ATF4与正畸牙周组织改建相关的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的在正畸治疗过程中,机械力作用于牙齿,引起牙周组织改建,最终使牙齿发生移动而达到矫治目的。这种正畸治疗的生理介质是牙周膜,它是具有成骨能力的骨/牙界面,是一种变异的骨膜,具有明显的骨吸收和骨形成能力。在正畸临床中,没有牙周膜的粘连牙不能发生移动,这也提示我们,在牙槽骨改建的过程中,牙周膜起到至关重要的作用。正畸牙齿受力后的牙周膜组织表现为受压侧破骨细胞聚集、功能活跃,牙槽骨吸收,受牵张侧成骨细胞生成、行使功能,牙槽骨改建,骨形成。破骨细胞来源于造血组织中的破骨细胞前体,是骨吸收的唯一细胞;成骨细胞来源于牙周膜自身,不仅是骨形成的主要细胞,而且在破骨细胞的附着、促进破骨细胞前体分化和合成破骨细胞骨吸收刺激因子等方面起作用。已有研究证实牙周膜细胞中包含具有分化潜能的成纤维细胞群体,正畸机械力能诱导其表达一些成骨细胞的表型和功能蛋白,向成骨样细胞分化。牙周膜细胞分化为成骨细胞,参与骨吸收和骨形成,是正畸骨改建的关键。
     牙周膜细胞在机械力作用下向成骨细胞分化的分子机制比较复杂,包含多条信号转导途径。例如,一氧化氮(NO)、前列腺素12(PGI2)、前列腺素E2(PGE2)、百日咳毒素敏感异源三聚体G蛋白(PTX-敏感蛋白)、动力敏感钙离子通道等。近年的研究表明,一些核内转录因子也参与了细胞内调控途径,将细胞外物理或机械刺激转化为协调的细胞反应。
     1987年,能以一个共同的核心序列(CGTCA)和腺病毒启动子E2,E3和E4结合的蛋白被命名为ATF,在随后的几年中发现了大量相同的或者类似的能和ATF/CRE位点结合的蛋白,这些蛋白都含有一个命名为bZip的DNA结合区域。基于他们的氨基酸的相似性,ATF家族被分为ATF2,ATF4,ATF6,B-ATF亚类。
     1989年,Hai根据ATF/CREB结合序列特异性识别位点,首次克隆了ATF4。其他的学者也相继分离出了ATF4,它通常又被称为TAXREB67、CREB2或C/ATF。研究表明,ATF4与成骨细胞特异性基因骨钙素启动区的成骨细胞特异性元件1(OSE1)相结合,调控成骨细胞的分化。至今为止,只有Runx2和ATF4可诱导非成骨细胞系表达成骨细胞特异型基因骨钙素的表达。另外,有研究证实ATF4是RSK2的磷酸化底物,ATF4(-/-)鼠出现CLS表现型,除精神发育迟缓外,还伴有颅面、牙齿、骨骼发育异常。ATF4和RSK2以一种线性级联的方式调控成骨细胞分化和功能,是间充质细胞向成骨细胞分化所必需的。ATF4作为成骨细胞分化的关键因子,与骨发育和牙齿发育关系的研究正在不断开展。但正畸骨改建与骨发育是两种不同的生理过程,ATF4在正畸牙齿移动牙周组织的表达和分布,在机械力的作用下体外培养的人牙周膜细胞中表达变化的情况,以及在牙周膜细胞向成骨样细胞分化的过程中所起的作用,国内外尚未有报道。
     本研究通过建立正畸大鼠牙齿移动动物模型和体外细胞培养,结合细胞力学试验方法和分子生物学测试技术,拟从组织、细胞水平以及分子生物学角度探讨ATF4在正畸牙齿移动过程中对牙周组织改建的影响及作用机制,进一步为正畸牙齿移动提供理论和实践依据。
     方法
     1.观察正畸牙周组织改建过程中ATF4的表达变化
     建立大鼠牙齿移动实验模型,在加力1h,2h,4h,8h,12h,1d,3d,5d,7d后,处死大鼠,固定,脱钙,制作大鼠第一磨牙牙周组织石蜡切片,HE染色观察牙周组织形态学变化,免疫组化进行半定量分析ATF4的表达。
     2.观察机械力加载下人牙周膜细胞ATF4mRNA和蛋白的表达变化
     组织块法培养原代人牙周膜细胞,并做波形丝蛋白抗体和角蛋白抗体染色鉴定。取4-6代生长旺盛,性质稳定的人牙周膜细胞进行实验。以2.5×10~5/孔将第4代人牙周膜细胞接种于6孔细胞培养板培养24小时,换用含2%胎牛血清的条件培养基继续培养24小时,将六孔板置于离心加力支架中,离心机加力10min,30min,60min,90min,120min,240min(910rev/min,约167g相对离心力)。提取总RNA和核蛋白,以半定量RT-PCR和Western Blotting检测ATF4mRNA和蛋白的表达变化。
     3.观察ATF4在牙周膜细胞向成骨样细胞分化过程中的作用
     5%CO2,37℃条件下,生长状态良好的4-6代人牙周膜细胞培养于10%胎牛血清的DMEM培养基。按阳离子脂质体Lipofectamine 2000TM说明操作,用美国肿瘤研究所Professor Lee惠赠的重组质粒pMyc-ATF4和空载体质粒pCMV5-myc转染人牙周膜细胞。半定量RT-PCR和Western Blotting检测未转染细胞、转染空质粒(pCMV5-myc)细胞、转染目的基因(pMyc-ATF4)细胞ATF4mRNA和蛋白表达水平。三组细胞均加载30min 167g离心力,检测ALP活性及成骨样基因骨钙素(OCN)、骨桥蛋白(OPN)、胶原Ⅰ(COLI)、骨涎蛋白(BSP)基因的表达变化。
     结果
     1.正常大鼠的牙周组织中基本上未见有明显的ATF4的阳性表达,靠近牙骨质和牙槽骨表面的牙周膜部分轻度染色,而中间部分的牙周膜染色更浅。正畸加力组大鼠牙周组织中ATF4表达增强,表达贯穿正畸牙周组织改建的全过程。在压力侧,靠近牙骨质表面的牙周膜强阳性表达;在张力侧,靠近牙骨质和牙槽骨表面的牙周膜区域强阳性表达,中间部分的牙周膜也阳性表达;所有加力组大鼠张力区比压力区阳性染色深,骨形成区域阳性染色较强。
     2.正常人牙周膜细胞有ATF4 mRNA表达;加载167g离心力后,ATF4 mR2NA表达发生变化:加力10min时开始增加,但无统计学意义(P>0.05);加力30min时达到高峰(P<0.01);加力60min,90min时表达开始下降,但仍高于加力前水平(P<0.01);加力120min时降至加力前水平(P>0.05)。
     正常人牙周膜细胞ATF4蛋白表达很低;加载167g离心力后,ATF4蛋白表达发生变化:加力10min时开始增加,但无统计学意义(P>0.05);加力30min时继续增加(P<0.01);加力60min时达到高峰(P<0.01),加力90min时表达开始下降,但仍高于加力前水平(P<0.01);加力120min时降至加力前水平(P>0.05)。
     3.人牙周膜细胞表达ALP,转染目的基因pMyc-ATF4后,ALP表达活性升高(P<0.05),但转染空质粒pCMV5-myc ALP表达未发生明显变化(NS:P>0.05)。未转染、转染pCMV5-myc、转染pMyc-ATF4人牙周膜细胞受到167g离心力,ALP表达均升高(*P<0.05,**P<0.01);但转染pCMV5-myc与未转染细胞相比,受力后ALP表达无明显差异(NS:P>0.05),转染pMyc-ATF4与未转染细胞相比,受力后ALP表达升高(P<0.01)。
     人牙周膜细胞有OPNmRNA、COLImRNA、BSPmRNA表达,没有OCNmRNA表达。转染目的基因pMyc-ATF4后,OPNmRNA、COLImRNA、BSPmRNA、OCNmRNA表达均升高(*P<0.05,**P<0.01),但转染空质粒pCMV5-myc后,OPNmRNA、COLImRNA、BSPmRNA、OCNmRNA表达未发生明显变化(NS:P>0.05)。未转染、转染pCMV5-myc、转染pMyc-ATF4细胞受到167g离心力,OPNmRNA、COLImRNA、BSPmRNA、OCNmRNA表达均升高(*P<0.05,**P<0.01);但转染pCMV5-myc与未转染细胞相比,受力后OPNmRNA、COLImRNA、BSPmRNA、OCNmRNA表达无明显差异(NS:P>0.05),转染pMyc-ATF4与未转染细胞相比,受力后OPNmRNA、COLImRNA、BSPmRNA、OCNmRNA表达升高(P<0.01)。
     结论
     1.ATF4在正畸牙齿移动过程中的表达有明显的变化,从而确定其参与了牙齿移动过程中的牙周组织的改建,在正畸牙齿移动的机制中具有重要意义。
     2.应力刺激可使ATF4mRNA及蛋白的表达增强,表达量在30分钟到60分钟左右达到峰值,随后逐渐降低至正常水平;表明ATF4可对力学刺激作出快速、一过性的短暂表达反应。从细胞水平证实ATF4参与了正畸牙齿移动牙周组织的改建。
     3.ATF4可促进加载下的人牙周膜细胞向成骨细胞分化。
     4.此研究有助于更好地理解牙齿移动中的牙周组织改建的机理,并由此指导临床实践。
Background and objective
    It has been known that a tooth can be moved gradually from one spot in the oral cavity to
    a more desirable one by the application of mechanical forces to the tooth's crown. Periodontal ligament (PDL) is the connective tissue located between the tooth root and alveolar bone. It functions in bone remodeling during orthodontic tooth movement, has the ability of bone resorption and formation.The rapid and active alveolar bone remodelling followed by tooth movement does not occur unless normal healthy PDL surrounds the tooth root, which suggests that the transmission of the force applied to the teeth to alveolar bone is mediated by the response of periodontal ligament to the force, inducing adaptation of periodontal tissues to the mechanical stress.The tooth movement is mediated by bone resorption on the compression side of the PDL and by bone deposition on the tension side of the PDL. Osteoclasts are the only cells that are responsible for bone resorption, while the formation and activity of osteoclasts are regulated by osteoblasts through expression of osteoclast differentiation factor/ RANKL. So it is believed that osteoblasts play an important role not only in bone formation but in bone remodeling as well. PDL cells are a mixture of mesenchymal cells that have differentiation potential, and mechanical stimulation alone can induce the differentiation of PDL cells to osteoblast-like cells, suggesting that the increased osteoblast differentiation and activity is responsible for the mechanical stress-induced bone remodeling.
    However, the molecular mechanism by which mechanical stress enhance osteoblast proliferation and differentiation is complex and involves multiple signaling molecules and pathways, but not limited to, nitric oxide, prostaglandin E2 and 12 (PGE2 and PGI2), pertussis toxin-sensitive heterotrimeric G proteins, stretch-activated ion channels, integrins. Recent data indicate that internuclear transcription factors are associated with the intracellular regulatory pathways that convert extracellular physical or mechanical stimuli into a coordinated cellular response.
    The cAMP-responsible element (CRE) is a well-studied regulatory element, with a consensus sequence of CGTCA. This sequence is located in many viral and cellular promoters, such as the ElA-inducible adenoviruses E2, E3, E4, HTLV-I LTR, somatostatin, VIP, c-fos and HSP-70. This element is recognized by a family of transcription factors, referred to as activating transcription factors (ATF). This family shares closely related basic-leucinezipper (bZip) domains, including ATF2, ATF4, ATF6, B-ATF.
    ATF4 was first cloned based on the specific recognition of an ATF/CREB binding sequence. ATF4 has also been isolated by several other researchers, and is commonly referred to as TAXREB67, CREB2 or C/ATF. ATF4 binds to the osteoblast cis-acting element 1 (OSE1), and is is a major regulator of osteoblast differentiation and function. It has also been demonstrated that ATF4, like Runx2 and Osterix, has the ability to induce osteoblast-specific gene expression in non-osteoblastic cells. Moreover, ATF4 is the substrate in osteoblasts of RSK2, a gene encoding a kinase that is inactivated in Coffin-Lowry syndrome, which is an inherited, sex-linked disorder associated with craniofacial, dental, and skeletal abnormalities as well as mental retardation. ATF4 Is a Substrate of RSK2 in osteoblasts, and is at least partially dispensable for differentiation of mesenchymal cells into osteoblasts.
    The aim of the present study has been to examined the relationship between mechanical stress and ATF4 in the PDL by the application of orthodontic force in vivo and in vitro. This study will contribute to a better understanding of mechanism of bone remodeling during tooth movement which may set the basis for clinical work. Methods
    1. Observe the expression of ATF4 protein in periodontal tissues after orthodontic
    tooth movement
    A titanium-nickel closed-coil spring was applied to the occlusal surface of the rat maxillary first molar (M1) with a hook and the upper incisors with a ligature wire. The coil spring were kept constant and recorded for 0hr, 1 hr, 2 hrs, 4 hrs, 8 hrs, 12hrs, ldays, 3days or 7days. Upon completion of experiments, the maxillae were removed. The specimens were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer for 24 hrs and decalcified in 10% ethylene diamine tetraacetic acid (EDTA) at room temperature for 5 wks. After being dehydrated in ascending grades of alcohol, cleared in xylene, and paraffin- embedded, 3-um serial sections were cut parasagittally on a microtome. Immunohistochemical staining was carried out with anti-ATF4 rabbit polyclonal antibody to examine the expression of ATF4. 2.Observe the expression of ATF4 mRNA and protein after application of centrifugal force on PDL cells.
    Human PDL cells were cultured by sequentialdigestio. Experiments were carried out with cells from the fourth (p4) to sixth (p6) passages. Approximately 5.0×l05cells were seeded onto six-well cell culture plates and cultivated until they reached -80% confluence.The medium was then changed to DMEM supplemented with 2% FBS, to remain quiescent. 24 hour later, human PDL cells were centrifuged at 910 rev/min for 0, 10, 30, 60, 90, 120, and 240 min (910rev/min, about 167gRCF)by horizontal microplate rotor. Total RNA and nuclear extracts were isolated. The expression of ATF4 mRNA and protein
    was measured by Semi-quantitative RT-PCR and Western Blotting respectively.
    3. Observe the role of ATF4 in the mechanical stress-induced human PDL cells differentiation
    Cells from the fourth (p4) to sixth (p6) passages were cultured at 37℃in a humidified atmosphere of 95% air and 5% CO2. Expression vector of human ATF4 (pMyc-ATF4) and its control vector (pCMV5-myc vector) were generous gifts from Dr A. S. Lee. Transient transfection of pMyc-ATF4 was carried out using Lipofectamine TM2000 (Invitrogen). The expression of ATF4 mRNA and protein in untransfected cells, pCMV5-myc transfected cells, or pMyc-ATF4 transfected cells was measured by Semi-quantitative RT-PCR and Western Blotting respectively. Cells in three groups were centrifuged at 910 rev/min for 30 min, and the changes of alkaline phosphatase(ALP) activity and osteocalcin(OCN), osteopontin(OCN), collagen I (COLI) , bone sialoprotein(BSP) genes were measured to assess the differentiation of human PDL cells.
    Results
    1. In the untreated control teeth, ATF4 was expressed at a low level in the rat periodontal tissues, mostly located near the alveolar bone or cementum, much less in the middle of periodontal tissues. Application of orthodontic loading simultaneously induced a significant increase of of periodontal ligamentcells positive for ATF4. Strong direct ATF4 expression was observed in the differentiating cementoblasts of the tooth periodontium near the root surface at the site of the applied compression. ATF4 immunoreactivity was stronger in differentiating cementoblasts at the tension side compared to that at the compression side.
    2. As early as 10 min after mechanical stimuli, ATF4 mRNA levels (compared to control and normalised by p-actin) increased, but has no stastistical significance (P> 0.05). The mRNA levels increased significantly to a peak level of more than two-fold (P < 0.001) at 30 min, remained at more than one half-fold (P < 0.001) at 60 min, and decreased but remained high (P < 0.01) at 90 min. After 240 min, the mRNA levels decreased to control level (P> 0.05).
    There is very low level of ATF4 protein in unloaded cells, but simulation of orthodontic force induces a rapid up-regulation of ATF4. The results show increased ATF4 protein expression in loaded versus unloaded periodontal ligament cells at 30 min (P < 0.001), 60 min (P < 0.001) and 90 min (P < 0.01) after the load episode. The ATF4 protein expression was up regulated, with a peak at 60 min, and then down regulated after 30 min. 3.An increase in the specific activity of cellular ALP has frequently been used as an index for osteoblast differentiation. The ALP activity of human PDL cells transfected with pMyc-ATF4 markedly increased (P<0.05), and it remained unchanged in untransfected and pCMV5-myc transfected cells (P>0.05).The ALP activity of human PDL cells increased (P<0.05) in the empty vector pCMV5-myc transfected cells as well as in the untransfected cells in response to the centrifugal force.Overexpression of pMyc-ATF4 exhibited a greater increase compared to the untransfected cells (P < 0.01) in response to the centrifugal force. The osteogenic genes assessed included osteocalcin (OCN), osteopontin (OPN), collagen I (COLI) and bone sialoprotein (BSP). There was no difference in mRNA expression of all four osteogenic genes between pCMV5-myc transfected human PDL cells and nontransfected cells, and up-regulated mRNA expression of all four osteogenic genes was observed in pMyc-ATF4 transfected human PDL cells (*P < 0.05**P < 0.01). A 30-min centrifugal force at a magnitude of 33.5 g/cm~2 significantly enhanced mRNA expression of all four osteogenic genes (approximately threefold each) in the empty vector pCMV5-myc transfected cells as well as in the untransfected cells (*P < 0.05**P < 0.01). This confirms that this level of centrifugal force significantly increased human PDL cells differentiation and indicates that the Lipofectamine TM2000 transfection did not alter the mitogenic response of human PDL cells to the centrifugation. Overexpression of pMyc-ATF4 exhibited a greater increase (P < 0.01 for each) in mRNA expression of all four osteogenic genes in response to the centrifugal force compared to the untransfected cells.
    Conclusion
    1. ATF4 is highly expressed by mechanical stimuli during tooth movement. ATF4 participated in the periodontal tissue remodeling during orthodontic tooth movement, and probably plays a key role in this process.
    2. The ATF4 mRNA and protein expression increased dramatically after force application, and decreased rapidly towards its pre-treatment level, but with a maximum at 30 min and 60 min after application of mechanical force, respectively. These observations suggest that ATF4 could make a rapid and temporal response to mechanical stress. ATF4 plays a rival role in remodeling of periodontal tissue in vitro.
    3. It is suggested that ATF4 plays a rival role in the diferentiation process from human periodontal ligament cells to osteoblast-like cells.
    4. This study will contribute to a better understanding of mechanism of bone remodeling during tooth movement which may set the basis for clinical work.
引文
1.张丁.口腔正畸学的临床基础.北京:中国医药科技出版社;2000.
    2. Takahashi N AT, Udagawa N,et al. Osteoblastic cells are involved in osteoclast formation. Endorinology 1988;123:2600-2602.
    3. Duncan RL TC. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int;: 1995;57:344-358
    4. Y.Q. Yang 1 XTL, A. B. M. Rabie 2, et al. Human periodontal ligament cells express osteoblastic phenotypes under intermittent force loading in vitro. [Frontiers in Bioscience 2006; 11:776-781.
    5. Klein-Nulend J SC, Ajubi NE, et al. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun;: 1995;217:640-8.
    6. Jessop HL, Rawlinson SC, Pitsillides AA, Lanyon LE. Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 2002;31 (1): 186-94.
    7. McAllister TN, Frangos JA. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 1999;14(6):930-6.
    8. Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 1997;12(1):45-51.
    9. Bakker AD, Soejima K, Klein-Nulend J, Burger EH. The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech 2001;34(5):671-7.
    10. Reich KM, McAllister TN, Gudi S, Frangos JA. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology 1997;138(3):1014-8.
    11. Gudi S, Nolan JP, Frangos JA. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci U S A 1998;95(5):2515-9.
    12. Rawlinson SC, Pitsillides AA, Lanyon LE. Involvement of different ion channels in osteoblasts' and osteocytes' early responses to mechanical strain. Bone 1996;19(6):609-14.
    13. Ryder KD, Duncan RL. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res 2001;16(2):240-8.
    14. Kevin SK, McCulloch, C.A.G.,. Intercellular mechanotransduction: cellular circuits that coordinate tissue responses to mechanical loading. . Biochem. Biophys. Res. Commun. 2001.;285,:1077-1083.
    15. Basdra EK. Biological reactions to orthodontic tooth movement. J Orofac Orthop 1997;58(1):2-15.
    16. Matsuda N, Morita N, Matsuda K, Watanabe M. Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 1998;249(2):350-4.
    17. Yang X MK, Bialek P, et al. ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology: Implication for Coffin-Lowry Syndrome. Cell 2004;117:387-398.
    18. Yang X KG. ATF4, the Osteoblast Accumulation of Which Is Determined Post-translationally, Can Induce Osteoblast-specific Gene Expression in Non-osteoblastic Cells.. J Biol Chem, 2004;279: 47109-47114.
    19. Tsujimoto A, Nyunoya H, Morita T, Sato T, Shimotohno K. Isolation of cDNAs for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type I. J Virol 1991;65(3): 1420-6.
    20. Karpinski BA, Morle GD, Huggenvik J, Uhler MD, Leiden JM. Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci U S A 1992;89(11):4820-4.
    21. Vallejo M, Ron D, Miller CP, Habener JF. C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc Natl Acad Sci U S A 1993;90(10):4679-83.
    22. Chakraborty T, Brennan TJ, Li L, Edmondson D, Olson EN. Inefficient homooligomerization contributes to the dependence of myogenin on E2A products for efficient DNA binding. Mol Cell Biol 1991;11(7):3633-41.
    23. Desbois C, Hogue DA, Karsenty G. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 1994;269(2):1183-90.
    24. Xiao G JD, Ge C, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfal stimulate osteoblast-specific osteocalcin gene expression. . J Biol Chem 2005;280(35):30689-96.
    25. Merienne K, Jacquot S, Zeniou M, Pannetier S, Sassone-Corsi P, Hanauer A. Activation of RSK by UV-light: phosphorylation dynamics and involvement of the MAPK pathway. Oncogene 2000; 19(37):4221 -9.
    26. Tanaka T TT, Takeda K, et al. . Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes cells 1998;3(12):801-10.
    27. Hettmann T, Barton K, Leiden JM. Microphthalmia due to p53-mediated apoptosis of anterior lens epithelial cells in mice lacking the CREB-2 transcription factor. Dev Biol 2000;222(1):110-23.
    28. Masuoka HC, Townes TM. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood 2002;99(3):736-45.
    1. Yang X, Matsuda K, Bialek P, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. cell 2004; 117(3):387-398.
    2. Vignery A, Baron R. Dynamic histomorphometry of alveolar bone remodeling in the adult rat. Anat Rec 1980; 196(2): 191-200.
    3. Waldo CM, Rothblatt JM. Histologic response to tooth movement in the laboratory rat; procedure and preliminary observations. J Dent Res 1954;33(4):481-6.
    4. King GJ, Keeling SD, McCoy EA, et al. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats. Am J Orthod Dentofacial Orthop 1991; 99(5):456-465.
    5. DolceC, AnguitaJ, BrinkleyL. Effects of sialoadenectomy and exogenons EGF on molar drift and orthodontic tooth movement in rat Am J Physiol 1994;266(5ptl):E731-738.
    6. Gu G, Lemery SA, King GJ. Effect of appliance reactivation after decay of initial activation on osteoclasts, tooth movement, and root resorption. Angle Orthod 1999;69(6):515-22.
    7. Shirazi M, Nilforoushan D, Alghasi H,et al. The role of nitric oxide in orthodontic tooth movement in rats. Angle Orthod 2002;72(3):211-215.
    8. Rana MW, Pothisiri V, Killiany DM, et al. Detection of apoptosis during orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2001;119(5):516-21.
    9.杨美祥,丁寅,徐如生等.正畸牙齿移动中IL-1d在骨质疏松大鼠牙周组织中的分布变化.华西口腔医学杂志,2000;18(5):314-316.
    10.口腔正畸学一现代原理与技术.第一版ed.天津:天津科技翻译出版公司:1996.
    11. Yang X KG. ATF4, the Osteoblast Accumulation of Which Is Determined Post-translationally, Can Induce Osteoblast-specific Gene Expression in Non-osteoblastic Cells. J Biol Chem 2004;279(45):47109-47114.
    12. Lassot I SE, Berlioz-Torrent C, et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 2001;21 (6):2192-2202.
    13. Ducy P, Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 1995; 15(4): 1858-69.
    14.刘淑华,孙新华,单庆莲等.骨钙素在正畸牙齿移动中的放免研究。中国妇幼保健2004;19(8):111-112.
    15.张晓东,林珠,李永明等.大鼠牙齿移动牙周组织中Ⅰ型胶原和MMP-1及TIMP-1的表达。中国美容医学2005;14(1):12-14.
    1. Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006;129(4):458-468.
    2. Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, et al. The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts. J Periodontal Res 2004;39(1):27-32.
    3. Redlich M, Asher Roos H, Reichenberg E, et al. Expression of tropoelastin in human periodontal ligament fibroblasts after simulation of orthodontic force. Arch Oral Biol 2004;49(2):119-24.
    4. Kapur S, Baylink D, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone. 2003;32(3):241-251.
    5. Wadhwa S, Godwin SL, Peterson DR, et al. Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J Bone Miner Res.2002 17(2):266-274.
    6. You J, Yellowley CE, Donahue HJ , et al Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading2induced oscillatory fluid flow. J Biomech Engin 2000;122(4):387 - 393.
    7. Smalt R, Mitchell FT, Howard RL, et al. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am J Physiol 1997;273(4 Pt 1):E751-8.
    8. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses J Biomech Engin 1994;27(3):339-360.
    9. Haskin C, Cameron I, Athanasiou K. Physiological levels of hydrostatic pressure alter morphology and organization of cytoskeletal and adhesion proteins in MG-63 osteosarcoma cells. Biochem Cell Biol 1993;71 (1-2):27-35.
    10. Haskin CL, Athanasiou KA, Klebe R, et al. A heat-shock-like response with cytoskeletal disruption occurs following hydrostatic pressure in MG-63 osteosarcoma cells. Biochem Cell Biol 1993;71(7-8):361-371.
    11. Yousefian J, Firouzian F, Shanfeld J, Ngan P, Lanese R, Davidovitch Z. A new experimental model for studying the response of periodontal ligament cells to hydrostatic pressure. Am J Orthod Dentofacial Orthop 1995; 108(4):402-9.
    12. Akatsu T, Murakami T, Nishikawa M, Ono K, Shinomiya N, Tsuda E, et al. Osteoclastogenesis inhibitory factor suppresses osteoclast survival by interfering in the interaction of stromal cells with osteoclast. Biochem Biophys Res Commun 1998;250(2):229-34.
    13. Fitzgerald J Hughes-Fulford M. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts. FASEB J 1999; 13:553-557.
    14. Lee DH, Park JC, Suh H. Effect of centrifugal force on cellular activity of osteoblastic MC3T3-E1 cells in vitro. Yonsei Med J 2001;42(4):405-10.
    15. Baumert U, Golan I, Becker B, Hrala BE Redlich M, Roos HA, et al. Pressure simulation of orthodontic force in osteoblasts: a pilot study. Orthod Craniofac Res 2004;7(1):3-9.
    16.郑翼陈,周征,等.机械压力对成骨样细胞增殖活性及功能状态的影响..华西口腔医学杂志2002;20:18-20.
    17. Willard MF, Stephen JW, Kent EV Quantitative PT PCR: pitfalls and potential. Biotechniques 1999;26:112-12.
    18. Rawlinson SC, Pitsillides AA, Lanyon LE. Involvement of different ion channels in osteoblasts' and osteocytes' early responses to mechanical strain. Bone 1996; 19(6):609-14.
    19. Pender N, McCulloch CAG. Quantitation of actin polymerization in two human fibroblast subtypes responding to mechanical stretching. J Cell Sci 1991; 100:187-193.
    20. Glogauer M, Arora P, Yao G, Sokholov I, Ferrier J, McCulloch CA. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci 1997; 110 (Pt 1): 11-21.
    21. Saito M, Saito S, Ngan PW, Shanfeld J, Davidovitch Z. Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dentofacial Orthop 1991; 99(3):226-40.
    22. Kevin SK, McCulloch CAG.. Intercellular mechanotransduction: cellular circuits that coordinate tissue responses to mechanical loading.. Biochem Biophys Res Commun 2001; 285:1077-1083.
    23. Closs EI, Murray AB, Schmidt J, Schon A, Erfle V, Strauss PG. c-fos expression precedes osteogenic differentiation of cartilage cells in vitro. J Cell Biol 1990;111 (3): 1313-23.
    24. Yamaguchi N, Chiba M, Mitani H. The induction of c-fos mRNA expression by mechanical stress in human periodontal ligament cells. Arch Oral Biol 2002; 47(6):465-71.
    25. Matsuda N, Morita N, Matsuda K, et al. Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinase in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 1998;249:350-354.
    26. Yang X, Matsuda K, Bialek P, et al. ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology: Implication for Coffin-Lowry Syndrome. Cell 2004;117:387-398.
    27. Yang X, Karsenty G. ATF4, the Osteoblast Accumulation of Which Is Determined Post-translationally, Can Induce Osteoblast-specific Gene Expression in Non-osteoblastic Cells. J Biol Chem 2004;279:47109-47114.
    28. Estes SD, Stoler, D. L. Anderson, G. R.. Normal fibroblasts induce the C/EBPb and ATF-4 bZIP transcription factors in response to anoxia. Exp. Cell Res. 1995; 220:47-54.
    29. Tsujimoto A, Nyunoya H, Morita T, Sato T, Shimotohno K. Isolation of cDNAs for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type Ⅰ. J Virol 1991;65(3): 1420-6.
    30. Xiao G, Jiang D, Ge C, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 2005;280(35):30689-30696.
    31.李小彤 张,傅民魁,等.机械性牵张力对人牙周膜细胞成骨样细胞功能的影响.中 华口腔医学杂志 2002;37:135-138.
    32.张丁 李,傅民魁.周期性牵张力对人牙周膜细胞中成骨样细胞表型碱性磷酸酶和骨钙素mRNA表达的影响.北京大学学报(医学版),2001;33:118-121.
    33. Dalby KN, Morrice N, Caudwell FB, et al. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J Biol Chem 1998;273(3): 1496-1505.
    34. Fisher TL, Blenis J. Evidence for two catalytically active kinase domains in pp90rsk. Mol Cell Biol 1996;16(3):1212-9.
    35. Zhang X, Bedard EL, Potter R, Zhong R, Alam J, Choi AM, et al. Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury. Am J Physiol Lung Cell Mol Physiol 2002;283(4):L815-29.
    36. Hogan MR, Cockram GP, Lu R. Cooperative interaction of Zhangfei and ATF4 in transactivation of the cyclic AMP response element. FEBS Lett 2006;580(1):58-62.
    1. Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 1997; 13:20-40.
    2.李小彤,张丁,傅民魁.体外培养的人牙周膜细胞成骨样细胞表型特征的研究 口腔正畸学 2001;8(3):110-114.
    3.杨雁琪,张丁,李小彤等.人牙周膜细胞OPG与RANKL在mRNA水平的表达.口腔正畸学 2002;9(4):175-177.
    4.李小彤,张丁,傅民魁等.机械性牵张力对人牙周膜细胞成骨样细胞功能的影响.中华口腔医学杂志 2002;37(2):135-138.
    5.张丁,李小彤,傅民魁.周期性牵张力对人牙周膜细胞中成骨样细胞表型碱性磷酸酶和骨钙素mRNA表达的影响.北京大学学报(医学版)2001;33(2):118-121.
    6. Yang X, Matsuda K, Bialek P, et al. ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology: Implication for Coffin-Lowry Syndrome. Cell 2004;117(3):387-398.
    7. Yang X, Karsenty G. ATF4, the Osteoblast Accumulation of Which Is Determined Postotranslationally, Can Induce Osteoblast-specific Gene Expression in Non-osteoblastic Cells. J Biol Chem 2004;279(45):47109-47114.
    8. Lynch MR Stein JL, Stein GS, et al.. The influence of type Ⅰ collagen on the development and maintenance of the osteoblast pheno type in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell grow th, adhesion, and extracllular matrixmineralization.. Exp-Cell-Res, 1995;216(1):35~45.
    9. Stein GS, Lian JB, Owen-TA. Bone cell differentiation: a functionally coupled relationship between expression of cell-growth-and tissue-specific genes. Curr-Opin-Cell-Biol 1990;2(6): 1018~1227.
    10. Uede T, Katagiri Y, Iizuka J, Murakami M. Osteopontin, a coordinator of host defense system: a cytokine or an extracellular adhesive protein? Microbiol Immunol 1997;41(9):641-8.
    11. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med 2000; 11(3): 279-303.
    12.余希杰,杨志明,屈艺等.Ⅰ型胶原及其受体系统在成骨细胞内的表达.中国修复重建外科杂志 2000;14(4):234-235.
    13. MacNeil RL, Berry J D', Errico J, et al. Role of two mineral-associated adhesion molecules, osteopontin and bone sialoprotein, during cementogenesis. Connect Tissue Res 1995;33((1-3)):1-7.
    14. Piche JE, Cames DL, Jr., Graves DT. Initial characterization of cells derived from human periodontia. J Dent Res 1989;68(5):761-7.
    15. Somerman MJ, Young MF, Foster RA, Moehring JM, Imm G, Sauk JJ. Characteristics of human periodontal ligament ceils in vitro. Arch Oral Biol 1990;35(3):241-7.
    16. Nohutcu RM, McCauley LK, Shigeyama Y, Somerman MJ. Expression of mineral-associated proteins by periodontal ligament cells: in vitro vs. ex vivo. J Periodontal Res 1996;31 (5):369-72.
    17. Nojima N, Kobayashi M, Shionome M, et al.. Fibroblastic cells derived from bovine periodontal ligaments have the phenotypes of osteoblasts. J Periodontal Res. 1990;25(3): 179-85.
    18. Arceo N, Sauk JJ, Moehring J, Foster RA, Somerman MJ. Human periodontal cells initiate mineral-like nodules in vitro. J Periodontol 1991;62(8):499-503.
    19. Basdra EK, Komposch G. Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 1997; 19(6):615-21.
    20.李小彤,张丁.傅民魁体外培养的人牙周膜细胞成骨样细胞表型特征的研究.口腔正畸学 2001;8:110-114.
    21. Morishita M, Shimazu A, Iwamoto Y. Analysis of oestrogen receptor mRNA by reverse transcriptase-polymerase chain reaction in human periodontal ligament cells. Arch Oral Biol 1999;44(9):781-3.
    22. Akatsu T, Murakami T, Nishikawa M, Ono K, Shinomiya N, Tsuda E, et al. Osteoclastogenesis inhibitory factor suppresses osteoclast survival by interfering in the interaction of stromal cells with osteoclast. Biochem Biophys Res Commun 1998;250(2):229-34.
    23. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Goto M, et al. A novel molecular mechanism modulating osteoclast differentiation and function. Bone 1999;25(1): 109-13.
    24. Hotbauer L, Khosla S, Dunstan CR, et al. The roles osteoprotegrerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000;15(1):2-12.
    25. Hasegawa T, Yoshimura Y, Kikuiri T, Yawaka Y, Takeyama S, Matsumoto A, et al. Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodomal ligament cells. J Periodontal Res 2002;37(6):405-11.
    26. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differemiation by periodomal ligamem cells through RANKL stimulation and OPG inhibition. J Dem Res 2001;80(3):887-91.
    27. Zhang D, Yang YQ, Li XT, Fu MK. The expression of osteoprotegerin and the receptor activator of nuclear factor kappa B ligand in human periodontal ligamem cells cultured with and without 1alpha, 25-dihydroxyvitamin D3. Arch Oral Biol 2004;49(1):71-6.
    28.张丁,杨雁琪,李小彤等.人牙周膜细胞骨保护因子和破骨细胞分化因子蛋白的表达及1α,25(OH)_2维生素D_3的调节.北京大学学报(医学版)2004;36(6):646-649.
    29. Yang YQ, Li XT, Rabie AB, Fu MK, Zhang D. Human periodomal ligamem cells express osteoblastic phenotypes under intermittem force loading in vitro. From Biosci 2006; 11:776-81.
    30.杨雁琪,张丁,李小彤等.体外培养的人牙周膜细胞在机械力作用下骨保护因子mRNA的表达.口腔正畸学 2006;13(2):56-58.
    31. Yang X, Matsuda K, Bialek P, et al. ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology: Implication for Coffin-Lowry Syndrome. Cell 2004; 117:387-398.
    32. Chakraborty T, Brennan TJ, Li L, Edmondson D, Olson EN. Inefficient homooligomerization contributes to the dependence of myogenin on E2A products for efficient DNA binding. Mol Cell Biol 1991;11(7):3633-41.
    33. Desbois C, Hogue DA, Karsenty G. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 1994;269(2): 1183-90.
    34. Ducy P, Zhang R, Geoffroy V,et al. Osf2/Cbfal :a transcriptional activator of osteoblast differentiation. Cell 1997; 89(5):747-754.
    35. Harada H,Tagashira S,Fujiwara M,et al.Cbfal isoforms exert functional differences in osteoblast differentiation. J biol Chem 1999; 274:6972-6978.
    36. Yamachika E,Tsujigiwa H, Ishiwari Y,et al. Identification of a stop codon mutation in the CBFA1 runt domain from a patient with cleidocranial dysplasia and cleft lip.J Oral Pathol Med 2001; 30:381-383.
    37. Banerjee C,McCabe LR,Choi JY, et al. Runt homology domain protein in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Bio chem1997;66(1):1-8.
    38. Piccolo S,Sasai Y, Lu B,et al.Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4.Cell 1996; 86(4):589-98.
    39. Yang X, Karsenty G. ATF4, the Osteoblast Accumulation of Which Is Determined Post-translationally, Can Induce Osteoblast-specific Gene Expression in Non-osteoblastic Cells.. J Biol Chem, 2004;279: 47109-47114.
    40. Xiao G, Jiang D, Ge C, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfal stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 2005;280(35):30689-30696.
    41. Ziros PG, Gil AP, Georgakopoulos T,et al. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 2002;277(26):23934-41.
    1. Lee KA, Hai TY, SivaRaman L, et al. A cellular protein, activating transcription factor, activates transcription of multiple El a-inducible adenovirus early promoters. Proc Natl Acad Sci USA, 1987, 84(23): 8355-8359.
    2. Lin YS, Green MR. Interaction of a common transcription factor, ATF, with regulatory elements in both Ela- and cyclic AMP-inducible promoters. Proc Natl Acad Sci USA, 1988, 85(10): 3396-3400.
    3. Hai T, Wolfgang CD, Marsee DK, et al. ATF3 and stress responses. Gene Expr, 1999, 7(4-6): 321-335.
    4. Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/CAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene, 2001, 273 (1): 1-11.
    5. Darlington GJ, Wang N, Hanson RW. C/EBPa: a critical regulator of genes governing integrative metabolic processes. Curr Opin Genet, 1995, 5(5): 565-570.
    6. Yeh WC, McKnight SL. Regulation of adipose maturation and energy homeostasis. Curr Opin Cell Biol, 1995, 7(6): 885-890.
    7. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol, 1997, 9(2): 240-246.
    8. Liang G., Hai T. Characterization of hATF4, a transcription activator that interacts with multiple domains of CBP. J Biol Chem, 1997, 272(38): 24088-24095.
    9. Reddy TR, Tang H, Li X, et al. Functional interaction of the HTLV-1 transactivator Tax with activating transcription factor-4 (ATF4). Oncogene, 1997, 14(23): 2785-2792.
    10. Fawcett TW, Martindale JL, Guyton KZ, et al. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT-enhancer-binding protein (C/EBP)-ATF composite site to regulate Gaddl53 expression during the stress response. Biochem J, 1999, 339(Pt1): 135-141.
    11. Shimizu M, Nomura Y, Suzuki H, et al. Activation of the rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res, 1998,239(1): 93-103.
    12. Mielnicki LM, Hughes RG, Chevray PM, et al. Mutated Atf4 suppresses c-Ha-ras oncogene transcript levels and cellular transformation in NIH3T3 fibroblasts. Biochem Biophys Res Commun, 1996, 228(2): 586-595.
    13. Peters CS, Liang X, Li S, et al. ATF-7, a novel bZIP Protein, interacts with the PRL-1 Protein-tyrosine Phosphatase. J Biol Chem, 2001, 276(17): 13718-13726.
    14. Gachon F, Peleraux A, Thebault S, et al. CREB-2, a cellular CRE-dependent transcription repressor, functions in association with Tax as an activator of the human T-cell leukemia virus type 1 promoter. J Virol, 1998, 72(10): 8332-8337
    15. Reddy TR, Tang H, Li X, et al. Functional interaction of the HTLV-1 transactivator Tax with activating transcription factor-4 (ATF4). Oncogene, 1997, 14(23): 2785-2792.
    16. Kawai T, Matsumoto M, Takeda K, et al. ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol, 1998,18(3): 1642-1651.
    17. Lassot I, Segeral E, Berlioz-Torrent C, et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCFbTrCP ubiquitin ligase. Mol Cell Biol, 2001, 21(6): 2192-2202.
    18. Pati D, Meistrich ML, Plon SE. Human Cdc34 and Rad6B ubiquitin-conjugating enzymes target repressors of cyclic AMPinduced transcription for proteolysis. Mol Cell Biol, 1999, 19(7): 5001-5013.
    19. Tsujimoto A, Nyunoya H, Morita T, et al. Isolation of cDNA for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type I. J Virol, 1991, 65(3): 1420-1426.
    20. Karpinski BA, Morle GD, Huggenvik J, et al. Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci USA, 1992, 89 (11): 4820-4824.
    21. Vallejo M, Ron D, Miller CP, et al. C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancerbinding proteins and directs their binding to cAMP response elements. Proc. Natl. Acad. Sci. USA, 1993, 90(10): 4679-4683.
    22. Hai T, Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding speciOcity. Proc Natl Acad Sci USA, 1991, 88(9): 3720-3724.
    23. Chevray PM, Nathans D. Protein interaction cloning in yeast: identi.cation of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci USA, 1992, 89(13): 5789-5793.
    24. Kato Y, Koike Y, Tomizawa K, et al. Presence of activating transcription factor 4 (ATF4) in the porcine anterior pituitary. Mol Cell Endocrinol, 1999,154(1-2): 151-159.
    25. Shimizu M, Nomura Y, Suzuki H, et al. Activation of the rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res, 1998, 239(1): 93-103.
    26. Nishizawa M, Nagata S. cDNA clones encoding leucine-zipper proteins which interact with G-CSF gene promoter element 1-binding protein. FEBS Lett, 1992,299(1): 36-38.
    27. Vinson CR, Hai T, Boyd SM. Dimerization speci.city of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes Dev, 1993, 7(6): 1047-1058.
    28. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science, 2001,294(5544): 1030-1038.
    29. Waddell S, Qunni WG. Flies, genes, and learning. Annu Rev Neurosci, 2001, 24:1283-309. Review.
    30. Bartsch D, GhirardiM, Skehel PA , et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell, 1995, 83(6): 979-992.
    31. Bartsch D, Casadio A, Karl KA, et al. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell, 1998, 95(2): 211-223.
    32. Sadamoto H, Azami S, Ito E. The expression pattern of CREB genes in the central nervous system of the pond snail Lymnaea stagnalis. Acta Biol Hung, 2004, 55(1-4):163-166.
    33. Ma W, Zheng WH, Powell K, et al. Chronic morphine exposure increases the phosphorylation of MAP kinases and the transcription factor CREB in dorsal root ganglion neurons: an in vitro and in vivo study. Eur J Neurosci, 2001, 14(7): 1091-1104.
    34. Tanaka T, Tsujimura T, Takeda K, et al.Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes cells, 1998, 3(12):801-810.
    35. Ogino H, Yasuda K. Induction of lens differentiation by activation of a bZIP transcription factor, L-maf. Science, 1998, 280(5360): 115-118.
    36. McAvoy JW, Chamberlain CG, de Iongh RU, et al. The role of fibroblast growth factor in eye lens development. Ann NY Acad Sci, 1991,638: 256-274.
    37. Luetteke NC, Qiu TH, Peiffer RL, et al. TGFa deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell, 1993, 73(2): 263-278.
    38 Robinson ML, Overbeek PA, Verran DJ, et al. Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development, 1994, 121: 504-514.
    39 Reneker LW, Overbeek PA. Lens-specific expression of PDGE-A alters lens growth and development. Dev Biol, 1996, 180(2): 554-565.
    40. Bogdanovic ZA, Bedalov P, Krebsbach D, et al. Upstream regulatory elements necessary for expression of the rat COL1A1 promoter in transgenic mice. J Bone Miner Res, 1994,9(2):285-292.
    41. Catron KM, Iler N, Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol, 1993,13(4):2354-2365.
    42. Ducy P, Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol, 1995, 15(4):1858-1869.
    43. Chakraborty T, Brennan TJ, Li L, et al. Inefficient homooligomerization contributes to the dependence of myogenin on E2A products for efficient DNA binding. Mol Cell Biol, 1991,11(7):3633-3641.
    44. Desbois C, Hogue DA, Karsenty G. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem, 1994, 269(2): 1183-1190.
    45. Yang X, Matsuda K, Bialek P, et al. ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology: Implication for Coffin-Lowry Syndrome.Cell, 2004,117(3): 387-398.
    46 Yang X, Karsenty G. ATF4, the Osteoblast Accumulation of Which Is Determined Post-translationally, Can Induce Osteoblast-specific Gene Expression in Non-osteoblastic Cells. J Biol Chem, 2004, 279(45): 47109-47114.
    47. Xiao G, Jiang D, Ge C, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfal stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem, 2005, 280(35):30689-30696.
    48. Merienne K, Jacquot S, Zeniou M, et al. Activation of RSK by UV-light: phosphorylation dynamics and involvement of the MAPK pathway. Oncogene, 2000, 19(37): 4221-4229.
    49. Hettmann T, Barton K, Leiden JM. Microphthalmia due to p53-mediated apoptosis of anterior lens epithelial cells in mice lacking the CREB-2 transcription factor. Dev Biol, 2000,222(1):110-123.
    50. Masuoka HC, Townes TM. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood, 2002, 99(3): 736-745.
    51. Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 2003, 11(3): 619-633.
    52. Dehghan L,Wu Y, Chuang H, et al. Expression of Rsk1, Rsk2 and Atf4 genes during Tooth Development. IADR 83rd General Session, 2005, No: 3637.
    53. Estes SD, Stoler DL, Anderson, G.R. Normal fibroblasts induce the C/EBPb and ATF-4 bZIP transcription factors in response to anoxia. Exp Cell Res, 1995, 220(1): 47-54.
    54. Jiang D, Franceschi RT, Boules H, et al. Parathyroid hormone induction of the osteocalcin gene. Requirement for an osteoblast-specific element 1 sequence in the promoter and involvement of multiple-signaling pathways. J Biol Chem, 2004, 279(7): 5329-5337.
    55. Yu VW, Ambartsoumian G, Verlinden L, et al. FIAT represses ATF4-mediated transcription to regulate bone mass in transgenic mice. J Cell Biol, 2005, 169 (4): 591-601.
    56. Hogan MR, Cockram GP, Lu R. Cooperative interaction of Zhangfei and ATF4 in transactivation of the cyclic AMP response element. FEBS Lett, 2006, 580(1): 58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700