红系分化发育过程中珠蛋白基因表达开关进程的分析及相关调控因子基因探寻
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人类个体发育过程中存在ε(胚胎型)→γ(胎儿型)→β(成人型)珠蛋白基因表达开关过程。在成人骨髓造血干细胞向红系分化发育过程中也存在γ→β基因表达的“压缩性”开关过程。虽然对于珠蛋白基因表达调控及开关的研究已取得许多进展,但至今对于调节这些开关的决定性调节因子仍不明确。这些因子的确定对于揭示珠蛋白基因开关机制具有决定性意义,本课题的目的就是希望能向此目标迈进。
     本研究首先利用密度梯度离心方法,从正常成人和异细胞型遗传性胎儿血红蛋白持续存在综合症(HPFH)家系患者的骨髓组织(Bone Marrow)、健康足月正常分娩胎儿脐带血(Umbilical Cord Blood)中分离得到了含有造血干/祖细胞的单个核细胞(Mono-Nuclear Cell,MNC),进行初步纯化及体外(in vitro)扩增后,组合使用Epo、IL-3、GM-CSF等细胞因子,将造血干/祖细胞向红系方向进行诱导培养。鉴于在以往报告中使用的红细胞体外培养方法往往由于添加胎牛血清及诸如c-kit配体、Tpo等促生长添加剂而使得成人外周血或骨髓来源的红细胞内胎儿型γ-珠蛋白基因的表达水平升高,不能真正模拟体内成人红系分化发育的过程,无法满足研究珠蛋白表达及开关调节的需要,我们针对成人骨髓来源的红细胞尝试使用了无血清培养方法,针对人脐带血来源的红细胞则使用了含脐带血清的培养方法,并且尽量去除其他影响珠蛋白表达的添加剂,希望能够找到并建立尽可能模拟生理情况的培养条件与方法,并以此为基础,为研究珠蛋白基因表达调控及开关机制提供适当的实验材料。
     在向红系诱导过程中,我们在不同的时间点收集了红细胞培养物,提取总RNA,进行逆转录合成cDNA,通过实时荧光定量PCR(Real time PCR)技术详细检测了细胞分化成熟不同时间点的红细胞内α-类与β-类珠蛋白基因的表达水平。结果显示:在使用无血清培养基诱导培养的成人骨髓红细胞内,其α-、β-及γ-珠蛋白基因的表达水平及变化趋势同正常生理情况下的表达过程即所谓的“压缩性开关”非常相似,其中的β-珠蛋白基因的表达同γ-珠蛋白基因相比占明显优势,胚胎型ε-珠蛋白基因表达水平极低,而胚胎型ζ-珠蛋白基因的表达则未能检测到;在使用含人脐带血清的培养基诱导培养的脐带血红细胞内检测到了包括α-、β-、γ-、ε-及ζ-等在内的所有珠蛋白基因的表达,其中的β-珠蛋白基因表达变化趋势同无血清诱导培养的正常成人骨髓红系细胞相似,而与前者不同的是在整个成熟过程中γ-珠蛋白基因同β-珠蛋白基因的表达相比占
During human development, two switches of globin gene expression, ε (embryonic) →γ (fetal) →β (adult) occur. Adult erythropoiesis is also postulated to recapitulate γ- to β- globin switching, which is called "compressed switch". Although advance has been made in the study on control of globin gene expression and switching, key factors of globin gene switching is still unknown till now. As the validation of these factors is of significance for disclosing mechanisms of globin gene switching, we hope that our work could contribute to this target.
    In this study, Mono-nuclear cells (MNCs) containing hematopoietic stem/progenitor cells were isolated from umbilical cord blood of normal full-term deliveries, healthy adult and heterocellular HPFH patient bone marrow by density gradient centrifugation. After simple purification and expansion in vitro, MNCs were induced to erythroid cell differentiation using different culture systems and cytokines including Epo, IL-3 and GM-CSF. In the previous study, fetal bovine serum and the other components such as c-kit ligand and Tpo were often used when erythroid cells were cultured in vitro. However, the fetal (γ-) globin gene was reactivated in cultured erythroid cells from adult bone marrow or peripheral blood in these culture conditions. That is, these culture methods failed to mimic the erythropoiesis in physical condition and couldn't meet the needs for study of globin gene regulation and switching. In this study, serum free medium were used for induction of erythroid cells from adult bone marrow and human cord serum-containing medium were used for erythroid cells from cord blood. Further, components that reactivated γ-globin gene were never used in our culture system. We hope that the culture condition and methods mimicking erythropoiesis in vivo could be established and thus, can provide us the materials for further study of globin gene regulation and switching.
    During induction, erythroid cells were collected from cultures at different time points and total RNA was extracted for reverse transcription reaction. Then the expression level of α-like and β-like globin genes in erythroid cells at different time points were determined by real time PCR. The results showed that the expression level and fluctuation of -α、β- and γ-globin gene in cultured erythroid cells of adult bone marrow is very similar to the so called "compressing switch" in vivo when cultured in serum free medium. Compared to y-globin gene, the expression of β-globin gene is predominant, whereas the expression of 8- (embryonic) and ζ,-(embryonic) globin genes is nondetectable. However, the expression of α-、β-、γ-、
引文
[1]. Baron MH. Developmental regulation of the vertebrate globin multigene family. Gene Expr. 1996;6:129.
    [2]. Stamatoyannopoulos. G. & Ntenhuis. A.W. Hemoglobin switching. Molecular Basis ofBlood Diseases, (ed. By G. Stamatoyannopoulos et al). pp. 107-156.1994; Saunders.Philadelphia
    [3]. Bunn.H.F. Reversing ontogeny. New England Journal of Medicine. 1993;328:129-131
    [4]. Miller IJ, Bieker JJ. A novel, erythroid-specific murine transcription factor that binds to theCACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol, 1993; 13:2776-2786.
    [5]. Asano H, Li XS, Stamatoyannopoulos G FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol Cell Biol. 1999 May;19(5):3571-9.
    [6], Asano,H., Li,X.S. and Stamatoyannopoulos,G.FKLF-2: a novel Kruppel-like transcriptional factor that activates globin and other erythroid lineage genes.Blood.2000;95 (11):3578-3584.
    [7]. Zhou W, Clouston DR, Wang X etal:Induction of human fetal globin gene Liang,P. And Pardee,A.B. Differentional display of Eukaryotic Messenger RNA by means of the Potymerase chain Reaction. Science 1992; 257:967-971.
    [9]. Utans U, Liang P, Wallace A, et al. Identification of five upregulated genes in transplanted hearts by differential mRNA display. Nucleic Acids Res,. 1994; 21: 6463-6467.
    [10]. Sun Y, Hagamyer G, Golburn N. Molecular cloning of five messenger RNA differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells. Cancer Res. 1994; 54:1139-1144.
    [11]. Gromova I, Gromov P, Celis JE. Identification of true differentially expressed mRNAs in a pair of human bladder transitional cell carcinomas using an improved differential display procedure. Electrophoresis. 1999; 20:241-248.
    [12]. Tawe WN, Eschbach ML, Walter RD, et al. Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res. 1998. 26:1621-1627.
    [13]. Green CB and Besharse JC. Use of a high stringency differential display screen for identification of retinal mRNAs that are regulated by a circadian clock. Brain Res Mol Brain Res. 1996; 37:157-165.
    [14]. Martin KJ, Pardee AB. Principles of differential display. Methods Enzymol.1999; 303:234-58.
    [15]. Stamatoyannopoulos G. The molecular basis of blood diseases. 3rd ed. Philadelphia: W.B. Saunders, 2001.
    [16]. Rodgers GP, Rachmilewitz EA. Novel treatment options in the severe beta-globin disorders. Br J Haematol. 1995;91:263.
    [17]. Ley TJ, DeSimone J, Anagnou NP, et al. 5-Azacytidine selectively increases gamma-globin synthesis in a patient with beta1 thalassemia. N Engl J Med. 1982;307:1469.
    [18]. Charache S, Dover G, Smith K, Talbot CC Jr, Moyer M, Boyer S. Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex. Proc Natl Acad Sci U S A. 1983;80:4842.
    [19]. Ley TJ, DeSimone J, Noguchi CT, et al. 5-Azacytidine increases gamma-globin synthesis and reduces the proportion of dense cells in patients with sickle cell anemia. Blood. 1983;62:370.
    [20]. Charache S, Dover GJ, Moore RD, et al. Hydroxyurea: effects on hemoglobin F production in patients with sickle cell anemia [see comments]. Blood. 1992;79:2555.
    [21]. Rodgers GP, Dover GJ, Noguchi CT, Schechter AN, Nienhuis AW. Hematologic responses of patients with sickle cell disease to treatment with hydroxyurea. N Engl J Med. 1990;322:1037.
    [22]. Perrine SP, Ginder GD, Faller DV, et al. A shortterm trial of butyrate to timulate fetal-globin-gene expression in the beta-globin disorders [see comments].N Engl J Med. 1993;328:81.
    [23]. Atweh GF, Sutton M, Nassif I, et al. Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease [see comments]. Blood. 1999;93:1790.
    [24]. Stamatoyannopoulos G, Veith R, al-Khatti A, Papayannopoulou T. Induction of fetal hemoglobin by cell-cycle-specific drugs and recombinant erythropoietin. Am J Pediatr Hematol Oncol. 1990;12:21-26.
    [25]. Peschle C, Migliaccio G, Migliaccio AR, et al. Hemoglobin switching in humans. In: Dunn CDR, ed. Current Concepts in Erythropoiesis. New York, NY: Wiley; 1983:339-387.
    [26]. Fibach E, Manor D,et al.Proliferation and maturation of human erythroid progenitors in liquid culture. Blood. 1989 Jan;73(1): 100-3.
    [27]. Konwalinka G, et al. A micro agar culture system for cloning human erythropoietic progenitors in vitro. Exp Hematol. 1982 Jan;10(1):71-7.
    [28]. Ben-Ishay Z, Reichert F, Sharon S. Erythroid "bursts" in semi-solid agar diffusion chambers: effect of cyclophosphamide administration to host and of hydroxyurea to donor animals.Exp Hematol. 1978 Aug;6(7):631-5.
    [29]. Peschle C, Gabbianelli M, Testa U, et al. c-kit ligand reactivates fetal hemoglobin synthesis in serum-free culture of stringently purified normal adult burst-forming unit-erythroid. Blood. 1993; 81:328.
    [30]. Fibach. E. Techniques for studying stimulation of fetal hemoglobin production in human erythroid cultures. Hemoglobin. 1998; 22(5&6): 445]
    [31]. Gabbianelli M, Pelosi E, Bassano E, et al. Granulocyte-macrophage colony-stimulating factor reactivates fetal hemoglobin synthesis in erythroblast clones from normal adults. Blood. 1989;74: 2657.
    
    [32]. Gabbianelli M, Pelosi E, Labbaye C, Valtieri M, Testa U, Peschle C. Reactivation of HbF synthesis in normal adult erythroid bursts by IL-3. Br J Haematol. 1990;74:114.
    [33]. Migliaccio AR, Migliaccio G, Brice M, Constantoulakis P, Stamatoyannopoulos G, Papayannopoulou T. Influence of recombinant hematopoietins and of fetal bovine serum on the globin synthetic pattern of human BFUe. Blood. 1990;76:1150
    [34]. Gabbianelli M, Testa U, et al. HbF reactivation in sibling BFU-E colonies: synergistic interaction of kit ligand with low-dose dexamethasone. Blood. 2003 Apr 1;101(7):2826-32.
    [35]. Rachmilewitz EA, Goldfarb A, Dover G. Administration of erythropoietin to patients with b thalassemia intermedia: a preliminary trial. Blood. 1991; 78:1145.
    [36]. Olivieri NF, Sheridan B, Freedman M, Dover G, Perrine S, Nagel RS. Trial of recombinant human erythropoietin in thalassemia intermedia. Blood. 1992;80:3258.
    [37]. Rachmilewitz EA, Aker M. The role of recombinant human erythropoietin in the treatment of thalassemia. Ann N Y Acad Sci. 1998;30:129.
    [38]. Darena G,Musto P,Cascavilla V,et al.Human umbilical cord blood:immunophenotypic heterogeneity of CD34+ hematopoietic progenitor cells.Haematologica,1996,81(5):404
    [39]. Fibach E, Manor D,et al.Proliferation and maturation of human erythroid progenitors in liquid culture. Blood. 1989 Jan;73(1): 100-3.
    [40]. Vivek M, Tanavde, et al. Human stem-progenitor cells from neonatal cord
    blood have greater hematopoietic expansion capacity than those from mobilized adult blood. Exp Hematol. 2002;30:816-823
    [41]. Urszula Wojda, Pierre Noel and Jeffery L.Miller. Fetal and adult hemoglobin production during adult erythropoiesis: coordinate expression correlates with cell proliferation. Blood. 2002; 99(8):3005-3013.
    [42]. Zhang,Q.H., Ye,M.,et al. Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells Genome Res. 2000;10 (10):1546-1560.
    [43]. Dron,M., Meritet,J.F., Dandoy-Dron,F., et al. Molecular cloning of ADIR, a novel interferon responsive gene encoding a protein related to the torsins. Genomics. 2002;79 (3): 315-325.
    [44]. Ota,T., Suzuki,Y, Nishikawa,T.,et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 2004;36 (1):40-45.
    [45]. Lai,C.H., Chou,C.Y, Ch'ang,L.Y., et al. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000;10 (5):703-713.
    [46].Lu,R. and Misra,V. Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Res. 2000;28 (12):2446-2454.
    [47]. Smith RD, Li J, Noguchi CT, et al. Quantitative PCR analysis of HbF inducers in primary human adult erythroid cells. Blood. 2000 Feb 1;95 (3):863-9.
    [48]. Gabbianelli M, Testa U, Massa A, et al. Hemoglobin switching in unicellular erythroid culture of sibling erythroid burst-forming units: kit ligand induces a dose-dependent fetal hemoglobin reactivation potentiated by sodium butyrate. Blood. 2000 Jun 1; 95(11):3555-61.
    [49]. Stamatoyannopoulos G, Grosveld F. Hemoglobin switching. In: Stamatoyannopoulos G, Majerus P, Perlmutter R,Varmus H, eds. The Molecular Basis of Blood Diseases. 3rd ed. Part II, Red Cells. Philadelphia: W.B. Saunders Publishing Co.; 2001. p. 135-182.
    [50]. Liebhaber SA, Wang Z, Cash FE, Monks B, Russell JE. Developmentalsilencing of the embryonic ξ-globin gene: concerted action of the promoter and the 3'-flanking region combined with stage-specific silencing by the transcribed segment. Mol Cell Biol. 1996; 16: 2637-2646.
    [51]. Feingold EA, Forget BG. The breakpoint of a large Deletion causing hereditary persistence of fetal hemoglobin occurs within an erythroid DNA domain remote from the β-globin gene cluster. Blood. 1989; 74:2178-2186.
    [52]. Anagnou NP, Perez-Stable C, Gelinas R, et al. Sequences located 3'to the breakpoint of the hereditary persistence of fetal hemoglobin-3 deletion exhibit enhancer activity and can modify the developmental expression of the human fetal Aγglobin gene in transgenic mice. J Biol Chem. 1995;270:1-8.
    [53]. Collins FS, Stoeckert CJ Jr., Serjeant GR, et al. Gγβ_ hereditary persistence of fetal hemoglobin: cosmid cloning and identification of a specific mutation 5' to theGγ gene. Proc Natl Acad Sci USA. 1984;81:4894-4898.
    [54]. Peterson KR, Li Q, Clegg CH, et al. Use of YACs in studies of development: production of β-globin locus YAC mice carrying human globin developmental mutants. Proc Natl Acad Sci USA. 1995;92: 5655-5659.
    [55]. Yoshihiro Fujimori, Makio Ogawa, Steven C, et al. Serum-Free Culture of Enriched Hematopoietic Progenitors Reflects Physiologic Levels of Fetal Hemoglobin Biosynthesis. Blood, 1990; 75 (8): 1718-1722.
    [56]. Diatchenko L, Lukyanov S, Lau YF, et al. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol. 1999; 303: 349-80.
    [57]. Velculescu,V. E, L. Zhang, B. Vogelstein, et al. Serial analysis of gene expression. Science. 1995; 270:484-487.
    [58]. Schena M, Shalon D, Davis RW, et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995 Oct 20;270(5235):467-70.
    [59]. Stoeckert CJ Jr, Green MB.Erythropoietin and hydroxyurea can act on early erythroid progenitors from adult human peripheral blood to modulate fetal globin mRNA levels. Exp Hematol. 1994 Mar;22(3):278-82.
    [60]. Weatherall DJ, Clegg JB, Wood WG. A model for the persistence or reactivation of fetal haemoglobin production. Lancet. 1976;2: 660-663.
    [61]. Boyer SH, Belding TK, Margolet L, Noyes AN. Fetal hemoglobin restriction to a few erythrocytes (F cells) in normal human adults.Science. 1975;188:361-363.
    [62]. Wood WG, Stamatoyannopoulos G, Lim G, Nute PE. F-cells in the adult: normal values and levels in individuals with hereditary and acquired elevations of Hb F. Blood. 1975;46:671-682.
    
    [63]. Ingram VM. Embryonic red cell formation Nature.1972;235: 338-339.
    [64]. Papayannopoulou Th, Brice M, Stamatoyannopoulos G. Stimulationof fetal hemoglobin synthesis in bone marrow cultures from adult individuals. Proc Natl Acad Sci USA. 1976;73:2033-2037.
    [65]. Papayannopoulou Th, Brice M, Stamatoyannopoulos G, Hemoglobin F.
    1. Stamatoyannopoulos G. The molecular basis of blood diseases. 3rd ed. Philadelphia: W.B. Saunders, 2001.
    
    2. Feingold EA, Forget BG. The breakpoint of a large Deletion causing hereditary persistence of fetal hemoglobin occurs within an erythroid DNA domain remote from the β-globin gene cluster. Blood. 1989; 74:2178-2186.
    
    3. Anagnou NP, Perez-Stable C, Gelinas R, et al. Sequences located 3'to the breakpoint of the hereditary persistence of fetal hemoglobin-3 deletion exhibit enhancer activity and can modify the developmental expression of the human fetal Aγglobin gene in transgenic mice. J Biol Chem. 1995;270:1-8.
    
    4. Collins FS, Stoeckert CJ Jr., Serjeant GR, Forget BG, Weissman SM. Gγβ-hereditary persistence of fetal hemoglobin: cosmid cloning and identification of a specific mutation 5' to the Gγ-gene. Proc Natl Acad Sci USA. 1984; 81:4894-4898.
    
    5. Peterson KR, Li Q, Clegg CH, et al. Use of YACs in studies of development: production of β-globin locus YAC mice carrying human globin developmental mutants. Proc Natl Acad Sci USA. 1995;92: 5655-5659.
    
    6. Liebhaber SA,Wang Z, Cash FE, Monks B, Russell JE. Developmentalsilencing of the embryonic ξ-globin gene: concerted action of the promoter and the 3'-flanking region combined with stage-specific silencing by the transcribed segment. Mol Cell Biol. 1996;16:2637-2646.
    
    7. Ramchandran R, Bengra C, Whitney B, Lanclos K, Tuan DA. (GATA)(7) motif located in the 5'boundary area of the human β- globin locus control region exhibits silencer activity in erythroid cells. Am J Hematol. 2000;65:14-24.
    
    8. Raich N, Papayannopoulou T, Stamatoyannopoulos G, Enver T. Demonstration of a human s-globin gene silencer with studies in transgenic mice. Blood 1992;79:861-864.
    
    9. Li Q, Blau CA, Clegg CH, Rohde A, Stamatoyannopoulos G. Multiple -promoter elements participate in the developmental control of ε-globin genes in transgenic mice. J Biol Chem. 1998; 273: 17361-17367.
    
    10. Liu Q, Bungert J, Engel JD. Mutation of gene-proximal regulatory elements disrupts human ε-, γ-, and P-globin expression in yeast artificial chromosome
    transgenic mice. Proc Natl Acad Sci USA. 1997;94:169-174
    
    11. Raich N, Clegg CH, Grofti J, Romeo PH, Stamatoyannopoulos G. GATA1 and YY1 are developmental repressors of the human ε-globin gene. EMBO J. 1995 14:801-809.
    
    12. Kellum R, Schedl P. A position-effect assay for boundaries of higher order chromosomal domains. Cell. 1991; 64:941-950.
    
    13. Pikaart MJ, Recillas-Targa F, Felsenfeld G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev.1998; 12: 2852-2862.
    
    14. Bell AC, Felsenfeld G. Stopped at the border: boundaries and insulators. Curr Opin Genet Dev.1999; (20) 9:191-198.
    
    15. Tanimoto K, Liu Q, Bungert J, Engel JD. The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human β-globin LCR. Nucleic Acids Res. 1999; 27:3130-3137.
    
    16. Boulikas T. Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J Cell Biochem.1993; 52:14-22.
    
    17. Chung JH, Whiteley M, Felsenfeld G. A. 5' element of the chicken p-globin domain serves as an insulator in human erythroid cells andprotects against position effect in Drosophila. Cell.1993; 74:505-514.
    
    18. Jarman AP, Higgs DR. Nuclear scaffold attachment sites in the human globin gene complexes. EMBO J. 1988; 7:3337-3344.
    
    19. Bender MA, Reik A, Close J, Telling A, Epner E, Fiering S, Hardison R, Groudine M. Description and targeted deletion of 5'hypersensitive site 5 and 6 of the mouse p-globin locus control region. Blood. 1998; 92:4394-4403.
    
    20. Li Q, Stamatoyannopoulos JA. Position independence and proper developmental control of p-globin gene expression require both a 5'locus control region and a downstream sequence element. Mol Cell Biol 14:6087-6096,1994.
    
    21. Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human P-globin locus. Mol Cell. 2000; 5:377-386.
    
    22. Groudine M, Kohwi-Shigematsu T, Gelinas R, Stamatoyannopoulos G, Papayannopoulou Th. Human fetal to adult hemoglobin switching: changes in chromatin structure of the p-globin gene locus. Proc Natl Acad Sci USA. 1983; 80:7551-7555.
    
    23. Forrester WC, Takegawa S, Papayannopoulou Th, Stamatoyannopoulos G,
    Groudine M. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res. 1987; 24:10159-10177.
    
    24. Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Positionindependent, high-level expression of the human β-globin gene intransgenic mice. Cell. 1987; 51:975-985.
    
    25. Bulger M, von Doorninck JH, Saitoh N, Telling A, Farrell C, Bender MA, Felsenfeld G, Axel R, Groudine M. Conservation of sequence and structure flanking the mouse and human p-globin loci: the P-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci USA. 1999; 96:5129-5134.
    
    26. Townes TM, Behringer RR. Human globin locus activation region (LAR): role in temporal control. Trends Genet.1990; 6:219-223.
    
    27. Caterina JJ, Ciavatta DJ, Donze D, Behringer RR, Townes TM. Multiple elements in human P-globin locus control region 5'HS2 are involved in enhancer activity and position-independent, transgene expression. Nucleic Acids Res. 1994; 22:1006-1011.
    
    28. Kong S, Bohl D, Li C, Tuan D. Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol Cell Biol. 1997; 17:3955-3965,1997.
    
    29. Elnitski L, Miller W, Hardison R. Conserved E boxes function as part of the enhancer in hypersensitive site 2 of the P-globin locus control region. Role of basic helix- loop-helix proteins. J Biol Chem.1997; 272: 369-378.
    
    30. Bungert J, Tanimoto K, Patel S, Liu Q, Fear M, Engel JD. Hypersensitive site 2 specifies a unique function within the human P-globin locus control region to stimulate globin gene transcription. Mol Cell Biol. 1999; 19:3062-3072.
    
    31. Ellis J, Tan-Un KC, Harper A, et al. A dominant chromatin-opening activity in 5'hypersensitive site 3 of the human P-globin locus control region. EMBO J. 1996;15:562-568.
    
    32. Milot E, Strouboulis J, Trimborn T, et al. Heterochromatin effects on the frequency and duration of LCRmediated gene transcription. Cell 87:105-114, 1996.
    
    33. Jarman AP, Higgs DR. Nuclear scaffold attachment sites in the human globin gene complexes. EMBO J. 1988; 7:3337-3344.
    
    34. Choi OR, Engel JD. Developmental regulation of P-globin gene switching. Cell.1988; 55:17-26.
    
    35. Wijgerde M, Gribnau J, Trimborn T, et al.The role of EKLF in human β-globin gene competition. Genes Dev. 1996; 10:2894-2902.
    
    36. Strouboulis J, Dillon N, Grosveld F. Developmental regulation of a complete 70-kb humanβ-globin locus in transgenic mice. Genes Dev. 1992; 6:1857-1864.
    
    37. Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F. The effect of distance on long-range chromatin interactions. Mol Cell. 1997; 1:131-139.
    
    38. Peterson KR, Clegg CH, Huxley C, et al. Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human P-globin locus display proper developmental control of human globin genes. Proc Natl Acad Sci USA. 1993; 90:7593-7597.
    
    39. Bresnick EH, Tze L. Synergism between hypersensitive sites confers long-range gene activation by the β-globin locus control region. Proc Natl Acad Sci USA.1997; 94:4566-4571.
    
    40. Gribnau J, de Boer E, Trimborn T, Wijgerde M, Milot E, Grosveld F, Fraser P. Chromatin interaction mechanism of transcriptional control in vivo.EMBO J . 1998;17:6020-6027.
    
    41. Hardison R, Slightom JL, Gumucio DL, et al. Locus control regions of mammalian β-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene. 1997;205: 73-94.
    
    42. Ji X, Liu D, Xu D, et al. Both locus control region and proximal regulatory elements direct the developmental regulation of β-globin gene cluster. J Cell Biochem.2000; 76:376-385.
    
    43. Peterson KR, Clegg CH, Navas PA, Norton EJ, Kimbrough TG ,Stamatoyannopoulos G. Effect of deletion of 5'HS3 or 5'HS2 of the human β-globin locus control region on the developmental regulation of globin gene expression in P-globin locus yeast artificial chromosome transgenic mice. Proc Natl Acad Sci USA. 1996; 93:6605-6609.
    
    44. Bungert J, Dave U, Lim KC, Lieuw KH, Shavit JA, Liu Q, Engel JD. Synergistic regulation of human β-globin gene switching by locus control region elements HS3 and HS4. Genes Dev 9:3083-3096, 1995.
    
    45. Tuan D, Kong S, Hu K. Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci USA. 1992;89:11219-11223.
    
    46. Blackwood EM, Kadonaga JT. Going the distance: a current view of enhancer action. Science.1998; 281:61-63.
    47. Bulger M, Groudine M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 1999;13:2465-2477.
    
    48. Tyler JK, Kadonaga JT. The "dark side" of chromatin remodeling: repressive effects on transcription. Cell 99:443-446, 1999.
    
    49. Engel JD, Tanimoto K. Looping, linking, and chromatin activity: new insights into P-globin locus regulation. Cell.2000; 100:499-502.
    
    50. Miller IJ, Bieker JJ.A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol. 1993; 13:2776-2786.
    
    51. Donze D, Townes TM, Bieker JJ. Role of erythroid Kruppel-like factor in human gamma-beta-globin gene switching. J Biol Chem. 1995; 270:1955-1959.
    
    52. Talbot D, Philipsen S, Fraser P, Grosveld F. Detailed analysis of the site 3 region of the human P-globin dominant control region. EMBO J. 1990; 9:2169-2177.
    
    53. Jane SM, Cunningham JM. Molecular mechanisms of hemoglobin switching. Int J Biochem Cell Biol. 1996; 28:1197-1209.
    
    54. Kobayashi A, Ito E, Toki T, Kogame K, Takahashi S, Igarashi K, Hayashi N, Yamamoto M. Molecular cloning and functional characterization of a new cap' n' collar family transcription factor Nrf3. J Biol Chem. 1999; 274:6443-6452.
    
    55. Katsuoka F, Motohashi H, Onodera K, Suwabe N, Engel JD, Yamamoto M. One enhancer mediates MafK transcriptional activation in both hematopoietic and cardiac muscle cells. EMBO J.2000; 19:2980-2991.
    
    56. Kataoka K, Igarashi K, Itoh K, Fujiwara KT, Noda M, Yamamoto M, Nishizawa . Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol. 1995; 15:2180-2190.
    
    57. Ney PA, Sorrentino BP, McDonagh KT, Nienhuis AW. Tandem AP-1-binding sites within the human P-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev. 1990; 4:993-1006.
    
    58. Forsberg EC, Downs KM, Bresnick EH. Direct interaction of NF-E2 with hypersensitive site 2 of the β- globin locus control region in living cells. Blood. 2000; 96:334-339.
    
    59. Gong QH, McDowell JC, Dean A. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the ε-globin gene in vivo by 5'hypersensitive site 2 of the p-globin locus control region. Mol Cell Biol. 1996;16: 6055-6064.
    
    60. Shivdasani RA, Orkin SH. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci USA. 1995; 92:8690-8694.
    
    61. Chan JY, Han XL, Kan YW. Cloning of Nrf1, an NF-E2-related. tran scription factor, by genetic selection in yeast. Proc Natl Acad Sci USA. 1993; 90: 11371-11375.
    
    62. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the -globin locus control region. Proc Natl Acad Sci USA. 1994 91: 9926-9930.
    
    63. Kotkow KJ, Orkin SH. Dependence of globin gene expression in mouseerythroleukemia cells on the NF-E2 heterodimer. Mol Cell Biol. 1995; 15: 4640 -4647.
    
    64. Martin F, van Deursen JM, Shivdasani RA, Jackson CW, Troutman AG, Ney PA.Erythroid maturation and globin gene expression in mice with combined deficiency of NF-E2 and nrf-2. Blood. 1998; 91: 3459-3466.
    
    65. Casteel D, Suhasini M, Gudi T, Naima R, Pilz RB. Regulation of the erythroid transcription factor NF-E2 by cyclic adenosine monophosphate-dependent protein kinase. Blood. 1998; 91:3193-3201.
    
    66. Garingo AD, Suhasini M, Andrews NC, Pilz RB. cAMP-dependent protein kinase is necessary for increased NF-E2.DNA complex formation during erythroleukemia cell differentiation. J Biol Chem. 1995; 270:9169-9177.
    
    67. Versaw WK, Blank V, Andrews NM, Bresnick EH. Mitogenactivated protein kinases enhance long-range activation by the P-globin locus control region. Proc Natl Acad Sci USA. 1998; 95:8756-8760.
    
    68. Amrolia PJ, Ramamurthy L, Saluja D, Tanese N, Jane SM, Cunningham JM. The activation domain of the enhancer binding protein p45NF-E2 interacts with TAFII130 and mediates long-range activation of the a- and P-globin gene loci in anerythroid cell line. Proc Natl Acad Sci USA. 1997; 94:10051-10056.
    
    69. Chen CJ, Deng Z, Kim AY, Blobel GA, Lieberman PM. Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol. 2001 ;21:476-487.
    
    70. Merika M, Orkin SH. DNA-binding specificity of GATA family transcriptionfactors. Mol Cell Biol. 1993; 13:3999-4010.
    71. Ko LJ, Engel JD. DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol. 1993; 13:4011-4022.
    
    72. Jane SM, Cunningham JM. Molecular mechanisms of hemoglobin switching. Int J Biochem Cell Biol. 1996;28:1197-1209.
    
    73. Li J, Noguchi CT, Miller W, Hardison R, chechter AN. Multiple regulatory elements in the 5'-flanking sequence of the human ε-globin gene. J Biol Chem.l998;273:10202-10209.
    
    74. Crossley M, Merika M, Orkin SH. Self-association of the erythroidtranscription actor GATA-1 mediated by its zinc finger domains. Mol Cell Biol 15:2448-2456, 1995.
    
    75. Dorfman DM, Wilson DB, Bruns GA, Orkin SH. Human transcription factor ATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem. 1992; 267:1279-1285.
    
    76. Jimenez G, Griffiths SD, Ford AM, Greaves MF, Enver T. Activation of the β-globin locus control region precedes commitment to the erythroid lineage. Proc Natl Acad Sci USA. 1992; 89:10618-10622.
    
    77. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994; 371:221-226.
    
    78. Persons DA, Allay JA, Allay ER, Ashmun RA, Orlic D, Jane SM, Cunningham JM, Nienhuis AW. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood. 1999; 93:488-499.
    
    79. Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, Crossley M, Orkin SH. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell. 1997; 90:109-119.
    
    80. Tsang AP, Fujiwara Y, Hom DB, Orkin SH. Failure of megakaryopoiesis andarrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 1998,12:1176-1188.
    
    81. Miller IJ, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol. 1993 ; 13:2776-2786.
    
    82 Perkins AC, Sharpe AH, Orkin SH. Lethal β-thalassaemia in mice lacking the erythroid CACCC- transcription factor EKLF. Nature. 1995 375:318-322.
    83. Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F. Defectivehaematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995; 375:316-318.
    
    84. Perkins AC, Gaensler KM, Orkin SH. Silencing of human fetal globin expression is impaired in the absence of the adult P-globin gene activator protein EKLF. Proc Natl Acad Sci USA. 1996; 93:12267-12271.
    
    85. Lee JS, Lee CH, Chung JH. The P-globin promoter is important for recruitment of erythroid Kruppel-like factor to the locus control region in erythroid cells. Proc Natl Acad Sci USA. 1999; 96:10051-10055.
    
    86. Donze D, Townes TM, Bieker JJ. Role of erythroid Kruppel-like factor in human γ- to β-globin gene switching. J Biol Chem. 1995 ;270:1955-1959.
    
    87. Chen X, Bieker JJ. Unanticipated repression function linked to erythroid Kriippel-like factor. Mol Cell Biol. 2001; 21:3118-3125.
    
    88. Ouyang L, Chen X, Bieker JJ. Regulation of erythroid Kriippel-like factor (EKLF) transcriptional activity by phosphorylation of a protein kinase casein kinase II site within its interaction domain. J Biol Chem. 1998;273:23019-23025.
    
    89. Willert K, Brink M, Wodarz A, Varmus H, Nusse R. Casein kinase 2 associates with and phosphorylates disheveled. EMBO J. 1997; 16:3089-3096.
    
    90. Merika M, Orkin SH. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol. 1995; 15:2437-2447.
    
    91. Asano H, Li XS, Stamatoyannopoulos G. FKLF, a novel Kruppel-like factor that activates human embryonic and fetal β-like globin genes. Mol Cell Biol. 1999;19:3571-3579.
    
    92. Asano H, Li XS, Stamatoyannopoulos G. FKLF-2: a novel Kriippel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood. 2000; 95:3578-3584.
    
    93. Song CZ, Gavriilidis G, Asano H, Stamatoyannopoulos G. Functional study of transcription factor KLF11 by targeted gene inactivation.Blood Cells Mol Dis. 2005 Jan-Feb;34(1):53-9.
    
    94. Tanimoto K, Liu Q, Grosveld F, Bungert J, Engel JD. Context dependent EKLF responsiveness defines the developmental specificity of the human ε-globin genein erythroid cells of YAC transgenic mice. Genes Dev. 2000; 14:2778-2794.
    
    95. Filipe A, Li Q, Deveaux S, Godin I, Romeo PH, Stamatoyannopoulos G, Mignotte V. Regulation of embryonic/fetal globin genes by nuclear hormone receptors: a novel perspective on hemoglobin switching. EMBO J. 1999;18:687-697.
    
    96. Jane SM, Nienhuis AW, Cunningham JM. Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein. EMBO J. 1995; 14:97-105.
    
    97. Holmes ML, Haley JD, Cerruti L, Zhou W, Zogos H, Smith DE, Cunningham JM, Jane SM. Identification of Id2 as a globin regulatory protein by representational difference analysis of K562 cells induced To express γ-globin with a fungal compound. Mol Cell Biol. 1999; 19:4182-4190.
    
    98. Lam LT, Bresnick EH. A novel DNA-binding protein, HS2NF5, interacts with a functionally important sequence of the human P-globin locus control region. J Biol Chem. 1996; 271:32421-32429.
    
    99. Lam LT, Bresnick EH. Identity of the P-globin locus control region binding protein HS2NF5 as the mammalian homolog of the notchregulated transcription factor suppresser of hairless. J Biol Chem. 1998; 273:24223-24231.
    
    100. Furukawa T, Maruyama S, Kawaichi M, Honjo T. The Drosophila homolog of the immunoglobulin recombination signal- binding protein regulates peripheral nervous system development. Cell. 1992; 69:1191-1197.
    
    101. Schweisguth F, Posakony JW. Suppresser of hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates. Cell. 1992; 69:1199-1212.
    
    102. Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell.2000;103:263-271.
    
    103. Jimenez G, Griffiths SD, Ford AM, Greaves MF, Enver T. Activation of the β-globin locus control region precedes commitment to the erythroid lineage. Proc Natl Acad Sci USA. 1992; 89:10618-10622.
    
    104. Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription? Cell. 1997; 89:325-328.
    
    105. Chubeler D, Lorincz MC, Cimbora DM, Telling A, Feng YQ, Bouhassira EE, Groudine M. Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol Cell Biol. 2000; 20:9103-9112.
    
    106. Martin-Bianco E. p38 MAPK signaling cascades: ancient roles and new functions. Bioessays. 2000 22:637-645.
    
    107. Ono K, Han J. The p38 signal transduction pathway: activation and function.Cell Signal. 2000 12:1-13.
    
    108. Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement for p38 in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell. 2000 102:221-231.
    
    109. Crossley M, Orkin SH. Phosphorylation of the erythroid transcription factor GATA-1. J Biol Chem. 1994 269:16589-16596.
    
    110. Nagai T, Igarashi K, Akasaka J, Furuyama K, Fujita H, Hayashi N, Yamamoto M, Sassa S. Regulation of NF-E2 activity in erythroleukemia cell differentiation. J Biol Chem. 1998 273:5358-5365.
    
    111. Armstrong JA, Emerson BM. NF-E2 disrupts chromatin structure at human β-globin locus control region hypersensitive site 2 in vitro. Mol Cell Biol. 1996 16:5634-5644.
    
    112. Bird AP, Wolffe AP. Methylation-induced repression—belts, braces, and chromatin. Cell. 1999 99:451-454.
    
    113. Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin GenetDev. 1999 9:158-163.
    
    114. Hardison R. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol. 1998; 201:1099-1117.
    
    115. Muchardt C, Yaniv M. ATP-dependent chromatin remodeling: SWI/SNF and Co. are on the job. J Mol Biol. 1999; 293:187-198.
    
    116. Armstrong JA, Bieker JJ, Emerson BM. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell. 1998; 95:93-104.
    
    117. O'Neill D, Yang J, Erdjument-Bromage H, Bornschlegel K, Tempst P, Bank A. Tissue-specific and developmental stage-specific DNA binding by a mammalian SWI/SNF complex associated with human fetal-to-adult globin gene switching. Proc Natl Acad Sci USA. 1999; 96:349-354.
    
    118. Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994; 14:8292-8303.
    
    119. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 1996; 5:537-549.
    
    120. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A. The Ikaros gene is required for the development of all lymphoid lineages. Cell.1994;79:143-156.
    
    121. Zhang W, Bieker JJ. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci USA. 1998; 95:9855-9860.
    
    122. Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH. CREBbinding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci USA. 1998; 95:2061-2066.
    
    123. Boyes J, Nakatani Y, Orgyzko V. Regulation of activity of the transcription factorGATA-1 by acetylation. Nature. 1998 ;396:594-598.
    
    124. Visvader JE, Crossley M, Hill J, Orkin SH, Adams JM. The Cterminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol. 1995; 15:634-641.
    
    125. Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA. Stimulation of nf-e2 dna binding by creb-binding protein (cbp)-mediated acetylation. J Biol Chem.2001; 76:10715-10721.
    
    126. Choi OR, Engel JD.Developmental regulation of beta-globin gene switching.Cell. 1988 Oct 7;55(1): 17-26.
    
    127. Behringer RR, Ryan TM, Palmiter RD,et al. Human gamma- to beta-globin gene switching in transgenic mice. Genes Dev. 1990 Mar;4(3):380-9.
    
    128. Enver T, Raich N, Ebens AJ, Costantini F, Papayannopoulou Th, Stamatoyannopoulos G. Developmental regulation of human fetal-to adult globin gene switching in transgenic mice. Nature. 1990;344: 309-313.
    
    129. Wijgerde M, Gribnau J, Trimborn T,et al. The role of EKLF in human beta-globin gene competition.Genes Dev. 1996 Nov 15;10(22):2894-902.
    
    130. Raich N, Enver T, Nakamoto B, Josephson B, Papayannopoulou Th, Stamatoyannopoulos G. Autonomous developmental control ofhuman embryonic globin gene switching in transgenic mice. Science. 1990;50:l 147—1149.
    
    131. Raich N, Papayannopoulou Th, Stamatoyannopoulos G, Enver T. Demonstration of a human e globin gene silencer with studies in transgenic mice. Blood. 1992;79:861-864.
    
    132. Li Q, Blau CA, Clegg CH, Stamatoyannopoulos G. Multiple ε promoter elements participate in the developmental control of e globin genes in transgenic mice. J Biol Chem. 1998;273:17361-17367.
    
    133. Filipe A, Li Q, Deveaux S, et al. Regulation of embryonic/fetal globin genes by nuclear hormone receptors: a novel perspective on hemoglobin switching.EMBO J. 1999; 18:687-697.
    
    134. Stamatoyannopoulos G, Josephson B, Zhang J-W. Li Qiliang. Developmental regulation of human γ-globin genes in transgenic mice. Mol Cell Biol. 1993;13:7636-7644.
    
    135. Harju S, Navas PA, Stamatoyannopoulos G, Peterson KR. Role of γ-globin gene silencing and chromatin sub-domain in globin gene switching. Blood Cells Mol Dis.2003;331:145-146.
    
    136. ZitnikG, HinesP, StamatoyannopoulosG, PapayannopoulouTh.Murine erythroleukemia cell line GM979 contains factors that can activate silent chromosomal human γ-globin genes. Proc Natl Acad Sci USA. 1991;88: 2530-2534.
    
    137. Navas PA, Peterson KR, Li Q, et al. Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion. Mol Cell Biol. 1998;18:4188-4196.
    
    138. Ikuta T, Papayannopoulou Th, Stamatoyannopoulos G, KanYW.Globin gene switching. In vivo protein-DNA interactions of the humanβ-globinlocus inerythroid cells expressing the fetal or the adult globingene program. J Biol Chem. 1996; 271:14082-14091.
    
    139. Navas PA, Swank RA, Yu M, Peterson KR, Stamatoyannopoulos G. Mutation of a transcriptional motif of a distant regulatory element reduces the expression of embryonic and fetal globin genes. Hum Mol Genet. 2003;12:2941-2948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700