阿尔茨海默病基因关联性分析及APOE缺陷小鼠脑组织中异常表达miRNA的鉴定和初步功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量流行病学研究显示叶酸缺乏和同型半胱氨酸升高与阿尔茨海默病(Alzheimer's disease,AD)相关。体内叶酸和同型半胱氨酸水平可能受饮食因素影响,也可能受参与两者代谢途径的基因的多态性影响。
     我们采用干酪乳酸菌法和高压液相色谱方法测定了106例AD病人和120例正常人的血浆叶酸、同型半胱氨酸和半胱氨酸水平,并用限制性内切酶片段长度多态性方法(Restriction Fragment Length Polymorphism,RFLP)检测了368例AD病人和375例正常人中叶酸和同型半胱氨酸代谢途径相关的5个基因中的5个多态性位点,分别是5,10—亚甲基四氢叶酸还原酶677 C/T(5,10-methylenetetrahydrofolate reductase,MTHFR)、叶酸还原载体1 80 A/G(reduced folate carrier 1,RFC1)、胱硫醚β合成酶(cystathionine beta-synthase,CβS)844ins68、5,10—亚甲基四氢叶酸脱氢酶1958A/G(5,10-methylenetetrahydrofolate dehydrogenase,MTHFD1)以及磷脂酰乙醇胺甲基转移酶523 G/A(phosphatidylethanolamine N-methyltransferase,PEMT)。此外,也检测了载脂蛋白E(apolipoproteine E,APOE)的基因多态性。
     结果显示AD病人中同型半胱氨酸含量显著高于正常人群(p<0.05),叶酸含量显著低于正常人(p<0.001),同时还发现AD病人中半胱氨酸含量也显著低于正常人群(p<0.001)。
     在基因多态性与AD关联研究方面,我们发现RFC1 80A/G多态性的GG基因型和G等位基因频率在AD病人中显著高于正常人(G等位基因:p=0.008,OR=1.312,95%CI:1.072-1.605;GG基因型:p=0.042,OR=1.383,95%CI:1.012-1.890)。按照APOEε4,年龄和性别分层后,发现在不携带APOEε4的人群,女性和≥65岁的人群中,G等位基因在AD病人中的分布显著高于正常人。这表明RFC1 80G等位基因可能是一个不依赖APOEε4的晚发性AD风险因子,在女性中的作用更为明显。
     在未分层样本中,MTHFR 677C/T多态性的基因型和等位基因分布在AD组和正常对照组间不存在显著性差异。根据年龄和性别分层后,也未发现显著性差异。但根据是否携带APOEε4等位基因分层后,发现在携带APOEε4等位基因的个体,AD病人中TT基因型和T等位基因的频率显著高于正常对照组(T vs.C:p=0.031,OR=1.586,95%CI:1.042-2.414;TT vs.CC plus CT:p=0.028,OR=2.250,95%CI:1.074-4.712)。
     我们没有发现CβS 844ins68,MTHFD1 1958G/A和PEMT 523G/A多态性与AD存在关联性。
     分析基因多态性对血浆叶酸和同型半胱氨酸含量的影响时发现,所有样本中携带RFC1 80GG基因型的人群中血浆叶酸水平低于AA和GA基因型人群血浆叶酸水平的平均值,而同型半胱氨酸水平高于AA和GA基因型人群,但是这种差异未达到显著性。在AD组和正常组也存在这样的趋势,尤其是正常人中的同型半胱氨酸含量,在GG基因型的人群中高于AA+GA的人群(10.25μmol/L vs.7.96μmol/L),差异接近但未达到统计学显著性(p=0.086)。没有发现MTHFR 677多态性,CβS 844ins68和MTHFD1 1958A/G对血浆叶酸和同型半胱氨酸含量有影响。
     上述结果表明叶酸代谢途径中的RFC1 80G等位基因和GG基因型能够增加患AD的风险,但可能不是通过影响血浆叶酸和同型半胱氨酸含量而实现的,确切机理还需进一步研究。此外,MTHFR 677T等位基因可能与APOEε4协同作用增加患AD的风险。
     小RNA(miRNA)是一类长度约为21-23个核苷酸的重要调节分子,它可以通过剪切靶基因mRNA或抑制靶基因翻译的方式在转录后水平抑制蛋白编码基因的表达。近年来鉴别了大量的miRNAs,已证明它们通过在转录后水平调控基因表达参与许多重要的生理过程,并涉及多种疾病的发生和发展。哺乳动物神经系统表达丰富的miRNAs,已确定它们在神经系统发育中起重要调节作用,它们在成熟的神经细胞,脑老化及神经退行性疾病中也可能行使重要功能。阿尔茨海默氏病(Alzheimer'sdisease,AD)是老年痴呆中最普遍的一种,其典型的病理改变是β淀粉样肽在大脑皮层和海马神经细胞外沉积以及过度磷酸化的微管相关Tau蛋白在神经细胞内缠结。APOE基因多态性是目前唯一确定的散发性AD的危险因素,该基因缺陷的小鼠能够显示部分AD病理特征,可用作研究载脂蛋白E在阿尔茨海默氏病病理过程中的作用的动物模型。
     我们采用Multiplex qRT-PCR方法鉴定了41个神经系统丰富或特异表达和我们感兴趣的miRNAs在7月龄APOE基因缺陷小鼠(apoE~(-/-))和正常小鼠大脑皮层和海马中的表达。发现mmu-miR-7f2和miR-29a在apoE~(-/-)小鼠大脑额叶皮层的表达显著低于正常小鼠;其中,mmu-miR-143在apoE~(-/-)小鼠额叶皮层和海马中的表达显著均低于正常小鼠,用单一qRT-PCR方法进一步验证也确证了mmu-miR-143的表达变化。随后我们检测了miR-143在2月龄和13月龄小鼠额叶皮层和海马的表达。发现正常小鼠中,随着年龄增加,miR-143的表达逐渐升高;在apoE~(-/-)小鼠中大脑额叶皮层中miR-143在2月龄时略高于正常小鼠,之后也随年龄增加,但增加趋势远不如正常小鼠明显,7月龄和13月龄时显著低于正常小鼠;apoE~(-/-)小鼠海马中,2月龄时miR-143的表达与正常小鼠无差异,到了7月龄时,表达较2月龄有所升高,但13月龄时表达较2月龄显著降低,同时也低于同时期的正常小鼠。miR-143表达的变化以及在正常小鼠和apoE~(-/-)小鼠中的差异提示它可能在载脂蛋白E相关的AD病理过程中起调节作用。
     为进一步了解miR-143的作用机制,我们对其可能的靶基因做了分析预测,用荧光素酶报告基因的方法检测了通过软件筛选到的4个基因:cAMP反应元件结合蛋白Zhangfei因子(cAMP response element binding protein Zhangfei factor,CREBZF),cAMP反应元件结合蛋白5(cAMP response element binding protein 5,CREB5),TAOK1(TAO kinase 1),DYRK1B(dual-specificity tyrosine-(Y)-phosphorylation regulatedkinase 1b,DYRK1B)以及已知的细胞外激活激酶5(extracellular activated kinase 5,ERK5)基因3'-UTR区可能的miR-143作用位点。发现miR-143可以使携带ERK5,CREBZF和TAOK1基因3'—UTR区的萤光素酶报告基因表达量分别下降约30%,28%和25%,提示除了ERK5外,CREBZF和TAOK1基因也有可能是miR-143的靶基因。ERK5和TAOK1基因是MAPKK—MAPK—ERK信号通路中的成员,已有研究表明该信号通路中的ERK1/2,p38在AD病人中表达升高且被激活;CREBZF是ATF4的共同作用因子,在神经系统中与长时程记忆形成受限有关。提示miR-143可能通过影响MAPK-ERK信号通路并限制长时程记忆形成参与apoE~(-/-)小鼠的病理过程。
Folate is a cofactor in one-carbon metabolism,during which it promotes the remethylation of homocysteine.Recent epidemiological and experimental studies have linked folate deficiency and resultant increased homocysteine levels with Alzheimer's disease.Then,association between folate related genes polymorphisms and AD is a logic extension of the well-established connection between folate,homocysteine and AD.
     In this study,we tested single nucleotide polymorphisms in folate metabolism related genes for association with late onset AD(LOAD) by restriction fragment length polymorphism(RFLP) method.Polymorphisms in 5,10-methylenetetrahydrofolate reductase(MTHFR),the reduced folate carrier 1(RFC1),5,10-methylenetetrahydrofolate dehydrogenase(MTHFD1),cystathionine beta-synthase(CβS) and phosphatidyl-ethanolamine N-methyltransferase(PEMT) were examined in 386AD cases and 375 matched controls.Plasma levels of homocysteine,folate and cysteine were measured in 106 cases and 120 controls by microbiological assay and high-performance liquid chromatography(HPLC).
     Results showed that AD patients had significantly decreased plasma folate and cysteine concentrations,and increased plasma homocysteine levels.Significant associations of RFC1 80G allele and GG genotype with AD(p=0.008,OR=1.312,95%CI 1.072-1.605, and p=0.042,OR=1.383,95%CI 1.012-1.890) were found.Further stratification of total samples by APOEε4 status,age/age at onset and gender reveled that RFC1 80G allele was an APOEε4-independent risk factor for late-onset AD,and it might increase the risk of AD in females.No significant associations of MTHFR 677C/T allele and genotype with AD were observed in total samples,but significant associations of T allele and TT genotype with AD(p=0.031,OR=1.586,95%CI=1.042-2.414,and p=0.028,OR=2.250, 95%CI=1.074-4.712) were identified in APOEε4 carrier subgroup.No relationship between MTHFD1 1958G/A,CβS 844in68 and PEMT 523G/A polymorphisms with AD were found.
     For the total samples,the subjects with the RFC1 80 GG genotype exhibited lower plasma folate levels,and higher homocysteine levels than the subjects with GA plus AA genotype,but the difference was not statistically significant.The similar results were observed in the subgroups of AD and control samples.It seemed to suggest a trend of lower folate levels and higher homocysteine levels in the subjects with GG genotypes than that the subjects with the GA plus AA genotypes although the difference did not reach statistical significance.No significant differences for the plasma levels of folate and homocysteine between the genotypes of MTHFR 677C/T,CβS 844ins68 and MTHFD1 1958G/A were observed.
     Our findings suggest that genetic variant of RFC1 80A/G increases the risk of Alzheimer's disease,,suggesting that MTHFR 677T allele and APOEε4 allele may synergistically act to increase AD risk.The mechanism need further studied.
     A class of small,non-coding transcripts called microRNAs(miRNAs) that provide a crucial and pervasive layer of post-transcriptional gene regulation has recently emerged and become the focus of intense research,miRNAs are abundant in the nervous system, where they have key roles in development and are likely to be important mediators of plasticity.There are several evidence that miRNAs may play an important role in aging and neurodegeneration disease.Alzheimer's disease is one of the most prevalent dementia, and characterized with neuronal loss,extracellular senile plaques containing the peptideβamyloid,and neurofibrillary protein tau.Polymorphism in APOE is an risk factor of Alzheimer's disease,apoE-deficient mouse offer an opportunity to study some of the possible functions of apoE in the Alzheimer's disease.
     We examined the expression of 41 miRNAs in the frontal cortex and hippocampus of 7 months old apoE-deficient mouse and control mouse by multiplex qRT-PCR.The data showed that mmu-miR-7f2,mmu-miR-29a levels were decreased significantly in frontal cortex of apoE~(-/-) mouse,and mmu-miR-143 levels was decreased significantly both in the frontal cortex and hippocampus regions of apoE~(-/-) mouse.Then we analyzed the expression of miR-143 in 2 and 13 months old apoE~(-/-) and control mouse,found that miR-143 levels was increased with age both in frontal cortex and hippocampus in control mouse.In the frontal cortex of apoE~(-/-) mouse,miR-143 levels was a little higher than that in the control mouse at the second month,and it increased with age too,but failed to paralle to the control mouse when 7 and 13 months old.In the hippocampus of apoE~(-/-) mouse,the expression of miR-143 was not defferent with control mouse significantly at 2 months old, there was a increase at the 7th month,but in the 13months old mouse,the miR-143 level decreased to a lower levels than 2 months old,and lower than control mouse too.
     The 3'-untranslated region(UTR) of ERK5,CREBZF,CREB5,DYRK1B and TAOK1 were presumed to be targeted by miR-143 through computational analysis.The luciferase reporter assay suggested that the ERK5,CREBZF and TAOK1 were the target gene of miR-143.The function of the three genes suggest that miR-143 may change the MAPKK-MAPK-ERK pathway and long-term synaptic changes and memory formation, which need further confirmation.
引文
Bell I.R., Edman J.S., Selhub J., Morrow F.D., Marby D.W., Kayne H.L. Cole J.O., 1992. Plasma homocysteine in vascular disease and in nonvascular dementia of depressed elderly people. Acta. Psychiatr. Scand., 86:386-390.
    Bertram L., McQueen M.B., Mullin K., Blacker D., Tanzi R.E., 2007. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39: 17-23.
    Beyer K., Lao J.I., Carrato C, Rodriguea-Vila A., Latorre P., et al., 2004. Cystathionine beta synthase as a risk factor for Alzheimer disease. Curr. Alzhei. Res., 1 (2): 127-133.
    Brunellia, T., Bagnolib, S., Giustia, B., Nacmiasb, B., Pepea, G., Sorbib, S., Abbate, R., 2001. The C677T methylenetetrahydrofolate reductase mutation is not associated with Alzheimer's disease. Neurosci. Lett. 315,103-105.
    Chango, A., Emery-Fillon, N., de Courcy. G.P., Lambert, D., Pfister, M., Rosenblatt, D.S., Nicolas, J.P., 2000. A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol. Genet. Metab. 70, 310-315.
    Chapman, J., Wang, N.S., Treves, T.A., Korczyn, A.D., Bornstein, N.M., 1998. ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer's dementia. Stroke. 29, 1401-1404.
    Clarke, R., Smith, A.D., Jobst, K.A., Refsum, H., Sutton, L., Ueland, P.M., 1998. Folate, vitamin B_(12), and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol. 55,1449-1455.
    Devlin, A.M., Clarke, R., Birks, J., Evans, J.G., Halsted, C.H., 2006. Interactions among polymorphisms in folate-metabolizing genes and serum total homocysteine concentrations in a healthy elderly population. Am. J. Clin. Nutr. 83, 708-713.
    de Franchis R., Fermo I., Mazzola G., Sebastio G., Di Minno G., Coppola A., et al., 2000. Contribution of the cystathionine beta-synthase and arterial occlusive disease and of fasting hyperhomocysteinemia. Thromb. Haemost., 84: 576-582.
    Frosst, P., Blom, H.J., Milos, R., Goyette, P., Sheppard, C.A., Matthews, R.G., Boers, G.J.H., den Heijer, M., Kluijtmans, L.A., van den Heuve, L.P., Rozen, R., 1995. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10,111-113.
    Gellekink, H., Blom, H.J., den Heijer, M, 2007. Associations of common polymorphisms in the thymidylate synthase, reduced folate carrier and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase genes with folate and homocysteine levels and venous thrombosis risk. Clin. Chem. Lab. Med. 45, 471-476.
    Hixsom, J.E., Vernier, D.T., 1990. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hha I. J Lipid Res. 31, 545-548.
    Jacobsen D.W., 1998. Homocysteine and vitamins in cardiovascular disease. Clin. Chem., 44:1833-1834.
    Jacques, P.F., Bostom, A.G., Williams, R.R., 1996. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 93, 7-9.
    Kang, S.S., Zhou, J., Wong, P.W.K., Kowalisyn, J., Strokosch, G., 1988. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am. J.Hum. Genet. 43, 414-421.
    Kohlmeier M., da Costa K.A., Fischer L.M. and Zeisel S.H., 2005. Genetic variation of folate-mediated one-carbon transfer pathway predicts susseptiblility to choline deficiency in humans. Proc Natl Acad Sci USA, 102 (44): 16025-16030.
    Kluijtmans, L.J., Young, I.S., Boreham, C.A., Murray, L., McMaster, D., McNulty, H., Strain, J.J., McPartlin, J., Scott, J.M., Whitehead, A.S., 2003. Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood. 101, 2483-2488.
    Lehmann M.,Gottfries C.G., Regland B., 1999. Identification of cognitive impairment in the elderly. Dement. Geriatr. Cogn. Disord., 10: 12-20.
    Linnebank, M., Linnebank, A., Jeub, M., Klockgether, T., Wullner, U., Kolsch, H., Heun, R., Koch, H.G., Suormala, T., Fowler, B., 2004. Lack of genetic dispositions to hyperhomocysteinemia in Alzheimer disease. Am. J. Med. Genet. 131,101-102.
    Ma, J., Stampfer, M.J., Hennekens, C.H., Frosst, P., Selhub, J., Horsford, J., 1996.
    Methelenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine and risk of myocardial infarction in US physicians. Circulation. 94, 2410-2416.
    Martinez, M.E., Thompson, P., Jacobs, E.T., Giovannucci, E., Jiang, R., Klimecki, W., Alberts, D.S., 2006. Dietary factors and biomarkers involved in the methyenetetrahydrofolate reductase genotype-colrectal adenoma pathway. Gastroenterology. 131, 1706-1716.
    McCaddon A., Davies G, Hudson P., Tandy S., Cattell H., 1998. Total serum homocysteine in senile dementia of Alzheimer type. Int. J. Geriatr. Psychiatry., 13:235-239.
    McIlroy, S.P., Dynan, K.B., Lawson, J.T., Patterson, C.C., Passmore, A.P., 2002.
    Moderately elevated plasma homocysteine methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in northern Ireland. Stroke. 33, 2351-2356.
    Molloy, A.M., Scott, J.M., 1997. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Method Enzymol. 281, 43-53.
    Morin, I., Devlin, A.M., Leclerc, D., Sabbaghian, N., Halsted, C.H., Finnell, R., Rozen, R., 2003. Evaluation of genetic variants in the reduced folate carrier and in glutamate carboxypeptidase II for spina bifida risk. Mol. Genet. Metab. 79, 197-200.
    Nguyen, T.T., Dyer, D.L., Dunning, D.D., Rubin, S.A., Grant, K.E., Said, H.M., 1997. Human intestinal folate transport: cloning, expression, and distribution of complementary RNA. Gastroenterology. 112, 783-791.
    O'Leary V.B., Pangilinan F., Cox C, Parle-McDermott A., Conley M, Molloy A.M., et al., 2006. Reduced folate carrier polymorphisms and neural tube defect risk. Mol. Genet. Metab., 87: 364-369.
    Orendac M., Muskova B., Richterova E., Zvarova J., Stefek M., Zaykova E., et al., 1999. Is the common 844ins68 polymorphism in the cystathionine β-synthase gene associated with atherosclerosis? J. Inher. Metab. Dis., 22: 674-675.
    Prince, J.A. Feuk, L., Sawyer, S. L., Gottfries, J., Ricksten,A., NaEgga, K., Bogdanovic, N., Kaj Blennow, K., Brookes, A.J., 2001. Lack of replication of association findings in complexdisease: an analysis of 15 polymorphisms in priorcandidate genes for sporadic Alzheimer's disease. Eur. J. Hum. Genet. 9, 437-444.
    Quadri, P., Fragiacomo, C., Pezzati, R., Zanda, E., Forloni, G., Tettamanti, M, Lucca, U., 2004. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am. J. Clin. Nutr. 80, 114-122.
    Ravaglia, G., Forti, P., Maioli, .F, Martelli, M., Servadei, L., Brunetti, N., Porcellini, E., Licastro, F., 2005. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am. J. Clin. Nutr. 82, 636-643.
    Regland, B., Blennow, K., Germgard, T., 1999. The role of the polymorphic genes apolipoprotein E and methylene-tetrahydrofolate reductase in the development of dementia of the Alzheimer type. Dement. Geriatr. Cogn. Disord. 10, 245-251.
    Relton C.L., Wilding C.S., Jaffling A.J., Jonas P.A., Burgess T., et al., 2004. Low erythrocyte folate status and polymorphic variation in folate-related genes are associated with risk of neural tube defect pregnancy. Mol. Genet. Metab., 81: 273-281.
    Riggs K.M., Spiro III A., Tucker K., Rush D., 1996. Relations of vitamin B_(12), vitamin B_6, folate and homocysteine to cognitive performance in the Normative Aging Study. Am. J. Clin. Nutr., 63:306-314.
    Selhub J., Jacques P.F., Wilson P.W, Rush D., Rosenberg I.H., 1993. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA, 270: 2693-2698.
    Seripa, D., Forno, G.D., Matera, M.G., Gravina, C., Margaglione, M., Palermo, M.T., Wekstein, D.R., Antuono, P., Davis, D.G., Daniele, A., Masullo, C., Bizzarro, A.,
    Gennarelli, M., Fazio, V.M., 2003. Methylenetetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients. Neurobiol. Aging. 24, 933-939.
    Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D'agostino, P.B., Wilson, W.F., Wolf, P.A., 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Eng. J. Med. 346, 476-83.
    Snowdon, D.A., Tully, C.L., Smith, C.D., Riley, K.P., Markesbery, W.R., 2000. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun Study. Am. J. Clin. Nutr. 71, 993-998.
    Song J.N., da Costa K.A., Fischer L.M., Kohlmeier M., Kwock L., Wang S., et al., 2005. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease(NAFLD). FASEB J., 19 (10): 1266-1271.
    Vesela, K., Pavlikova, M., Janosikova, B., Andel, M, Zvarova, J., Hyanek, J., Kozich, V., 2005. Genetic determinants of folate status in central bohemia. Physiol. Res. 54, 295-303.
    Wakutani, Y., Kowa, H., Kusumi, M., Nakaso, K., Yasui K., Isoe-Wada, K., Yano, H., Urakami, K., Takeshima, T., Nakashima, K., 2004. A haplotype of the methylenetetrahydrofolate reductase gene is protective against late-onset Alzheimer's disease. Neurobiol. Aging. 25, 291-294.
    Wang, B., Jin, F., Kan, R., Ji, S., Zhang, C.F., Lu, Z.P., Zheng, C.G., Yang, Z., Wang, L., 2005. Association of MTHFR gene polymorphism C677T with susceptibility to late-onset Alzheimer's disease. J. Mol. Neurosci. 27, 23-27.
    Wilcken, B., Bamforth, F., Li, Z., Zhu, H., Ritvanen, A., Redlund, M, Stoll, C, Alembik, Y, Dott, B., Czeizel, A.E., Gelman-Kohan, A., Scarano, G., Bianca, S., Ettore, G., Tenconi, R., Bellato, S., Scala, I., Mutchinick, O.M., Lopez, M.A., de Walle, H., Hofstra, R., Joutchenko, L., Kavteladze, L., Bermejo, E., Maartinez-Fias, M.L., Gallagher, M., Erickson, J.D., Vollset, SE., Mastroiacovo, P., Andria, G., Botto, L.D., 2003. Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas worldwide. J. Med. Genet. 40, 619-625.
    Yang-Feng, T.L., Ma, Y.Y., Liang, R., Prasad, P.D., Leibach, F.H., Ganapathy, V., 1995. Assignment of the human folate transporter gene to chromosome 21q22.3 by somatic cell hybrid analysis and in situ hybridization. Biochem. Biophy. Res. Commun. 210, 874-879.
    Zhao H.L., Li X.Q., Zhang Z.X., Bi X.H., Wang B., and Zhang J.W., 2008. Association analysis of methionine synthase gene 2756 A>G polymorphism and Alzheimer disease in a Chinese population. Brain Res., 204: 118-122.
    Zhloba, A.A., Blashko, E.L., 2004. Liquid chromatographic determination of total homocysteine in blood plasma with photometric detection. J. Chromatogr. B. 800, 275-280.
    Barros J.C. and Marshall C.J., 2005. Activation of either ERK1/2 or ERK5 MAP kinase pathways can lead to disruption of the actin cytoskeleton. J. Cel. Sci., 118, 1663-1671.
    Bi Xiaoning, Yong A. P., Zhou J., Ribak C.E. and Lynch G., 2001. Rapid induction of intraneuronal neurofibrillary tangles in apolipoprotein E-deficient mouse. Pro. Natl. Acad. Sci. US, 85:4506-4510.
    Blanchard B.J., devii Raghunandan R., Roder H.M. and Ingram V.M., 1994. Hyperhposphorylation of human tau by brain kinase PK40erk beyond phosphorylation by cAMP-dependent PKA: relation to Alzheimer's disease. Biochem. Biophys. Res Commun., 200, 187-194.
    Cai X., Hagedorn C.H., Cullen B.R., et al., 2004. Human microRNAs are processed from Capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10: 1957-1966.
    Cavanaugh J.E, 2004. Role of extracellular signal regulated kinase 5 in neuronal survival. Eur. J. Biochem., 271: 2056-2059.
    Chen A., Muzzio I.A., Malleret G., Bartsch D., Verbitsky M., et al., 2003. Inducible enhancement of memory storage and synaptic plasticity in transgenic mouse expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron, 39: 655-669.
    Chen C.F., Ridzon D.A., Broomer A.J., Zhou Zh.H., Lee D.H., et al., 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33: e179.
    Corder E.H., Saunders A.M., Strittmatter W.J. et al., 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 261:921-923.
    Costa-Mattioli M., Gobert D., Stern E., Gamache K., Colina R., et al., 2007. elFα2 phosphorylation bidirectionally regulates the switch from short- to long- term synaptic plasticity and memory. Cell, 129: 195-206.
    Dalmay T., 2008. MicroRNAs and cancer. J. Intern. Med., 263: 366-75.
    Desdouits-Magnen J., Desdouits F., Takeda S., Syu L.J., Saltiel A.R., Buxbaum J.D., Czemik A.J., Nairn A.C. and Greengard P., 1998. Regulation of secretion of Alzheimer amyloid precursor protein by the mitogen-activated protein kinase cascade. J. Neurochem., 70:524-530.
    Esau C., Kang X.L., Peralta E., Hanson E., Marcusson E.G., Ravichandran L.V., et al., 2004. MicroRNA-143 Regulates Adipocyte Differentiation. J. Bio. Chem, 279:52361-52365.
    Ferrer I., Blanco R., Carmona M.M Ribera R., Goutan E., Puig B., Rey M.J., Cardozo A., Vinals F. and Ribalta T., 2001. Phosphorylated map kinase expression is associated with early tau deposition in neuroes and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol., 11, 144-158.
    Genis I., Gordon 1., Sehayek E. and Michaelson D.M., 1995. Phosphorylation of tau in apolipoprotein E-deficient mouse. Neurosci. Lett., 199:5-8.
    Gordon I., Grauer E., Genis I., Swhayek E, Michaelson D.M., 1995. Memory deficits and cholinergic impairments in apolipoprotein E-deficient mouse. Neurosci. Lett., 199:1-4.
    Harfe B.D., 2005. MicroRNAs in vertebrate development. Ourr. Opin. Genet. Dev., 15: 410-415.
    Harris F. M., Brecht W.J., Xu Qin, Mahley R. W. and Huang Yadong, 2004. Increased tau phosphorylation in apolipoprotein E4 transgenic mouse is associated with activation of extracellular signal-regulated kinase. J. Bio. Chem., 279:44795-44801.
    Hebert S.S., Horre K., Nicolai L., Papadopoulou A.S., Mandemakers W., et al., 2008. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disese correlates with increased BACE1/β-secretase expression. Proc. Natl. Acad. Sci. USA, 105: 6415-6420.
    Hogan M.R., Cockram G.P. and Lu R., 2006. Cooperative interaction of Zhangfei and ATF4 in transactivation of the cyclic AMP response element. FEBS Lett., 580:58-62.
    Hohjoh H. and Fukushima T., 2007. Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene, 391: 39-44.
    Holzer M., Rodel L., Seeger G., Gartner U., Narz F., Janke C., Heumann R. and Arendt T., 2001. Activation of mitogen-activated protein kinase cascade and phosphorylation of cytoskeletal proteins after neurone-specific activation of p21ras. II .Cytoskeletal proteins and dendritic morphology. Neuroscience, 105, 1041-1054.
    Hutchison M., Berman K. S. and Cobb M. H., 1998. Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. J. Bio. Chem., 273: 28625-28632.
    Kato Y, Kravchenko V.V., Tapping R.I., Han J., Ulevitch R.J., Lee J.D., 1997. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J., 16:7054-66.
    Kim J., Inoue K., Ishii J., Vanti W.B., Voronov S.V., Murchison E., Hannon G. and Abeliovich A., 2007. A microRNA feedback circuit in midbrain dopamine neurons. Science, 317: 1220-1224.
    Kosik K.S. and Krichevsky A.M., 2005. The elegance of the microRNAs: a neuronal perspective. Neuron, 47: 779-782.
    
    Kosik K.S., 2006. The neuronal microRNA system. Nat. Rev. Neurosci., 9:911-920.
    Krichevsky A.M., 2003. A microRNA array reveals extensive regulation of microRNA during brain development. RNA, 9:1274-1281.
    Kuperstein R and Yavin E., 2002. ERK activation and nuclear translocation in amyloid-beta peptide- and iron-stressed neuronal cell cultures. Eur. J. Neurosci., 16, 44-54.
    Kye M.J., Liu Ts.L., Levy S.F., Xu N.L., Groves B.B., et al., 2007. Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA, 13:1224-1234.
    Lagos-Quitana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W., et al., 2002. Identification of tissue-specific microRNAs from mouse. Curr. Biol., 12: 735-739.
    Lao K.Q., Xu N.L., Yeung V., Chen C.R, Livak K.J. and Straus N.A., 2006. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem. Biophys. Res. Commun., 343: 85-89.
    Lee R.C., Feinbaum R.L., and Ambros V., 1993. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75: 843-854.
    Masliah E., Mallory M., Ge N., Alford M., Veinbergs I., and Roses A.D., 1995.
    
    Neurodegeneration in the central nervous system of apoE-deficient mouse. Exp. Neuro., 136:107-122.
    McShea A., Zelasko D.A., Gerst J. and Smith M.A., 199. Signal transduction abnormalities in Alzheimer's disease:evidence of a pathogenic stimuli. Brain Res., 815, 237-242.
    Mills J., Laurent Charest D., Lam F., Beyreuther K., Ida N., Pelech S.L. and Reiner P.B., 1997. Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J. neurosci., 17, 9415-9422.
    Miska E., 2004. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol., 5, R68.
    Moss E.G., Lee R.C. and Ambros V., 1997. The cold shock domain protein LIN-28 controls developmental timing in C.elegans and is regulated by the lin-4 RNA. Cell, 88: 637-646.
    Nelson P.T., Kiriakidou M.,Sharma A., Maniataki E., Mourelatos Z., 2003, The microRNA world: small is mighty. Trends. Biochem. Sci.,28: 534-540.
    Niwa R., Zhou F., Li C. and Slack F.J., 2008. The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev. Biol., 315: 418-425.
    Ohkubo N., Mitsuda N., Tamatani M., Yamaguchi A., Lee Y.D., Ogihara T., Vitek M.P., and Tohyama M., 2001. Apolipoprotein E4 stimulates cAMP response element-binding protein transcriptional activity through the extracellular signal-regulated kinase pathway. J. Bio. Chem., 276:3046-3053.
    Oitzl M.S., Mulder M., Lucassen P.J., Havekes L.M., Grootendorst J., and de Kloet E.R., 1997. Severe learning deficits in apolipoprotein E-knockout mouse in a water maze task. Brain Research, 752:189-196.
    Olsen P.H., and Ambros, 1999. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-4 protein synthesis after the initiation of translation. Dev. Biol, 216: 671-680.
    Pasquinelli A.E., Reinhart B.J., Slack F., et al., 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408: 86-89.
    Pei J.J., Braak H., An W.L., Winblad B., Cowburn R.R, et al., 2002. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer;s disease. Mol. Brain Res., 109,45-55.
    
    Perry G, Roder H., Nunomura A., Takeda A., Friedlich A.L., Zhu X., et al., 1999.
    Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport, 10:2411-2415.
    
    Raman M., Earnest S., Zhang K., Zhao Y., Cobb M.H., 2007, TAO kinases mediate activation of p38 in response to DNA damage. EMBO J., 2007, 26: 2005-2014.
    
    Rapoport M., and Ferreira A., 2000. Pd98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons. J. Neurochem., 74, 125-133.
    Roder H.M., Eden P.A. and Ingram V.M., 1993. Brain protein kinase PK40erk converts tau into a PHF-like form as found in Alzheimer's disease. Biochem. Biophys, Res. Commun, 193,639-647.
    Schratt G.M., Tuebing R, Nigh E.A., Kane C.G., Sabatini M.E., Kiebler M. and Greenberg M.E., 2006. A brain-specific microRNA regulates dendritic spine development. Nature, 439:283-289.
    Sempere L.F., 2004. Expression profiling of mammalian microRNAs unvovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol., 5, R13.
    Stadler B.M., Ruohola-Baker H., 2008. Small RNAs: keeping stem cells in line. Cell, 22, 132: 563-6.
    Stein T.D. and Johnsin J.A., 2002. Lack of neurodegeneration in transgenic mouse overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J.Neurosci., 22. 7380-7388.
    Wang W.X., Rajeev B.W., Stromberg A.J., Ren N., Tang G.L.,Huang Q.W., Rigoustsos I., and Nelson P.T., 2008. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of P-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci., 28: 1213-1223.
    Wei W., Wang X. and Kusiak J.W., 2002. Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection. J. Biol. Chem., 277, 17649-17656.
    Wheeler G, Ntounia-Fousara S., Granda B., Rathjen T. and Dalmay T., 2006. Identification of new central nervous system specific mouse microRNAs. FEBS Lett., 580: 2195-2200.
    Wightman B., Ha .I, and Ruvkun G., 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans. Cell, 75: 855-862.
    Wu M.F. and Wang S.G., 2008. Human TAO kinase 1 induces apoptosis in SH-SY5Y cells. Cell. Biol. Int., 32: 151-156.
    Zhu X, Sun Z., Lee H. Siedlak S.L. Perry G. and Smith M.A., 2003. Distribution, levels, and activation of MEK1 in Alzheimer;s disease.
    Akomolafe A.,Beiser A.,Meigs J.B.,Au R.,Green R.C.,et al.2006.Diabetes mellitus and risk of developing Alzheimer disease:results from the Framingham Study.Arch Neurol.,63:1551-1555.
    Alexianu M.and Tudorache B.,1994.Structural modifications of intracerebral small blood vessels in various types of dementa.Rom J Neuro Psychiatry.,32:141-152.
    Alzheimer A.1907.Uber eine eigenartig Erkrankung der Hinrinde.Allg.Z.Psychiatrie.Psych.Ger.Med.,64:146-148.
    Bailey,T.L.,Rivara C.B.,Rocher A.B.,Hof P.R.,2004.The nature and effects of cortical microvascular pathology in aging and Alzheimer's disease.Neurol.Res.,26:573-578.
    Barberger-Gateau P.,Letenneur L.,Deschamps V.,et al.,Fish,meat,and risk of dementia:cohort study.BMJ,325:932-933.
    Bell I.R.,Edman J.S.,Selhub J.,Morrow F.D.,Marby D.W.,Kayne H.L.Cole J.O.,1992.Plasma homocysteine in vascular disease and in nonvascular dementia of depressed elderly people. Acta. Psychiatr. Scand., 86:386-390.
    
    Bots M.L., van Kooten F., Haverkate R, Meijer P., Koudstaal P.J., et al., 1998. Coagulation and fibrinolysis markers and risk of dementia: the Dutch vascular factors in dementia study. Haemostasis, 28:216-222.
    Caroli A., Testa C., Geroldi C., Nobili R, Barnden L.R., et al., 2007. Cerebral perfusion correlates of conversion to Alzheimer's disease in amnestic mild cognitive impairment. J. Neurol., 254: 1698-1707.
    Casserly I. and Topol E. 2004. Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. Lancet, 363: 1139-1146.
    Clarke R., Daly L., Robinson K., Naughten E., Cahalane S., et al., 1991. Hyperhomocysteinemia: an independent risk for vascular disease. N. Eng. J. Med., 324: 1149-1155.
    Clarke R., Smith A.D. Jobst K.A., Refsum H., Sutton L., et al. 1998. Folate, vitamin B_(12), and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol., 55:1449-1455.
    Claudia L., 1996. Ultrastructural features of the blood-brain barrier in biopsy tissue from Alzheimer's disease patients. Acta neuropathol(Berl), 91:6-14.
    Christie R., Yamada M, Moskowitz M., Hyman B., 2001. Structural and Functional Disruption of Vascular Smooth Muscle Cells in a Transgenic Mouse Model of Amyloid Angiopathy. Am. J. Pathol., 158: 1065-1072.
    Chui H.C., Zarow C., Mack W.J., Ellis W.G., Zheng L., et al., 2006. Cognitive impact of subcortical vascular and Alzheimer's disease pathology. Ann. Neurol., 60:677 - 687.
    Corder E.H., Ervin J.F. Lockhart E., Szymanski M.H., Schmechel D.E., et al., 2005. Cardiovascular Damage in Alzheimer Disease:Autopsy Findings From the Bryan ADRC. J. Biomed. Biotechnol., 2005: 189-197.
    Cuellar T.L., Davis T.H., Nelson P.T., Loeb, G.B., Harfe B.D., et al., 2008. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc. Natl. Acad. Sci. USA, 105: 5614-5619.
    Davignon J., Gregg R.E., Sing C.F., 1988. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis, 8: 1-21.
    Farkas, E. and Luiten, P.G., 2001. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol., 64, 575-611.
    Fujishima M and Kiyohara Y., 2002. Incidence and risk factors of dementia in a defined elderly Japanese population: the Hisayama Study. Ann. N. Y. Acad. Sci., 977: 1-8.
    
    Fuso A., Seminara L., Cavallaro R.A., D'Anselmi F. and Scarpa S., 2005. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregualtion of PS1 and BACE and beta-amyloid production. Mol. Cell Neurosci., 28: 195-204.
    Gee J.R. and Keller J.N., 2005. Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int. J. Biochem. Cell Biol., 37: 1145-1150.
    
    Grossman H., 2003. Does diabetes protect or provoke Alzheimer's disease? Insights into the pathobiology and future treatment of Alzheimer's disease. CNS Spectr, 8: 815-823.
    Guidi I., Galimberti D., Lonati S., Novembrino C., Bamonti F., et al., 2006. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer's disease. Neurobiol. Aging, 27: 262-269.
    den Heijer T., Skoog I, Oudkerk M, de Leeuw F.E., de Groot J.C., et al., 2003. Association between blood pressure levels over time and brain atrophy in the elderly. Neurobio. Aging, 24: 307-313.
    Hofman A., Ott A., Breteler M.M., Bots M.L., Slooter A.J., et al., 1997. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet, 349:151-154.
    
    Honig L.S., Kukull W., and Mayeux R., 2005. Atherosclerosis and AD, Analysis of data from the US national Alzheimer's coordinationg center. Neurology, 64:494-500.
    Kalaria R.N., 2000. The role of cerebral ischemia in Alzheimer's disease. Neurobiol. Aging, 21:321-330.
    Kalmijn S., Launer L.J., Ott A., Bots J.L., Hofman A., Breteler M.M., 1997. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol., 42: 776-782.
    Kalmijn S., Launer L.J., Lindemans J,. Bots J.L., Hofman A., Breteler M.M., 1999. Total homocysteine and cognitive decline in a community based sample of elderly subjects: the Rotterdam Study. Am. J. Epidemiol., 150:283-289.
    
    Kivipelto M, Helkala E.L., Laakso M.P., Hanninen T., Hallikainen M, et al., 2002. ApolipoproteinE epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for latelife AIzlaeimer disease. Ann. Intern. Med.,137: 149-155.
    Kivipelto M, Ngandu T., Fratiglioni L., Viitanen M., Kareholt I., et al., 2005. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol., 62:1556-60.
    Kruman I.I., Kumaravel T.S., Lohani A., Pedersen W.A., Cutler R.G., et al., 2002. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid rocicity in experimental models of alzheimer's disease. J. Neurosci., 22: 1752-1762.
    Ledesma M.D., Abad-Rodriguez J., Galvan C., Biondi E., Navarro P., et al., 2003. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep., 4: 1190-1196.
    Lehtovirta M, Kuikka J., Helisalmi S., Hartikainen P., Mannermaa A., et al., 1998.
    
    Longitudinal SPECT study in Alzheimer's disease: relation to apolipoprotein E polymorphism. J. Neurol. Neurosurg. Psychiatry., 64: 742-746.
    
    Leibson C.L., Rocca W.A., and Hanson V.A., 1997. Risk of dementia among person with diabetes mellitus: a population-based cohort study. Am. J. Epidemiol., 145: 301-308.
    Luchsinger J.A., Reitz C., Honig L.S., Tang M.X., Shea S. and Mayeux R., 2005. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology, 65:545-51.
    McKhann G., Drachman D., Folstein M, Katzman R., Price D. and Stadlan E.M., 1984. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34: 939-944.
    Mielke M.M., Rosenberg P.B., Tschanz J., Cook L., Corcoran C, et al., 2007. Vascular factors predict rate of progression in Alzheimer disease. Neurology, 69: 1850-1858.
    Mok S.S., Turner B.J., Beyreuther K., Masters C.L., Barrow C.J. and Small D.H., 2002. Toxicity of substrate-bound amyloid peptides on vascular smooth muscle cells is enhanced by homocysteine. Eur. J. Biochem, 269: 3014 - 3022.
    Morris M.C., Evans .D.A., Bienias J.L., et al., 2003. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol., 60: 940-946.
    Jellinger K.A. and Attems J., 2005. Prevalence and pathogenic role of cerebrovascular lsions in Alzheimer disease. J. Neurol. Sci., 299-230: 37-41.
    Johnson NA., Jahng G.H., WeinerM.W., Miller B.L., Chui H.C., et al., Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology, 234: 815-859.
    de Jong G.I., de Vos R.A.,Steur E.N., Luiten P.G., 1997. Cerebrovascular hypoperfusion: a risk factor for Alzheimer's disease? Animal model and postmortem human studies. Ann. N. Y. Acad. S., 826: 56-74.
    de Jong G.I., Farkas E., Stienstra C.M., Plass J.R., Keijser J.N., et al. 1999. Cerebral hypoperfusion yields capillary damage in hippocampus CAI that correlates to spatial memory impairment, Neuroscience, 91:203-210.
    O'Brien J.T., Eagger S., Syed G.M., Sahakian B.J. and Levy R., 1992. A study of regional cerebral blood flow and cognitive performance in Alzheimer's disease. J. Neurosurg. Psychiatry., 55: 182-1187.
    van Oijen M., Witteman J.C., Hofman A., Koudstaal P.J., Breteler M.M., 2005. Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke, 36:2637-41.
    Ott A., Stolk R.P., Hofman A., van Harskamp F., Grobbee D.E. and Breteler M.M., 1996. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia., 39: 1392-1397.
    Ott A., Stolk R.P., Hofman A., van Harskamp F., Grobbee D.E. and Breteler M.M., 1999. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology, 53:1907-1909.
    
    Pappolla M.A., Bryant-Thomas T.K., Herbert D., et al., Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology, 61: 199-205.
    Paris D., Patel N., DelleDonne A., Quadros A., Smeed R. and Mullan M., 2004. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci. Lett., 366: 80-85.
    Paris D., Townsend K., Quadros A., Humphrey J., Sun J., et al., 2004. Inhibition of angiogenesis by A β peptides. Angiogenesis, 7: 75-85.
    Perlmutter L.S., Myers M.A. and Barron E., 1994. Vascular basement membrane components and the lesions of Alzheimer's disease. Microsc. Res. Tech., 28:204-215.
    Posner H.B., Tang M.X., Luchsinger J., Lantigua R., Stern Y., Mayeux R., 2002. The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function. Neurology, 58:1175-1181.
    Prohovnik I., Mayeux R., Sackeim H.A., Smith G., Stern Y. and Alderson P.O., 1988. Cerebral perfusion as a diagnostic marker of early Alzheimer's disease. Neurology, 38: 931-937.
    
    Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L, et al., 2005. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J. Clin. Nutr., 82:636—43.
    Riggs K.M., Spiro III A., Tucker K., Rush D., 1996. Relations of vitamin B_(12), vitamin B_6, folate and homocysteine to cognitive performance in the Normative Aging Study. Am. J. Clin. Nutr., 63:306-314.
    Ronnemaa E., Zethelius B., Sundelof J., Degerman-Gunnarsson M., Berne C, et al., 2008. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology, Epub ahead of print.
    Ruitenberg A., den Heijer T., Bakker SL.M., van Swieten J.C., Koudstaal P.J., et al., 2005. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann. Neural., 57: 789-794.
    Seshadri S., Beiser A. and Selhub J., 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med., 346: 476-83.
    Skoog I., Lernfelt B., Landahl S., Palmertz B., Andreasson L.A., et al., 1996. 15-year longitudinal study of blood pressure and dementia. Lancet, 347: 1141-1145.
    Skoog I., Gustafson D., 2006. Update on hypertension and Alzheimer's disease. Neurol. Res., 28: 605-611.
    Snowdon D.A., Greiner L.H., Mortimer J.A., 1997. Brain infarction and the clinical expression of Alzheimer disease: The Nun Study. JAMA, 277:813-817.
    Snowdon D.A., 2003. Healthy aging and dementia: findings from the Nun Study. Ann. Intern. Med., 139:450-454.
    Sontag E., Nunbhakdi-Craig V., Sontag J.M., Diaz-Arrastia R., Ogris E., et al., 2007. Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J. Neurosci., 27:2751-2759.
    Strittmatter W.J., Saunders A.M., Schmechel D., Pericak-Vance M., Enghild J., et al., 1993. Apolipoprotein E high avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA, 90: 1977-1981.
    de la Torre J.C., 2002. Alzheimer disease as a vascular disorder nos ological evidence. Stroke, 33: 1152-1162.
    de la Torre h.c, Pappas B.A., Prevot V., Emmerling M.R., Mantione K., et al., 2003. Hippocampal nitric oxide upregulation precedes memory loss and A beta 1-40 accumulation after chronic brain hypoperfusion in rats. Neurol. Res., 25: 635-41.
    de la Torre J.C., 2004. Alzheimer's disease is a vasocognopathy: a new term to describe its nature. Neurol. Res., 26: 517-524.
    
    Treiber K.A., Lyketsos C.G., Corcoran C., Steinberg M., Norton M., et al., 2008. Vascular factors and risk for neuropsychiatric symptoms in Alzheimer's disease: the Cache County Study. Int. Psychogeriatr., 20: 538-553.
    Vermeer S.E., Prins N.D., den Heijer T., Hofman A., Koudstaal PJ. and Breteler M.M., 2003. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med.,348: 1215-1222.
    Wu Z.H., Guo H., Chow N., Sallstrom J., Bell R.D., et al. 2005. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat. Med., 11: 959-965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700