基于双单片机的陀螺仪自反馈系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陀螺经纬仪作为一种具备全天候自主定向、高精度的精密测量仪器,在测绘、军事、航空和航天等领域有着广泛的应用。目前,国外的陀螺技术很先进,已经实现陀螺经纬仪的全自动寻北测量,但是国产的陀螺经纬仪多数还需要人工的干预才能完成寻北测量。因此研究全自动、“一键寻北”的陀螺经纬仪,是具有非常重要的意义的。
     论文从陀螺的寻北原理出发,研究分析了几种常用的寻北算法,开发了一种高效的寻北算法,并设计了基于双单片机系统的自反馈控制寻北系统。论文的主要内容如下:
     1.设计实现了基于趋势预测的误差补偿多级步进初寻北算法。主单片机实时地采集陀螺光标的位置信号,并通过USB实时地传递给PC机,PC机对数据进行误差补偿的预测寻北算法,得到预测结果N1后根据补偿函数查询得到补偿角度N′,将实际寻北结果(N1+ N′)发送给主单片机,然后主单片机控制精密电控转台将陀螺经纬仪转到相应的位置,这样一次寻北结束。
     2.设计方案完成双单片机控制系统,实现了两个单片机之间的异步串行通信。从单片机触发步进电机自动下放陀螺,同时主单片机实时采集监测陀螺光标的运动信息,并经USB上传至PC机进行寻北结果的计算,PC机回传结果给主单片机后,主单片机控制转台做相应的旋转,进一步逼近真北方向。如此进行几次即可完成初寻北过程。
     3.设计并实现了自反馈控制寻北系统,首先建立了陀螺光标信号的初始位置与半脱位置之间的函数关系,其次,确定双单片机系统之间的反馈信号——半脱位置。在陀螺下放过程中,主单片机不断地查询判断,当光标信号的变化满足这一函数关系时,即代表陀螺到达半脱位置,此时主单片机将该信号反馈给从单片机,从单片机控制步进电机停止下放陀螺。这样提高了陀螺下放的质量,有效的将陀螺摆幅控制在有效的范围内。
     4.完成了双单片机自反馈系统的系统软件编程并验证了该系统的有效性和稳定性,其初寻北时间在4min内,初寻北误差最大均值为15′35″,标准偏差最大为5′35″,提高了初寻北速度和精度。
As an all-weather and self-orientation fine measuring instrument, gyro-theodolite is widely used in surveying and mapping, military, aerospace, etc. At present, the foreign gyro technology is very advanced, and has been seeking to achieve automatic north-seeking measurement of the gyro, but the majority of the domestic gyro theodolite needs manual intervention to complete the north-seeking. Therefore, the study of the automatic and“a key north-seeking”gyro theodolite is a very important significance.
     A high-efficiency north-seeking algorithm is proposed in terms of gyro principle and some common north-seeking algorithm, and the feedback control system based on the double MCU system is designed. The main research contents of the paper are as follows:
     1. The error compensation multi-stepping rough north-seeking method based on trend forecast is put forward. The main MCU real-time collects the movement information of the gyro cursor, and delivers the data to the PC by USB, and then PC calculates the result of the north-seeking with the algorithm of the error compensation multi-stepping rough north-seeking method based on trend forecast and gets the predicted result N1 and the compensation point N′by the compensation function ;then the actual result(N1+ N′) is sent to the main MCU ;At last the main MCU control the turntable to rotate the appropriate location.
     2. The double MCU system is designed and completed, and the asynchronous serial communication between the two MCU is achieved. The stepper motor is triggered by the slave MCU and automatically delegates, while the main MCU real-time collects and monitors the movement information of the gyro cursor, and uploads the data to the PC via USB to calculate the result. And then the result is conveyed to the main MCU to control the turntable to rotate according to the result. This can be completed the process of the north-seeking after several the above process.
     3. The self-feedback control of the north-seeking system is designed and implemented. First, the function relation between the initial position of the gyro cursor and the half off position is established; secondly, the feedback signal between the double MCU system-half off position is determined. During the process of the gyro downing, the main MCU constantly checks the changes of the cursor, when the change of the cursor meets the function, which represents the gyro arriving the half off position; then the main MCU delivers the feedback signal to the slave MCU to make the stepper motor stop. The system not only increases the quality of the gyro downing, but also effectively controls the gyro swing within the effective range.
     4. The software programming of the feedback system is completed, and the effectiveness and stability of the system is verified by experiments. Through rough north-seeking experiments in many orientations, it is proved that the north-seeking time of the system is within 4 min; in different initial azimuth, the max average of the north-seeking error is about 15′35″,the maximum of the standard deviation is about 5′35″,which greatly improves the rough north-seeking speed and accuracy.
引文
[1]赵岩.高精度快速非陀螺寻北系统速度稳定性研究[D].长春:中国科学院长春光学精密机械与物理研究所,博士学位论文,2005.
    [2]彭智宏,张乐,王慧等.国内外寻北技术简介[J].导航与控制,2003,2(2):77~78
    [3] Stimac, L.W.(Smiths Industries), Washburn, John R., Rouston. Greg North Finding Module[A]. Proceedings of the National Technical Meeting, Institute of Navigation. Navigation and Positioning in the Information Age, 1997: 979~988.
    [4] Sung-Jin Kim, Sang-Sik Lee, Yong-Soo Kwon, etc. Dynamic north-finding scheme based on a fiber optic gyroscope, Proceedings of the SPIE-The International Society for Optical Engineering, 1997, 3087: 126-36
    [5]金振山,申功勋.基于星体跟踪器的天文找北系统[J].中国惯性技术学报,2003,11(4): 23~26.
    [6] Vockenhuber, C.,Oberli, F.,Bichler, M.. New half-life measurement of 182Hf: Improved chronometer for the early solar system[J]. Physical Review Letters, 2004, 93(17): 172501-1-172501-4.
    [7]周世勤.新型惯性技术的发展[J].飞航导弹,2001,(6):70~77
    [8]孙肇荣.惯性技术的发展与展望[J].惯导与仪表,2000,(1):52~56
    [9]万德钧.舰用惯性技术的现状与发展[J].海军大连舰艇学院学报,2003,26(5):1~4
    [10]冯莉.悬挂式陀螺粗寻北方法及其自动化研究[D].天津大学,博士学位论文,2010.
    [11] Rice H, Mendelshn L, Robert Aarons R, Mazzola D. Next generation marine precision navigation system. IEEE: Position Journal of Chinese Inertial Technology, 2006, 14(1): 34~40.
    [12] Speller,K.E., Duli Yu. A low-noise MEMS accelerometer for unattended ground sensor applications, Proceedings of the SPIE. The International Society for Optical Engineering, 2004, 5417(1): 63~72.
    [13]马云峰. MSINS/GPS组合导航系统及其数据融合技术研究[D].南京:东南大学,博士学位论文,2006
    [14]姚艳.全球卫星定位系统GPS的应用[J].交通世界,2011,(14):108~109
    [15]蒋鹏,秦敏.北斗卫星导航系统在海上石油钻井平台拖航定位中的应用[J].通信理论与技术,2011:207~211.
    [16]黄爱民.伽利略(GALILEO)系统对美国GPS的冲击[J].测绘与空间地理信息,2007,30(3):41~44.
    [17] J.M. Catherin, B. Dessus. Travelling-Wave Laser Gyrocompass[J]. IEEE Journal of QuantumElectronics, Vol. QE-3, No.11, November 1967: 449~453
    [18] Sun Hongwei,Li Zhigang,Ping Feng.Development of Satellite Navigation in China. IEEE International:Frequency Control Symposium,2007 Joint with the 21st European Frequency and Time Forum,2007:297~300.
    [19]煤炭科学研究院唐山分院陀螺经纬仪组.陀螺经纬仪基本原理、结构与定位[M],北京:煤炭工业出版社,1982.
    [20] Yang Zhiqiang, Shi Zhen, Yang Jianhua,ect.The Research of Key Technology and Superiority in Magnetic Suspension Gyro Station and Application in Underground Engineering. Multimedia Technology (ICMT),2010 International Conference,2010:1~3.
    [21] B. Culshaw, I.P. Giles. Fiber Optic Gyroscopes. Selected Papers on Fiber Optic Gyroscopes[A]. R.B. Smith, SPIE Milestone Series Vol. MS 8: 39~55
    [22]张金梅.陀螺经纬仪快速寻北的算法研究[D].天津大学,硕士学位论文,2008.
    [23]刘勇,张志勇,冯伟利.陀螺经纬仪校准技术[J].宇航计测技术,2007(4).
    [24] DMT-institute for lagerstatte. Gyromat 3000 Brochure. 2007.
    [25]秦长利,张学庄.国产高精度自动陀螺经纬仪定向效率探讨[J].都市快轨交通,2007,20(1):75~78.
    [26]张学庄.提高陀螺经纬仪定向效率的方法[J].测绘工程,2006,15(1):1~5
    [27]石震.GAT陀螺全站仪精度评定方法研究[D].长安大学,硕士学位论文,2008.
    [28]林明春.陀螺经纬仪数字化及自动化关键技术的研究[D].天津大学,博士学位论文,2007
    [29]夏桂锁.陀螺经纬仪自动寻北关键技术的研究[D].天津大学,博士学位论文,2007
    [30]郭素云.陀螺仪原理与应用[M],哈尔滨:哈尔滨工业大学出版社,1985
    [31]刘建锋,袁赣南,赵琳等.新型陀螺仪转子表面的测量及对陀螺性能的影响[J].中国惯性技术学报,2005,13(2):75~79.
    [32]郭秀中.陀螺仪理论及应用[M],北京:航空工业出版社,1987
    [33]许江宁,边少锋,殷立吴.陀螺原理[M],北京:国防工业出版社,2005:34~38.
    [34]夏桂锁,林明春,林玉池,黄银国,刘红星. 1/4周期积分法的陀螺智能寻北[J].传感技术学报,2007,(8):1926~1929.
    [35]林玉池,孙占元,赵美蓉等.中天法在陀螺智能寻北系统中的应用研究[J].机械工程学报,2003,29(8):116~119.
    [36]林明春,夏桂锁,林玉池等.积分法在智能陀螺寻北系统中的应用研究[J].传感器与微系统,2007,26(10):57~59.
    [37]桑光灿,林家聪,郭广礼.陀螺经纬仪中天法定向的研究[J].中国矿业学院学报,1985,4:41~52.
    [38]王缜,申功勋.摆式陀螺寻北仪的积分测量方法[J].光学精密工程,2007,15(5):746~752.
    [39]夏桂锁,林明春,林玉池等。半周期中天法在初寻北中的应用研究[J].传感技术学报,2007,20(4):781~784.
    [40]董桂梅,冯莉,林玉池等.趋势预测1/8周期快速寻北法[J].纳米技术与精密工程,2011,9(1):53~57.
    [41]宗殿瑞,宋文臣,刘朋振.最小二乘法应用探讨[J].青岛化工学院学报,1998,19(3):296~301.
    [42]李书鹏.传热实验中数据处理的最小二乘法与作图法比较[J].齐齐哈尔大学学报,2008,24(1):28~30.
    [43]张光澄,王文娟,韩慧磊等.非线性最优化计算方法[M].北京:高等教育出版社,2005
    [44]沈建华,杨艳琴,翟骁曙.MSP430系列16位超低功耗单片机原理与应用[M].北京:清华大学出版社,2004:3~5.
    [45]谢楷,赵建.MSP430系列单片机系统工程设计与实践[M].北京:机械工业出版社,2009.7
    [46]魏小龙.MSP430系列单片机接口技术及系统设计实例[M].北京:北京航空航天大学出版社,2002:210~222.
    [47]李福俊,姜学东,郝得宁.基于双MSP430单片机的风力数据采集系统[J].仪表技术与传感器,2008,5:35~37.
    [48]胡大可.MSP430系列单片机C语言程序设计与开发[M].北京:北京航空航天大学出版社,2003.1
    [49] XieMin.Designation of low cost instrument system based on MSP430 [J].Microcomputer Information, 2007, (22):142~144
    [50]谢兴红,林凡强,吴雄英.MSP430单片机基础与实践[M].北京:北京航空航天大学出版社,2008
    [51]张晞,王德银,张晨.MSP430系列单片机实用C语言程序设计[M].北京:人民邮电出版社,2005.9
    [52]林汉成,胡方明,王群泽等.两种MCU间的串行通信协议设计[J].单片机与嵌入式系统应用,2011,3:76~79
    [53]宋志强,解光军.结构化串行通信的软件实现[J].电子科技,2010,23(10):89~90
    [54] Gao ZhangFei,Zhu ShanAn. Multipoint wireless communication module on MSP430 and nRF905 [J].Journal of Electron Devices, 2006, 29(3):264~267
    [55]刘宝志.步进电机的精确控制方法研究[D].山东大学,硕士学位论文,2010.
    [56]赵东升.陀螺经纬仪粗寻北自动控制与算法研究[D].天津大学,硕士学位论文,2010.
    [57]秦龙.MSP430单片机常用模块与综合系统实例精讲[M].北京:电子工业出版社,2007.7
    [58]马小辉.陀螺经纬仪检定方法研究[D].解放军信息工程大学,硕士学位论文,2010.
    [59]刘小生,范俊智.陀螺经纬仪马达内部温升对摆动中值的影响[J].测绘工程,2001,10(1):53~54.
    [60]刘洪奇,许纪隆.环境温度变化对JT15陀螺经纬仪仪器常数影响规律的探讨[J].矿山测量,1991(1):49~52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700