamate-induced cell death. Pathophysiology. 2008, 15(4):227-31.
    [24] Watanabe C, Orito T, Watanabe H, Mizoguchi H, Yonezawa A, Yanai K, Mobarakeh JI, Onodera K, Sakurada T, Sakurada S. Intrathecal high-dose histamine induces spinally-mediated nociceptive behavioral responses through a polyamine site of NMDA receptors. Eur J Pharmacol. 2008, 581(1-2):54-63.
    [25] Bergeron RJ, Weimar WR, Wu Q, Feng Y, McManis JS. Polyamine analogue regulation of NMDA MK-801 binding: a structure-activity study. J Med Chem. 1996, 39(26):5257-66.
    [26] Bergeron RJ, Weimar WR, Wu Q, Austin JK Jr, McManis JS. Impact of polyamine-analogues on the NMDA receptor. J Med Chem. 1995, 38(3):425-8.
    [27] Pritchard GA, Fahey JM, Minocha SC, Conaty C, Miller LG. Polyamine potentiation and inhibition of NMDA-mediated increases of intracellular free Ca2+ in cultured chick cortical neurons. Eur J Pharmacol. 1994, 266(2):107-15.
    [28] Penugonda S, Mare S, Goldstein G, Banks WA, Ercal N. Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12. Brain Res. 2005, 1056(2):132-8.
    [29] Pavlov V, Rodilla V. Growth, morphological and biochemical changes in oxa-spermine derivative-treated MCF-7 human breast cancer cells. Life Sci, 2002, 71: 1161–1173.
    [30] Russo A, Piovano M, Clericuzio M, Lombardo L, Tabasso S, Chamy M.C, etal. Putrescine-1,4-dicinnamide from Pholiota spumosa (Basidiomycetes) inhibits cell growth of human prostate cancer cells. Phytomedicine, 2007, 14(2-3): 185-191.
    [1]Lidia Gimenez-Llort, Sergi Ferre, Nuria De Vera, Emili Martinez. Motor depressant effects of systemically administered polyamines in mice: involvement of central NMDA receptors. European Journal of Pharmacology.1996, 4(318):231-238.
    [2]Jeff A. Segal, Phil Skolnick.Polyamine-like actions of aminoglycosides and aminoglycoside derivatives at NMDA receptors. European Journal of Pharmacology.1998, 3(347):311-317.
    [3]Suno Kim, Kwangseog Ahn, etal. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neyrons. Biochemical and Biophysical Communications.2002, 2(16):247-254.
    [4]Jun Li, Martin C. Henman, Karen M. etal. Shaw the preischaemic neuroprotective effect of a novel polyamiane antagonist,N1-dansyl-spermine in a permanent focal cerebral model in mice. Brain Research.2004, (1029):84-92.
    [5]Jeffrey Atkinson, Solomon Fixon-Owoo, Turgut Tatlisumak, Karen M.Doyle The preischaemic neuroprotective effects of the polyamine analogues BU43b and BU36b in permanent and transient focal cerebral ischaemia models in mice. Brain Research.2006, (1076):209-215.
    [6]Dingledine K Borges K Bowie D, etal. The glutamate receptor ion channels. Pharmacological Reviews.1999, 51(1):7-61.
    [7] Paoletti P, Neyton J. NMDA receptor subunits:function and pharmacology. Current Opinion in Pharmacology.2007, 7(1):39-47.
    [8]Gozlan H, Ben-Air Y. NMDA receptor redox sites:are they targets for selective for selective neuronalprotection Trends Pharmsic.1995,(2):16-368.
    [9] Davis SM, Lees KR, etal. Seltbtel in acute ischemic stroke:possible neurotoxic effects of an NMDA antagonist. Stroke.2000, 31(2):347-354.
    [10]Schnupp JW, King AJ, Smith AL etal. NMDA-receptor antagonists disrupt the formation of the auditory space map in the mammalian superior colliculus. J Neurosci.1995, (15)15:1516.
    [11]Shapira Y, Lam AM, etal. Therapeutic time window and dose response of the beneficial effects of ketamineamine in experimental head injury Stroke.1994, 25(8):1637-1643.
    [12]Spandou E, Karkavelas G, etal. Effect of ketamine on hypoxicischemic brain damage in newborn rates. Brain Res.1999, 819(12):1-7.
    [13]Olney JW, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science.1989, 244(4910):1360-1362.
    [14] Williams AJ, Ling G, Berti R, etal. Treatment with the snail pep tide CGX-1007 reduces DNA damage and alters gene expression of c-fos and bcl-2 following focal ischemic brain injury in rats. Exp Brain Res.2003,153 (1) :16-26 .
    [15]Yang Y, L iQ, Yang T, etal. Reduced brain infarct volume and improved neurological outcome by inhibition of the NR2B subunit of NMDA receptors by using CP101,606-27 alone and in combination with rt-PA in a thromboembolic stroke model in rats.Neurosurg.2003, 98 (2):397 -403 .
    [16]赵涌琪等.多胺与缺血性脑血管疾病研究进展.重庆第二人民医院神经内科.2009, 38(2):214.
    [17] Schipper RG, Penning LC, Verhofstad AA. Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors Semin cancer boil.2000, 10(1):55-68.
    [18] Ray RM, Bhattacharya S. EGFR plays a pivotal role in the regulation of polyamine-dependent apoptosis in intestinal epithelial cells. Cell Signal.2007, 19(12):2519-2527.
    [19] Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P, etal. Structure and mechanism of spermidine synthases. Biochemistry.2007, 46(28):8331-8339.
    [20] Amendola R, Bellinia TA, Cervelli M, Degan P, Marcocci L, Martini F, Mariottini P. Direct oxidative DNA damage, apoptosis and radio sensitivity by spermine oxidase activities in mouse neuroblastoma cells. Biochim Biophys Acta.2005, (1755):15-24.
    [21]Seiler N. Polyamine oxidase, properties and functions .Prog.. Brain Res, 1995, (106):333-334.
    [22]Wallace HM, Fraser AV, etal. Perspective of polyamine metabolism. JBiochem.2003, 3(76):1-14.
    [23]Kalac P, Krausova P. A review of dietary polyamines: Formation, implications for growth and health occurrence in foods. Food Chemistry.2005, (90):219-230.
    [24]Takano K, Ogura M, Yoneda Y, etal. Oxidative metabolites are involved in polyamine-induced microglial cell death.Neuroscience.2005, 134(4):1123.
    [25]Seiler N, Raul F. Polyamines and apoptosis.J Cell Mol Med.2005, 9(3):622.
    [26]Wallace HM, Fraser AV, Hughes A, etal. Perspective of polyamine metabolism. Biochwm J.2003, 376(1):1.
    [27]Stanfield PR, Sutcliffe MJ. Spermine is fit to block inward rectifier channels.Gen Physiol.2003, 122(5):481.
    [28]Adibhata RM, Hatcher JF. Role of lipids in brain injury and diseases.Future Lipidol.2007, 42(4):403.
    [29]Soulet D, Rivest S. Polyamines play a critival role in the control of the innate immune response in the mouse central nervous system.J Cell boil.2003, 162(2):257.
    [30] Moulinoux JP, Quemener V, Khan NA. Biological significance of circulating polyamines in oncology. Cell Mol Biol.1991, (37):773-783.
    [31] Mimori K, Mori M, Shiraishi T, Tanaka S, Haraguchi M, Ueo H, etal. Expression of ornithine decarboxylase mRNA and c-myc mRNA in breast tumours. Int J Oncol.1998, 12:597-621.
    [32] Yoshida M, Hayashi H, Taira M, Isono K. Elevated expression of the ornithine decarboxylase gene in human Treatesophageal cancer. Cancer Res.1992, 52:6671.
    [33] Okuzumi J, Yamane T, Kitao Y, Tokiwa K, Yamaguchi T, Fujita Y. Increased mucosal ornithine decarboxylase activity in human gastric cancer. Cancer Res.1991, 51:1448.
    [34] Guillem JG, Levy MF, Hsieh LL, Johnson MD, Gerfo PL, Forde KA, etal. Increased levels of phorbin, c-myc, and ornithine decarboxylase RNAs in human colon cancer. Mol Carcinog.1990, 3: 68.
    [35] Saunders FR, Hughes A, Wallace HM. Does polyamine depletion influence NSAID-induced cytotoxicity in colorectal cancer.Toxicol.2006, 226(1):38-39.
    [36]Adibhatla RM, Hatcher JF. Role of lipids in brain injury and diseases. Future Lipidol.2007, 42(4):403.
    [37] Chopra S, Wallace HM. Induction of Spermidine/Spermine N1-Acetyltransferase in Human Cancer Cells in Response to Increased Production of Reactive Oxygen Species. Biochem Pharmacol.1998, 55:1119-1123.
    [38] Kim K, Ryu JH, Park JW, Kim MS, Chun YS. Induction of a SSAT isoform in response to hypoxia oriron deficiency and its protective effects on cell death. Biochem Biophys Res Commun.2005, 331:78-85.
    [39] Wua T, Ling KQ, Sayre LM, McIntirea WS. Inhibition of murine N1-acetylated polyamine oxidase by an acetylenic amine and the allenic amine, MDL 72527. Biochem Biophys Res Commun.2005, 326:483-490.
    [40] Milovic V, Turchanow L, Khomutov AR, Khomutov RM, Caspary WF, Stein J. Hydroxylamine-containing inhibitors of polyamine biosynthesis and impairment of colon cancer cell growth. Biochem Pharmacol.2001, 61:199-206.
    [41] Zhang B, Liu XX, Zhang Y, Jiang CY, Hu HY, Gong L, etal. Polyamine depletion by ODC-AdoMetDC antisense adenovirus impairs human colorectal cancer growth and invasion in vitro and in vivo. J Gene Med.2006, 8(8):980-989.
    [42]Mustafa. K. Baskaya, A. Muralikrishna Rao. etal. Regional brain polyamine levels in permanent focal cerebral ischemia. Brain Research.1997, (174)302-308.
    [43]K. Koguchi. Y Murakami. etal. Control of Ornithine Decarboxylase Activity by polyamines and Absence of Antizyme in Tetrahymena. Elsevier Science Tnc.1996, 113(1):157-162.
    [44]Lidia Gimenez-Llort, Sergi Ferre, etal. Motor depressant effects of systemically administered polyamines in mice:involvement of central NMDA receptors. European Journal of Pharmacology.1996, (138)231-238.
    [45]Rao Muralikrishna Adibhatla, James F.Hatcher, etal .Polyamines and central nervous system injury: spermine and spermidine decrease following transient focal cerebral ischemia in spontaneously hypertensive rats. Brain Research.2002, (938)81-86.
    [46] Carter C, Poignet H, Carboni S. etal. Release of spermidine from the rat cortex following permanent middle cerebral artery occlusion. Fundam Clin Pharmacol.1995, 9(2):129.
    [47]常全忠,张淑玲.雌激素对NMDA诱导离体大鼠海马神经元凋亡的作用.中国药理学通报.2006,22(4):456-60.
    [48]潘静.NMDA受体与神经退行性疾病的关系.上海交通大学学报.2009, 29(1):98.
    [49]Yuuichi Hori, Kenro Kanda. Developmental alterations in NMDA receptor-mediate[Ca2+]; elevation in substantia gelatinosa neurons of neonatal rat spinal cord. Developmental Brain Research.1994, 80(1):141-148.
    [50]Ivanova S, Botchkina GI, AI-Abed Y, Batliwalla F, Dubinsky JM, Iadecola C, etal. Cerebral Ischemia Enhances Polyamine Oxidation: Identification of Enzymatically Formed 3-Aminopropanal as an Endogenous Mediator of Neuronal and Glial Cell Death. 1998, 20(2):327-400.
    [51]Pavlov V, Rodilla V. Growth morphological and biochemical changes in oxa-spermine derivative-trested MCF-7 human breast cancer cells. Life Sci.2002,71:1161-1173.
    [52]Russo A, Piovano M, Clericuzio M, Lombardo L, Tabasso S, Chamy M.C, etal. Putrescine-1,4-d-icinnamide from Pholiota spumosa(Basidiomycetes)inhibits cell growth of human prostate cancer cells. Phytomedicine.2007, 14(23):185-191.
    [53]王艳林,韩钰等.多胺类似物CPENSpm通过干扰多胺代谢抑制肺癌细胞的增殖.中国药理学通报.2008, 24(1):132-5.
    [54]Huang Y, PLedgie A, Rubin E, etal. Role of p53\p21 in the regulation of polyamine analogue induced growth inhibition and cell death in human breast cancer cells. Cancer Biol Ther.2005, 4(9):1006-1013.
    [55] Porter CW, Sufrin JR. Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res.1986, 6:525-542.
    [56] Porter CW, Bergeron RJ. Enzyme regulation as an approach to interference with polyamine biosynthesis an alternative to enzyme inhibition. Adv Enzyme Regul.1988, 27:57-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700