紫外光固化TiO_2纳米复合胶粘剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光固化胶粘剂(UV固化胶)是一类绿色、高效的胶粘剂,具有固化速率快、固化过程无挥发性有机溶剂排放、能源利用率高、室温固化等多种优点,被广泛运用于汽车、医疗、微电子加工等国民经济生产的各个领域。然而目前市场上使用的自由基型UV固化胶也存在固化过程受空气氧阻聚、制品体积收缩率大、折射率低、透光性差、粘结强度不高、热稳定性差等缺陷,无法运用于具有较高要求的光学器件的粘结问题。本研究以阳离子型UV固化机理体系为胶粘剂基体,利用阳离子鎓盐类光引发剂“光生酸”反应,催化体系中无机前驱体钛酸异丙醇(TIP)发生水解缩合反应,溶胶凝胶原位合成的方法制备具有高折射率且同时具有高光学透过率的UV固化TiO_2纳米复合胶粘剂。
     本文研究了引发剂种类及其含量、单体结构、光照强度、胶粘剂固化层厚度等对阳离子UV固化胶粘剂固化速率、拉伸强度、体积收缩率等方面的影响,结果表明以三芳基六氟磷酸硫鎓盐作为引发剂(3%),3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯(S-06)单体组成的阳离子UV固化胶粘剂具有较短的固化时间(8s),较高的拉伸强度(15.8MPa)以及低体积收缩率(3.2%)。向此体系加入不同含量的钛酸异丙醇,红外动力学分析表明,当TIP含量较低时(<20%)对胶粘剂固化速率影响较小;体系中生成的无机TiO_2纳米区域在偶联剂(γ-缩水甘油醚氧基丙基三甲氧基硅烷,8wt.-%)的作用下均匀的分散在复合胶粘剂中,平均粒径大小在20nm左右;复合胶粘剂力学性能有所提高(17.9MPa);复合胶粘剂的折射率nD从1.5013升高至1.5439,且保持良好的透光性,在400nm光区以上复合胶粘剂的透光率均大于94%,复合胶粘剂的热稳定性等也得到明显提高,热分解温度从320℃升高到365℃。
UV-curable adhesives have been widely used in areas of national economic production such as automotive, medicine, microelectronics processing, et al, because it is a kind of green and efficient adhesives, and has the advantage of high curing rate, ambient curable condition, high energy efficiency and no emission of volatile organic slovent in curing process. However, there are some shortages in photo-initiated radical UV-curable adhesives, such as low bond strength, high volume shrinkage, low refractive index, poor thermal stability and easy inhibition by oxygen. In this paper, we used the cationic polymerization adhesive as the matrix and used the photoacids generated by the photoinitiators to catalyze sol-gel process of titanium isopropoxide (TIP). UV-curable nanocomposite adhesives with high refractive index and high transmittance were prepared by in-situ sol-gel process.
     In this paper, the effect of type and content of photoinitiator, structure of monomer, light intensity and the thickness of adhesive on curing rate, tensile strength, volume shrinkage of the cationic UV-curable adhesive were studied. The results show that the adhesives with 3,4-Epoxycyclohexylmethyl-3'',4''-epoxycyclohexanecarboxylate (abbreviated as S-06) as monomer, triphenylsulfonium hexafluorophosphate salt as photoinitiators had short surface drying time (8s), high tensile strength (15.8MPa) and low volume shrinkage (3.2%). Then we added different content of titanium isopropoxide as the inorganic precursor into this system, and we researched the kinetic investigated of different TIP content by TTIR spectroscopy. The result showed that there was less influence on curing rate of nanocomposite adhesive when TIP content was low (<20%). The nano TiO_2 with an average diameter of 20nm generated by sol-gel processing dispersed in polymer matrix under the effect of coupling agent. The refractive index of the nanocomposite adhesive increased from 1.5013 to 1.5439, meanwhile had good transmittance in visible and near infrared region. The nanocomposite adhesive had good thermal stability, and the thermal decomposition temperature rose from 320℃to 365℃.
引文
[1]童张法,刘自力.实用胶粘剂生产配方与使用技术[M].江西科学出版社. 2002.
    [2]刘成伦,徐峰.胶粘剂的研究进展[J].表面技术,2004, 10(8):1-4.
    [3]龚辈凡.我国胶粘剂发展趋势与对策[J].中国胶粘剂,2001, 10(5):38-41.
    [4]刘敏辉.紫外光固化胶粘剂的研究及其性能测试[D].内蒙古:内蒙古大学, 2010. 45
    [5] Kaur Manmeet, Srivastava. K. Photopolymerization: a review [J]. Journal of Macromolecular Science Part C: Polymer Reviews, 2002, 42(4): 481-512.
    [6]王德海,江棂.紫外光固化材料理论与应用[M].北京:科学出版社. 2001.
    [7] Yagci Yusuf, et al. Photoinitiated Polymerization: Advances, Challenges, and Opportunities [J]. Macromolecules,2010, 43(15): 6245-6260.
    [8] Crivello J V. Photoinitiated Cationic Polymerization [J]. Annual Review of Materials Science,1983, 13(1):173-190.
    [9]齐海元,齐暑华,安群力,等.光固化胶粘剂的研究进展[J].中国胶粘剂,2009, 18(11):43-46.
    [10]吴世康.高分子光化学导论基础和运用[M].北京:科学出版社. 2003.
    [11] Fedorov Andrei V, et al. New Method To Reduce Oxygen Surface Inhibition by Photorelease of Boranes from Borane/Amine Complexes [J]. Macromolecules, 2007, 40(10):3554-3560.
    [12] Cai Ying, et al. Decreased oxygen inhibition in photopolymerized acrylate epoxide hybrid polymer coatings as demonstrated by Raman spectroscopy[J]. Polymer, 2006, 47(19):6560-6566.
    [13] Brien Allison Bowman Christopher N. Impact of Oxygen on photopolymerization Kinetics and Polymer Structure[J]. Macromolecules, 2006, 39(7):2501-2506.
    [14] Cramer Neil B, et al. Mechanisms-polymerization rate scaling-oxygen inhibition with an ultra-rapid monovinyl urethane acrylate[J]. Polymer, 2008, 49(22): 4756-4761.
    [15]袁金颖,潘才元.树脂固化时体积收缩内应力的本质及消除途径[J].化学与粘合, 1998(4):234-240.
    [16]王营.大分子光引发剂的合成及其光聚合性能研究[D].北京:北京化工大学, 2008.62
    [17]王营,聂俊.一种含硅大分子光引发剂的合成及其性能研究[J].信息记录材料, 2008, 9(1):8- 11.
    [18]陈明军,潘春跃. UV固化超支化大分子光引发剂的合成与表征[J].涂料工业, 2008, 38(10):29- 34.
    [19]张秋禹,牛云青. Z941系列UV-固化胶粘剂的研制[J].粘结,1995, 16(2):5- 10.
    [20]张秋禹,李长国,沈卫新. Z97光敏胶粘剂的研制[J].中国胶粘剂,1997, 7(4):4- 6.
    [21] Mark A, Lewandowski Anthony M, et al, UV curable pressure sensitive adhesive[P]. US, 5747551, 1998.
    [22]潘国林,田兴和.光固化型CTPE改性环氧丙烯酸树脂的研究[J].热固性树脂,1996, 11(4):16-19.
    [23]王云,张尧,张爱萍. ZUV系列紫外光固化胶黏剂的制备与应用[J].化学与黏合,2010, 32(1):57-61.
    [24]田中章文,吉川理恵. UV硬化型感圧接着剤およびそれを用いた感圧接着性シート[P].日本,13-11395,2001.
    [25]原口和敏,今井賢 ,関根信博.活性エネルギ-線硬化型樹脂組成物[P].日本,09-309905,1997.
    [26] Abdellah L, Boutevin B Youssef B. Synthesis and applications of photocrosslinkable poly(siloxanes)[J]. Progress in Organic Coatings, 1994, 23(3):201-236.
    [27]孙芳,黄跃东,熊军.粘结塑料和玻璃用的新型紫外光固化胶粘剂的性能[J].北京化工大学学报,2006, 33(5):82-85.
    [28]夏兰芳,孙芳,黄毓礼,等.光引发剂对紫外光固化胶粘剂性能的影响[J].辐射研究与辐射工艺学报,2003, 21(3):184-188.
    [29] Takafumi.Iida. Ultraviolet-curing adhesive for bonding optical disks[P].US,6335382B1,2002.
    [30]吕希光,马家举,江棂.辐射固化胶粘剂的应用与研究[J].中国胶粘剂,2004, 13(5):55-59.
    [31] Ikeda.S, Sawamoto.T. Water resistance and optical properties of optical adhesives containing strong hydrophobic components[J]. Polymer, 2004, 36(4):310-315.
    [32] Licari.J.J, Crepeau, P. C. Electromagnetic radiation polymerization [P].US, 3205157, 1965.
    [33] Crivello James V. The discovery and development of onium salt cationic photoinitiators[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999,37(23):4241-4254.
    [34]王涛,黄毓礼.芳茂铁阳离子聚合光引发剂引发活性研究[J].高等学校化学学报,2003, 24(4):735-738.
    [35]徐金雷,王涛.马丽君,等.含芳醚配体的芳茂铁盐的合成研究[J].化学试剂2007, 29(1):1-3.
    [36]王涛,杜洪光,黄毓礼.芳茂铁四氟硼酸盐的制备[J].北京化工大学学报,2003, 30(1):83-91.
    [37] Chen Zhigang et al. A Humidity Blocker Approach to Overcoming the Humidity Interference with Cationic photopolymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(4):4344-4351.
    [38] Castellanos.F, et al. Salts as Photoinitiators for the Cationic Polymerization of Epoxy Silicones[J]. Journal of Applied Polymer Science, 1998, 60(3):705-713.
    [39] Liska Robert. Photochemistry and Initiation Behavior of Phenylethynyl Onium Salts as Cationic Photoinitiators[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(11):3419-3430.
    [40] Matano Yoshihiro et al. Triaryl (1-pyrenyl) bismuthonium salts: efficient photoinitiators for cationic polymerization of oxiranes and a vinyl ether. [J]. Organic letters,2008, 10(11): 2167-70.
    [41] Durmaz Yasemin Yuksel et al. Visible Light Initiated Free Radical Promoted Cationic Polymerization Using Acylgermane Based Photoinitiator in the Presence of Onium Salts[J]. Macromolecules,2008, 41(18):6714-6718.
    [42] Gupta Mukesh Kumar,Singh Raj Pal. Diphenyldiselenide As Novel Non–salt Photoinitiator for Photosensitized Cationic Polymerization of N-Vinyl Carbazole[J]. Macromolecular Symposia, 2006, 240(1):186-193.
    [43] Li Huiying et al. Substituted Cyclopropenium Salts as Photoinitiators for Cationic Polymerization of Glycidyl Phenyl Ether[J]. Macromolecules , 2001, 34(25):8637-8640.
    [44] Tohru Maruno. Properties of a UV-curable, durable precision adhesive[J]. Adhesive Science and Technology,1995, 9(10):1345-1355.
    [45]石井一彦,横島実.接着剤組成物及び接着方法[P].日本,11-43660,1999.
    [46]屈世伟;吴健伟;赵玉宇;匡弘;付刚;付春明.阳离子型光固化胶黏剂的增韧改性[J].化学与黏合,2010, 32(6):9-13.
    [47] S He J H;Mendoza V. Synthesis and study of a novel hybrid UV photoinitiator:p2benzoyldiphenyliodonium hexafluorophosphate[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34(13):2809-2816.
    [48] Xiaoyan Zhou,Ling Jiang. Research and composition of UV curable coatings[J]. New chemical materials, 2003, 31(7):20-23.
    [49] Yang Nianfa, et al. Synthese and active behaviour of novel UV photoinitiators[J]. Chinese Joural of Polymer Science, 2009, 27(6):873-877.
    [50]陈明,陈其道,肖善强,等.混杂光固化体系的原理及运用[J].感光科学与光化学,2001, 19(3):208-216.
    [51]刘红波,刘恒全,李荣先,等.混杂紫外光固化胶黏剂的研制[J].化工新型材料,2006, 34(7):81-84.
    [52] Xin Zhao Yu yu;WU Jian wei;YU. Study on Shrinkage and Bonding Streng th of th e UV Curing Adhesive[J]. Chemistry and Adhesion, 2008, 30(3):24-27.
    [53] ChengWeiTang,YuWen,WeiTing. In situ fabrication of photocurable conductive adhesives with silver nano-particles in the absence of capping agent[J]. International Journal of Adhesion and Adhesives, 2007, 27(3):236-243.
    [54] Hiroji.Fukui, Akira.Nakasuge. Sheet-form curable pressure-sensitive adhesive[P]. EP,0819746, 2002.
    [55] shizawa Hideaki. photocurable pressure-sensitive adhesive composites and pressure-adhesive sheet[P]. United States Patent 5756584, 2000.
    [56] Hermann Onusseit. Adhesive systems for a one or multi step adhesive binding method-method for adhesive binding of printed matter[J]. 1998:WO9840225.
    [57]石井一彦,横島実.電子部品用接着剤及び電子部品の取付け方法[P].日本,11-43661,1999.
    [58] Guo Cai Xu1, Ai Yuan Li, Li De Zhang1, Guo Sheng Wu, Xiao You Yuan Ting Xie. Synthesis and characterization of silica nanocomposite in situ photopolymerization [J]. Journal of Applied Polymer Science, 2003, 90(3): 837-840.
    [59] Frank Bauer, et al. Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 1 FTIR and multi-nuclear NMR spectroscopy to the characterization of methacryl grafting[J]. Macromolecular Chemistry and Physics,2000, 201(18):2654-2659.
    [60] Frank Bauer, et al. Preparation of Scratch- and Abrasion-Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles[J]. MacromolecularChemistry and Physics, 2003, 204(3):375-383.
    [61] Frank Bauer, et al. Preparation of Scratch and Abrasion Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles, 3. Effect of Filler Particles and Grafting Agents[J]. Macromolecular Materials and Engineering, 2002, 287(8):546-552.
    [62] M.Sangermano, et al. Photopolymerization of epoxy coatings containing silica nanoparticles[J]. Progress in Organic Coatingsrogress in organic coatings, 2005, 54(2):134-138.
    [63] Luo Kaiqing et al. High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles[J]. Thin Solid Films, 2009, 517(21):5974-5980.
    [64] Li FuSheng, et al. Kinetic study on the UV-induced photopolymerization of epoxy acrylate/TiO2 nanocomposites by FTIR spectroscopy[J]. Journal of Applied Polymer Science, 2006, 99(6):3281-3287.
    [65] Li FuSheng et al. Kinetic investigations on the UV-induced photopolymerization of nanocomposites by FTIR spectroscopy[J]. Journal of Applied Polymer Science,2006, 99(4):1429-1436.
    [66] Xu Kun et al. Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings[J]. Journal of Materials Science, 2009, 44(6):1613-1621.
    [67] Fawn M. Uhl, et al. polymer films possessing Nanoreinforeements via Organieally ModifiedLayered Silieat[J]. Chemistry of Materials, 2004, 16(6):1135-1142.
    [68] Fawn M. Uhl, et al. Organically modified montmorillonites in UV curable urethane acrylate films[J]. Polymer, 2004, 45(18):1263-1269.
    [69] Yusuf Yagci, et al. Clay-PMMA Nanocomposites by Photoinitiated Radical Polymerization Using Intercalated Phenacyl Pyridinium Salt Initiators[J]. Macromolecular Chemistry and Physics, 2006, 207(9):820-826.
    [70] Yusuf Yagci, et al. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer[J]. Polymer, 2009, 50(16):3905-3910.
    [71] Decker C, et al. Ultrafast synthesis of bentonite-acrylate nanocomposite materials by UV-radiation curing[J]. Journal of Materials Science, 2002, 37(22):4831 - 4838.
    [72]王慧敏,王炎,李林林,等.环氧丙烯酸酯/蒙脱土纳米复合材料的合成及性能研究[J].材料科学与工程学报, 2004, 22(6):906-908
    [73] Crivello.J.V, L?hden.G. Synthesis and Photopolymerization of 1-Propenyl Ether Functional Siloxanes[J]. Chemistry of Materials, 1996, 8(1):209-218.
    [74] Crivello J V, Mao Zhibiao. Synthesis of Novel Multifunctional Siloxane Oligomers Using Sol-Gel Techniques and Their Photoinitiated Cationic Polymerization[J]. Chemistry and Adhesion, 1997, 224(9):1554-1561.
    [75] H Frey, et al. Organic–inorganic hybrid networks by the sol–gel process and subsequent photopolymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 39: 4274–4282.
    [76]陈用烈,王海华,张夏虹,等.溶胶-凝胶法制备二氧化钛纳米粒子及在光固化体系中的稳定分散[J].高分子学报,2006, 6(6):750-755.
    [77] Yangyang Sun, Zhuqing Zhang, C.P.Wong. Study on mono-dispersed nano-size silica by surface modification for underfill applications[J]. Journal of Colloid and Interface Science, 2005, 292(2):436-444.
    [78] Sun Y et al. Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites[J]. Polymer, 2005, 46(7):2297-2305.
    [79]张玲,黄雁容,伍青.聚甲基丙烯酸丁酯/(SiO2-TiO2)杂化材料的研究[J].功能高分子学报,2005, 18(3):28-31.
    [80]陈用烈,张玲,曾兆华,等.盐酸含量对光固化聚氨酯丙烯酸酯/SiO2杂化材料结构和性能的影响[J].功能高分子学报,2003, 16(4):446-450.
    [81] Sangermano M, et al. Preparation and characterization of acrylic resin/titania hybrid nanocomposite coatings by photopolymerization and sol–gel process[J]. Journal of Applied Polymer Science, 2006,102(5):4659-4664.
    [82] Kowalewska Anna. Photoacid catalyzed sol–gel process[J]. Journal of Materials Chemistry,2005, 15(47):4997-5006.
    [83] Chemtob Abraham et al. Concomitant Organic?Inorganic UV-Curing Catalyzed by Photoacids[J]. Macromolecules,2008, 41(20):7390-7398.
    [84] Belon Cindy et al. Nanocomposite coatings via simultaneous organic-inorganic photo-induced polymerization: synthesis, structural investigation and mechanical characterization[J]. Polymer International, 2010,27(6):289-293
    [85] Sangermano.M, et al. High refractive index transparent coatings obtained via UV/thermal dual-cure process[J]. Polymer, 2008, 49(8):2018-2022.
    [86] Amerio E et al. Preparation and characterization of hybrid nanocomposite coatings by photopolymerization and sol–gel process[J]. Polymer, 2005, 46(25): 11241-11246.
    [87] Sangermano M. et al. Developments of Organic-Inorganic Hybrid Free Radical-Cationic Dual Cured Coatings[J]. Polymer Bulletin, 2007, 59(6): 865-872.
    [88] Cai Ying,Jessop Julie L.P. Effect of water concentration on photopolymerized acrylate/epoxide hybrid polymer coatings as demonstrated by Raman spectroscopy[J]. Polymer, 2009, 50(23):5406-5413.
    [89] Castell P et al. Kinetic studies of a UV-curable powder coating using photo-DSC , real-time FTIR and rheology[J]. Journal of Coating Technology Research, 2007, 4(4):411-423.
    [90] Katoh. E, et al. Evidence for radiation induced crosslinking in polytetrafluoroethylene by means of high-resolution solid-state 19F high-speed MAS NMR [J]. Radiation Physic Chemistry, 1999, 54: 165.
    [91] Crivello J. Investigation of the photoactivated frontal polymerization of oxetanes using optical pyrometry[J]. Polymer, 2005, 46(26):12109-12117.
    [92] Crivello J. V, et al. Study of cationic ring-opening photopolymerizations using optical pyrometry[J]. Journal of Applied Polymer Science , 2004, 92(5): 3303-3319.
    [93] Khudyakov Igor V, et al. Photopolymerization of Vinyl Acrylate Studied by PhotoDSC[J]. Industrial & Engineering Chemistry Research , 2001, 40(14): 3092-3097.
    [94] Esposito Corcione Carola, et al. UV-curable epoxy systems containing hyperbranched polymers: Kinetics investigation by photo-DSC and real-time FT-IR experiments[J]. Polymer Testing,2009, 28(2): 157-164.
    [95] crivello J V, et al. Investigation of reactivity of epoxide monomers in photoinitiated cationic polymerization[J]. Macromolecules, 2005, 38(9): 3584-3595.
    [96] Yang B, et al. Dispersion effect of nanoparticles on the conjugated polymer–inorganic nanocomposites[J]. Mater Chem Phys, 2004, 83(2):334-339
    [97] RenéJ. Nussbaumer, et al. Polymer-TiO2 Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials[J]. MacromolecularMaterials and Engineering, 2003, 288(1):44-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700