石油分散系统的结构稳定性以及复合驱配方研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入分子水平探索复杂石油系统的一些共性和本质问题,为发展采油新技术提供理论基础,是石油和化学等多个学科日益关注的重要课题,是一个理论联系实际的研究领域。石油由极性自强到弱的沥青质、胶质、烃类(包括烷烃、环烷烃和芳香烃)构成,是一种特殊的胶体分散系统。以沥青质为核心的石油分散系统的稳定性问题,包括沥青质的聚集稳定性,界面稳定性,热稳定性等,是贯穿于石油勘探、开采、运输与加工全过程的重要问题,研究该问题对石油科技和工程具有理论和现实指导意义。本文就是围绕石油系统的稳定性问题,采用从实验和理论两个方面将理论联系实际,着重开展沥青质的相关性质研究和复合驱配方优化的研究。主要研究内容和成果有:
     探讨了石油沥青质及胶质的组成和结构。分离提取了国内外7种原油的正己烷沥青质,通过~1H和~(13)C核磁共振(NMR)测定,结合元素分析、分子量测定,计算平均分子式和结构参数,推测模型分子。沥青质和胶质的基本结构单元均可以用稠环芳烃连接环烷烃和烷基侧链并含杂原子的单元来表示,不同沥青质及胶质的母体结构基本相似,结构单元之间形成缔合体,沥青质的缔合数约为3~6,胶质的缔合数约为2。模型分子为沥青质和胶质提供了形象、直观、简化的化学结构,有助于从分子水平加深对它们的认识和研究,同时也证明NMR是研究沥青质等复杂组分平均结构的一种较好方法。
     考察了沥青质及胶质的热稳定性。采用热重分析(TG/DTG)直接观察沥青质及胶质的热裂解过程。实验结果表明,沥青质和胶质的热裂解失重温度范围明显不同,沥青质耐热稳定性强,主裂解范围窄、温度高,胶质裂解范围宽。热裂解特征与我们依据NMR推测的模型分子的结构特征相吻合。比较了三种不同的热裂解动力学处理方法,结果表明,对于组成复杂的沥青质及胶质,不宜简单地采用单个反应机理来进行热裂解动力学计算。我们把活化能分布模型(DAEM)引入沥青质的热裂解动力学处理,获得了活化能和指前因子的分布函数,结果满意。同时,观察到指前因子与活化能之间都存在明显的补偿效应,并可从过渡态理论以及我们推测的模型分子结构特征加以解释。
     探索了沥青质及胶质的溶液稳定性。以大庆沥青质或胶质—甲苯溶液为对象,采用紫外—可见和荧光等光谱技术,从吸收强度、吸光系数、吸收峰变迁、极大峰位置、总荧光强度和相对峰强度等角度探讨沥青质或胶质在溶液中的聚集稳定性。实验证明,沥青质和胶质均含有一定的发色团和荧光团,在甲苯稀溶液中也会发生聚集,大庆沥青质浓度达到100mg·L~(-1)左右聚集程度最大,胶质浓度
It is an increasingly important subject for petroleum and chemistry researchers to explore some general and essential aspects of the complexed petroleum system from molecular level and to present theoretical basis for the development of new techniques of oil recovery. It is well-known that crude oil can be considered to be a special colloidal dispersion system of alsphaltenes and resins, which constitute the discrete and polar components, dispersed in a continuous phase made of non-polar compounds, paraffins, naphthenes and aromatics. Asphaltene acts as the core of an asphaltene micelle. Resins act as peptizing agents keeping asphaltenes in suspension and maintaining the stability of crude oil. The stability related asphaltene precipitation, interfacial interaction, and thermal cracking runs through the whole process of petroleum industry and its study may take directive effects on the theory and practice of petroleum science and engineering. In the present work, some advanced theoretical methods and instrumental techniques are used to study on the structural stabilities particularly related to asphaltenes and on the optimization of recipe of combined flooding. The main contents and results are as follows.Firstly, the composition and structure of petroleum asphaltenes and resins are investigated. ~1H and ~(13)C NMR spectra of seven kinds of petroleum asphaltenes separated from different crude oils with n-hexane as solvent are determined with a Bruker Avance DMX500 NMR spectrometer. A series of average chemical structural parameters are obtained on the basis of the ~1H and ~(13)C NMR information. By combining the experimental relative molecular weight and the elemental analysis results, the average molecular formula of the asphaltene and resin unit sheets are calculated and the hypothetical model molecules are evaluated. It can be found that the asphaltene or resin units are mainly composed of the polycyclic aromatics linked with naphthalene rings and side aliphatic chains. There obviously exist heteroatoms, O, N and S, in the asphaltene or resin units. The units can be associated each other with the association number from 3 to 6 for asphaltenes and that of about 2 for resin. These results provided an efficient structural description for the study of petroleum asphaltenes and resins at the molecular level. It is also tested that NMR is a good method to study the average structure of a complexed system such as asphaltenes.Secondly, the thermal stabilities of asphaltenes and resins are carried out.. Thermal pyrolysis kinetics of the asphaltenes and resins has been measured using
    thermogravimetric analysis (TGA) with three or four different heating rates. It is clearly observed that there are different temperature ranges of weight losses between asphaltenes and resins. The pyrolysis process of the asphaltenes mainly occurs at a narrow temperature range with only single weight loss peak and that of the resins, however, occurs at a wide temperature range with two-peak weight loss feature. The pyrolysis stages of the asphaltenes and resins can be reasonablely explained by the model molecule assumptions from NMR measurements. Three different kinetic methods are used to quantitatively treat the TGA data. Two methods, overall first-order reaction method and two-stage first-order reaction method, are both not very well to interpret the characteristics of pyrolysis processes. A new distributed activation energy model (DAEM) is introduced to correlate the experimental TGA data. The kinetic parameters, active energy (E) and preexponential factor (ko), of thermal pyrolysis for asphaltenes or resins at different conversion levels are calculated. It follows that many parallel reactions with different rate parameters occur simultaneously during the thermal pyrolysis of asphaltenes or resins. The distribution functions, fiJE) and ko(E), are then estimated by DAEM satisfactorily. The compensation effect is clearly observed from a straight line of the plot of ln((Ao) versus E, which is discussed from the transition state theory combining with the hypothetical model molecules.Thirdly, the stability of asphaltenes and resins in solutions is discussed. Evidence of the aggregation behavior of asphaltene-toluene and resin-toluene solutions is investigated by UV-vis and fluorescence spectroscopy. The stability and aggregation tendency are discussed from various experimental results such as absorbance, absorptivity, florescence peak position, fluorescence peak shift, and total florescence intensity. Similar absorption spectra and fluorescence spectra for the asphaltenes and resins in toluene are observed due to the similar type of chromospheres and fluorophores. The experiments allow concluding that asphaltenes or resins in toluene solutions start to aggregates at considerably low dilution. The aggregation appears at higher concentration values as lOOmg/L for Daqing asphaltenes and at at lower concentration values as 40mg/L for Daqing resins. Therefore, the effects from the aggregation of asphaltenes or resins in solutions on the stability of crude oil usually should be considered.In chapter 5, the interfacial stability of the alkaline-surfactant-polymer (ASP) system is studied. With the crude oil from No. 2 Oil Production Company, Daqing Oil Field Co. Ltd as the object, the interfacial tensions between oil and water for many
    alkaline-surfactant-polymer systems with different compositions are determined. The effects of the addition of polar compounds on the values of the interfacial tension are investigated. It follows that the ultra low interfacial tension can be obtained only when a surfactant is selected with appropriate molecular chain length and that obvious influences of polar compounds on the interfacial tension can be observed. Combining the principles of phase equilibrium and chemical equilibrium with the theory of surface thermodynamics, a simple model is abstracted from the complexed crude oil-alkali liquor-surfactant system and then a quantitative expression is proposed. From the model, the effects of the concentrations of petroleum acid, alkaline, and surfactant on the production of interfacial active acidic anion and the form of ultra low interfacial tension are explained. The surface thermodynamic model can correlate the interfacial tension values with results in reasonable agreement with the observed data. It can effectively express, to a certain extent, the tendency of interfacial tensionchange for the ASP combined flooding systems.In chapter 6, the prescription of ASP combined flooding are designed and optimized. With Nan'erxi polymer flooding of industrial scale area in Daqing oilfield as the object, several main factors, including interfacial tension between oil and water, stability of the combined system, adsorption of chemicals, recovery of physical simulation flooding experiment, etc. are evaluated to screen out the suitable chemicals, the prescription of combined system and the separate injection projects for polymer and alkaline-surfactant system. Both the selected alkaline-surfactant (AS) system and the ASP system can achieve allowable interfacial tension in a wide alkaline and surfactant concentration range and have good interfacial tension stability for a long time. Physical simulation flooding experiments indicates that the method of separate injection of polymer and alkaline-surfactant system has higher recovery enhance rate than only polymer flooding. The method of separate injection can enhance oil recovery about 5 percent above the usual polymer flooding. This new method needs no more construction than the usual ASP flooding and can make use of sewage well at the same time. Therefore, a considerable economy benefit can be obtained.
引文
1.梁文杰.石油化学.山东东营:石油大学出版社,1995年.
    2.王子军,石油沥青质的化学和物理Ⅱ——沥青质的化学组成和结构,石油沥青,1996,10 (1):26-36.
    3.王子军,石油沥青质的化学和物理Ⅳ——石油沥青质溶液的胶体化学,石油沥青,1996,10(3):36-49.
    4.杨小莉,陆婉珍.有关原油乳状液稳定性的研究,油田化学,1998,15(2):87-96.
    5.樊西惊.石油胶态分散体的稳定性,油田化学,1999,16(1):72-76.
    6. Peramanu S, Clarke P F, Pruden B B. Flow loop apparatus to study the effect of solvent, temperature and sdditives on asphaltene preciptation, J of Petroleum Science and Engineering, 1999, 23: 133-143.
    7. Mohammed R A, Baily A I, et al. Dewatering of crude oil emulsions. 2. Interfacial properties of the asphaltene constituents of crude oil. Colloids and Surfaces A: Physicochem Eng. Aspects, 1993, 80: 237-242.
    8. Borwankar R P, Lobo LA, Wasan D T, Emulsion stability-Kinetics of Flocculation and Coalescene. Colloids and Surfaces A: Physicochem Eng. Aspects, 1992, 69: 135-146.
    9. Urdahlo, Movik A E, Sjoblom J. Water-in-crude oil emulsions from Norwegian continental shelf 8. Surfactant and macromolecular destabilization. Colloids and Surfaces A: Physicochemical and engineering aspects, 1993, 74: 293-302.
    10. Sjoblom J, Li M, Christy A. A, et al. Water in-crude oil emulsions from Norwegian continental shelf 7. Interracial pressure and emulsion stability, Colloids and Surfaces, 1992, 66: 55-62
    11. Sjoblom J, Li Mingyuan, Holland H, Johansen E J, Water-in-crude oil emulsions from the Norwegian continental shelf part Ⅲ. A comparative destabilization of model systems. Colloids Surface, 1990, 46: 127-139.
    12. Sjoblom J, Soderlund S, Lindblad E J, Johansen I M, Skjarvo, Water-in-crude oil emulsions from norwegian continental shelf part Ⅱ. Chemical destabilization and interfacialtensios, Colloid Polym. Sci. 1990, 268: 389-398.
    13. Mahammad A K, Mahammad A S, Role of asphaltene and resin in oil field emulsions, J of Petroleum Sciences and Engineering, 1999, 23: 213-221.
    14. Richarde F Lee, Agents which promote and stabilize water-in-oil emulsions, Spill Science & Technology Bulletin, 1999, 5 (2) : 117-126.
    15. Antonio C S R, Lilian H, Fabio R N, et al, Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils, Journal of Petroleum Science and Engineering 2001, 32: 201-216.
    16. Schorling P C, Kessel D G, Rahimian I, Influence of the crude oil resin/asphaltene ratio on the stability of oil/water emulsions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 152: 95-102.
    17. Djuve J, Yang X, et al. Chemicals destabilization of crude oil based on emulsions and asphaltene stabilized emulsions. Colliod Polymer Sci. , 2001, 279: 232-239.
    18. Mingyuan Li, Jianguo Su, Zhaoliang Wu, Yaodong Yang and Shuling Ji. Study of the mechanisms of wax prevention in a pipeline with glass inner layer, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124: 635-649.
    19. Marquez M L, Rogel E, Reif I. Molecular dynamics simulation of isopropylnaphthalene sulphonare at the water/heptane interace. Colloids and Surfaces A: Physicochemical and engineering aspects, 1996, 106: 135-136.
    20. Mason S L, May K, Hartland S. Dropsize and concentration profile determination petroleum emulsion separation. Colloids and Surfaces A: Physicochemical and engineering aspects, 1995, 96: 85.
    21. Koczo K, Nikolov A D, Wasan D T, Borwankar R P, Gonsalves A, Layering of sodium submicelles in thin liquid film——A new stabiity mechanism for food disopersions, Journal of Colloid and Interface Science, 1997, 178: 694-702.
    22. Tambe D, Paulis J, Sharma M M, Factors controlling the stability of colloid-stabilized emulsions iv evaluating the effetiveness of demulsifiers, Journal of Colloid and Interface Science, 1995, 171: 463-469.
    23. Kang Wanli, Wang Demin. SPE72138, Presented at the SPE Asia Pacific Improved Oil Recovery Conference held in Kuala Lumpur, Malaysia, 8-9 October 2001, 1-3.
    24. Kang Wanli, Liu Yi, Qi Baoyan, et al. Colloid and Surfaces A: Physicochemical and Engineering Aspects 2000, 175 (1-2) : 243-247.
    25. Hae Ok Lee, Tsung-shann, et. al. Measurements of Interfacial Shear Viscoelasticity with an Oscillatory Torsional Viscometer, Journal of Colloid and Interface Science, 1991, 146 (1) : 90-121.
    26. Stig E F, Huafang Yang, et al. Location of crude oil resin molecule at an interface——model system, Colloid and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136 (1-2) : 43-49.
    27. Kim Y H, Wasan D T. Effect of demulsifier partioning on the demulsifieation of water-in-crude oil emulsions. Ind Eng Chem Res, 1996, 35: 1141-1149.
    28. Storm D A, Barresi R J, Sheu E Y, Bhattacharya A K, DeRosa T F, Microphase behavior of asphaltic micelles during catalytic and thermal upgrading. Energy Fuels, 1998, 12: 120-128.
    29.苑世岭,徐桂英.原油破乳剂发展的概况.日用化学工业,2000,30(1):36-39.
    30.范维玉,陈树坤,杨孟龙,宋远明,赵福麟,水包稠油乳状液稳定性研究Ⅲ——稠油官能团组分与极性组分的油-水界面张力考察,石油学报(石油加工),2001,17(5):1-5.
    31.乔建江,詹敏.乳化原油的破乳机理研究.石油学报(石油加工),1999,15(2):1-2.
    32.康万利,单希林,龙安厚.破乳剂对复合驱乳状液的破乳机理研究.高等学校化学学报,1999,20(5):759-761
    33.李外郎,代乐蓉.破乳剂的油水界面性质与破乳效果的关系.油田化学,1986,3(1):16-2.
    34.孙涛垒,彭勃,许志明等,原油活性组分油水界面膜扩张粘弹性研究,物理化学学报,2002,18(2):161-165.
    35.丁德磐,孙在春,杨国华.原油乳状液的稳定与破乳.油田化学.1998,15 (1):82-86.
    36.李明远,甄鹏,吴肇亮等.原油乳状液稳定性研究,Ⅵ.界面膜特性与原油乳状液稳定性,石油学报(石油加工),1998,14(3):1-5.
    37.李明远,俎永平.原油乳状液稳定性研究,油气田地面工程,1997,16(2):1-3.
    38.康万利,黄有泉,胡靖邦.原油乳状液破乳的动态法研究.物理化学学报,1997,13 (2):179-182.
    39.康万利,岳湘安,胡靖邦.聚合物对乳状液及液膜的稳定性,石油学报,1997,18 (4):122-125.
    40. Wong G K, Yen T F, An electron spin resonance probe method for the understanding of petroleum asphaltene macrastructure, J Petroleum Sci Eng, 2000, 28: 55-64.
    41. Yen T F, Erdman J G, Pollack S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction. Anal Chem, 1961, 33 (11) : 1587-1594.
    42. Yen T F, Erdman J G, Saraceno A J. Investigation of the nature of free radicals in petroleum asphaltenes and related substances by electron spin resonance, Anal Chem, 1962, 34 (6) : 694-700.
    43. Dickie J P, Yen T F. Macrostructures of microscopic investigations on the nature of petroleum asphaltics, Anal. Chem. 1967, 39: 1847-1852.
    44. Dickie J P, Hailer, Yen T F. Electron microscopic investigations on the nature of petroleum asphaltics, J. Colloid Interface Sci. , 1969, 29 (3) : 475-484.
    45. Yen T F, Wu W H, Chilingar G V. A study of the structure of petroleum asphaltenes and related substances by proton nuclear magnetic resonance. Energy Sources, 1984, 7 (3) : 275-304.
    46. Yen T F. The colloidal aspect ofa macrostructure of petroleum asphalt. Fuel Sci Technol. Int. 1992, 10 (4-6) : 723-733.
    47. Lian H, Lin J R, Yen T F, Peptization studies of asphaltene and solubility parameter spectra. Fuel, 1994, 73 (3), 423-428.
    48. Victorov A I, Smirnova N A, Description of asphaltene polydispersity and precipitation by means of thermodynamic model of self-assembly, Fluid Phaec Equilbria, 1999, 158-160: 471-480.
    49. Ferworn K A, Mehrotra A K, Svreck W Y. Measurement of asphaltene agglomeration from Cold Lake bitumen diluted with n-alkanes. Can J Chem Eng. 1993, 71: 699-703.
    50. Fotland P, Anfindsen H, Fadnes F H, Detection of asphaltene precipitation and amounts precipitated by measurement of electrical conductivity. Fluid Phaec Equilbria, 1993, 82: 157-164.
    51. Galtsev V E, Ametov M, Grinberg O Y. Asphaltene association in crude oil as studied by ENDOR. Fuel, 1995, 74 (5) : 670-673.
    52. Lober L, Morel J, Sutton O, Bitumen in colloid science: a chemical, structural and theological approach, Fuel, 1998, 77 (13) : 1443-1450.
    53. McLean J D, Kilpatrick P K, Effects of asphaltene solvency on stability of water-in-crude-oil emulsions, J Colloid Interface Sci, 1997, 189: 242-253.
    54. Rassamdana H, Dabir B, Nematy M, Farhani M, Sahimi M, Asphaltene flocculation and deposition: the onset of precipitation, AIChE J. 1996, 42 (1) : 10-22.
    55. Sahimi M, Rassaradana H, Dabir B. Asphdt formation and precipitation: experimental studies and theoretical modeling, SPEJ, 1997, 2 (2) : 157-169.
    56. Andersen S I, Birdi K S. Aggregation of asphaltenes as determined by calorimetry, J Colloid Interface Sci, 1991, 142 (2) : 497-502.
    57. Calemma V, Montanari L, Nail M, Anelli M. Structural charactenstics of asphaltenes and related pyrolysis kinetics. ACS Div Pet Chem, 1994, 39 (1-4) : 452-456, Preprints.
    58. Khulbe K C, Mann R S, Lu B C Y, Lamarche G, Lamarche A M, Effects of solvents on free radicals of bitumen and asphaltenes, Fuel Process Technol, 1992, 32: 133-141.
    59. Eley, D. D. ; Hey, M. J. ; Lee, M. A. Rheological studies of Asphaltene Films Adsorbed at Oil/Water Interface. J of Colloid Interface Sci, 1987, 24: 173-182.
    60. Syunyaev R Z, Abid R S. A dielectric spectroscopic study of the disperse structure of asphaltene solutions at high pressures. Colloid J, 1994, 56 (2) : 180-184.
    61. Toulhoat H, Prayer C, Rouquet G. Characterization by atomic force microscopy of adsorbed asphaltenes. Colloids Surf, A: Physicochem Eng Aspects, 1994, 91: 267-283.
    62. Taylor S E, The electrodeposition of asphaltenes and implications for asphaltene structure and stability in crude and residual oils, Fuel, 1998, 77 (8) : 821-828.
    63. All M F, Alqam M H, The role of asphaltenes, resins and other solids in the stabilization of waterin oil emulsions and its effects on oil production in Saudi oil fields, Fuel, 2000, 79: 1309-1316.
    64. Li Mingyuan, Xu Mingjin, Ma Yu, Wu Zhaoliang, Christy A A, Interfacial film properties of asphaltenes and resins, Fuel, 2002, 81: 1847-1853.
    65. Ele M-H, Yang X. , Sjoblom J. Film forming properties of asphaltenes and resins. A comparative Langmuire-Blodgett Study of crude oils from North Sea, European continent and Venezuela. J. of Colloid Polym. Sci. , 1998, 276: 800-809.
    66.杨小莉,陆婉珍,Sjoblom J,Ese M H,用Langmuir-Blodgett技术研究原油中沥青质和胶质膜性质,石油学报(石油加工),1999,15(3):6-9
    67.杨小莉,陆婉珍,李明远,韩卫荣,郑晓宇.辽河原油沥青质及胶质油水界面化学性质初探.石油学报(石油加工),1999,15(4):1-6.
    68.丁福臣,王宇航,靳广洲,何广湘,高俊斌,石油沥青质胶态粒子宏观结构尺寸的研究,石油化工高等学校学报,2001,14 (2):31-34.
    69.丁福臣,魏洁,王宇航,何广湘,靳广洲,石油沥青质胶体分散特性的研究,石油化工高等学校学报,2001,14 (3):7-9.
    70.齐邦峰,曹祖宾,陈立仁,张会成,王丽君,阙国和,紫外吸收光谱研究胜利渣油胶质、沥青质结构特征,石油化工高等学校学报,2001,14 (3):14-17.
    71.张庆轩,杨国华,杨普江,王保三,石油沥青质在烃中的稳定性研究,化学研究与应用,2001,13 (1):73-75.
    72.徐梅清,杨萍华,孙在春,胶质、沥青质对水-苯乳状液稳定性的影响,石油学报(石油加工),2000,16(6):41-44.
    73.夏立新,曹国英,沥青质和胶质稳定的油包水乳状液的破乳研究,油田化学,2003,20(1):23-25.
    74.李道山,王德民,康万利,胶质和沥青质油水界面膜粘弹性,化工学报,2003,54 (8):1164-1168
    75.刘东,王宗贤,阙国和.渣油中沥青质胶粒缔合状况初探.燃料化学学报,2002,30(3):281-284.
    76.张龙力,张世杰,杨国华,蒋云,阙国和.常压渣油热反应过程中胶体的稳定性,石油学报(石油加工),2003,19 (2):82-87.
    77. Parra-Barraza H, Hemandez-Montiel D, Lizardi J, Hernandez J, Urbina R H, Valdez M A, The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions, Fuel, 2003, 82: 869-874.
    78. Jeribi M, Almir-Assad B, Langevin D, Henaut I, Argillier J F, Adsorption kinetics of asphaltanes at liquid interfaces, J Colloid Interface Sci, 2002, 256: 268-272.
    79. Wargadalam V J, Norinaga K, Iino M, Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements, Fuel, 2002, 81: 1403-1407.
    80. She, did S A, An ultrasonic irradiation technique for treatment of asphaltene deposition, J Pet Sci Eng, 2004, 42: 57-70.
    81. Oh K, Oblad S C, Hanson F V, Deo M D, Examination of asphaltenes precipitation and self-aggregation, Energy Fuels, 2003, 17: 508-509.
    82. Oh K, Ring T A, Deo M D, Asphaltene aggregation in organic solvents, J Colloid Interface Sci, 2004, 271: 212-219.
    83. Pacheco-Sanchez J H, Zaragoza I P, Martinez-Magadan J M, Asphaltene aggregation under vacuum at different temperatures by molecular dynamics, Energy Fuels, 2003, 17: 1346-1355.
    84. Ortaga-Rodriguez A, Cruz S A, Gil-Villigas A, Guevara-Rodriguez F, Lira-Galeana C, Molecular view of the asphaltene aggregation behavior in asphaltene-resin mixtures, Energy Fuels, 2003, 17: 1100-1108.
    85. Al-Sahhaf T A, Fahim M A, Elkilani A S, Retardation of asphaltene precipitation by addition of toluene, resins, deasphalted oil and surfactants, Fluid Phase Equilibria, 2002, 194-197: 1045-1057.
    86. Zhang L, Lawrence S, Xu Z, Masliyah J H, Studies of asphaltene Langmuir films at air-water interface, J Colloid Interface Sci, 2003, 264: 128-140.
    87. Demirbas A, asphaltene yields from five types of fuels via different methods, Energy Conversion and Management, 2002, 43: 1091-1097.
    88. Gafonova O V, Yarranton H W, The stabilization of water-in-hydrocarbon emilsions by asphaltenes and resins, J Colloid Interface Sci, 2001, 241: 469-478.
    89. Perez-Hernandez R, Mendoza-Anaya D, Mondragon-Galicia G, Espinosa M E, Rodrguez-Lugo V, Lozada M, Arenas-Alatorre J, Microstructurat stude of asphaltene precipitated with methlene chloride and n-hexane, Fuel, 2003, 82: 977-982.
    90.李春孝,王鸿勋主编,赵兰玉副主编.AOSTRA大学研究报告译文汇编(一)沥青化学.第一版.山东:石油大学出版社,1991.
    91.Hepler L G,Chu Hsi主编,梁文杰等译,李奉孝等校,AOSTRA油砂、沥青、重质油技术手册,第一版,东营:石油大学出版社,1992.
    92.刘晓红,浙江大学硕士学位论文,2000.
    93.Tissot B,国际重油和渣油性质分析鉴定会论文选,邬立言、杨翠定等译,第一版.北京:石油工业出版社,1989年
    94. Jha K N, Montgomery D S, Strausz O P, Preprints, Div Fuel Chem, American Chemical Society, 1979, 24, P260-264.
    95. Pfeiffer J P, Saal R N J, Asphatic bitumen as colloid system, J Phys Chem, 1940, 44: 139-149.
    96. Acevedo S, et al. Fuel, 1985, 64 (12) : 1741-1748.
    97. Stoem D A et al. in: Yen T F, Chillingarian G V, Asphaltenes and Asphalts, Elsevier, 1994.
    98. Fendler J H, J Phys Chem, 1980, 84: 1485-1491.
    99. Sheu E Y, Liang K S, Sinha S K, Overfield R E, Polydispersity analysis of asphaltene solutions in tolune. J Colloid Interface Sci, 1992, 153 (2) : 399-410.
    100. Krawczyk M A, Wasan D T, Sherry C S. Chemical demulsification of petroleum emulsions using oil-soluble demulsifiers. Ind Eng Chem Res, 1991, 30: 367-275.
    101.张景存,三次采油,北京:石油工业出版社,1995.
    102.康万利,董喜贵著.三次采油化学原理.北京:化学工业出版社,1997.
    103.王德民,发展三次采油新理论新技术,确保大庆油田持续稳定发展(下),大庆石油地质与开发,2001,20(4):1-5.
    104.廖广志,王启民,王德民,化学复合驱原理及应用,北京:石油工业出版社,1999.
    105.叶仲斌,刘向君,杨建军,罗平亚.聚合物与表面活性剂二元驱油体系界面性质研究,油气地质与采收率,2002,9(3):7-9.
    106.康万利,胡靖邦,宋文玲,二元复合体系/大庆原油间的动态界面张力研究,化学与粘合,1997,4:202,
    107.张路,赵准,罗澜,碱/表面活性剂复合驱油体系与胜利孤东原油间协同效应的研究,油田化学,1998,15 (4):348.
    108.康万利,石油磺酸盐复配体系/大庆原油间的界面张力,大庆石油学院院报,1995,19 (1):17.
    109. Clark S R, Pitts M J, Smith S M, Design and application of an alkaline-surfactant-polymer recovery system to west kiehl field, SPE Advanced Technology Series, 1993, 1: 172-179.
    110. Meyers J, Pitts M J, Wyatt K, Alkaline-suffactant-polymer of the west kiehl unit, SPE/DOE, 1992 (24144) : 423-435.
    111. Qu Z, Zhang Y, Zhang X, A successful ASP pilot in Gudao oil field, SPE, 1998 (39613) : 107.
    112.王宝瑜,曹绪龙等.孤东小井距三元复合驱现场试验采出液相态变化及组分浓度测定.油田化学.1994,11:327-330
    113. Wang C, Wang B, Cao X, Application and design of alkalinc-surfactant-polymer system to close well spacing pilot in Gudao oil field, SPE, 1997 (38321) : 605.
    114. Wang D, Cheng J, Wu J, An alkaline-surfactant-polymer field test in a reservoir with a long-term 100% water cut, SPE, 1998 (49018) : 305-318.
    115. Gao S, Li H, Yang Z, Alkaline-surfactant-polymer pilot performance of the west central saertu, daqing oil field, SPE Reservoir Engineering, 1996 (8) : 181-188.
    116.崔正刚,邹文华,孙雪芳,重烷基苯磺酸盐╱碱╱原油体系的界面张力,油田化学,1999,16 (2):153.
    117.王红庄,罗幼松,朱怀江,用于无酸值低活性原油油藏的ASP驱油体系,油田化学,1997,14 (4):352.
    118.康万利,单希林,非离子表面活性剂三元复合体系界面张力研究,大庆石油地质与开发,1998,17(2):32.
    119.吴文祥,张洪亮,侯吉瑞等,ASP三元复合体系╱大庆原油间的动态界面张力特性,大庆石油学院学报,1995,19(1):119-122.
    120.王雨,陈文海.天然乳化剂对三元复合驱采出液破乳的影响,油田化学.1999,16 (1):27-30
    121.牟建海,廖广志等,三元复合驱低浓度体系相行为及中间混合层结构分析,中国科学:B辑,2002,32 (1):1-6.
    122.康万利,刘永建,我国复合驱用表面活性剂研究进展,日用化学工业,2000,30 (4):30-33.
    123.罗跃,国内油田应用表面活性剂的现状与展望,精细石油化工,1992 (5):1-5.
    124.李干佐,林元,徐桂英等,天然混合羧酸(盐)复合驱油体系的研究,日用化学工业,1994,11(1):61-65.
    125.李干佐,徐桂英,毛宏志等,开发天然羧酸盐在油田中的应用,日用化学工业,1998(5):26-30
    126.李干佐,沈强,郑立强,新型驱油用表面活性剂天然羧酸盐,油田化学,1999,16(1):57-59.
    127.王景良,三元复合驱用石油磺酸盐表面活性剂研究进展,国外油田工程,2000(12):1-5.
    128.伍晓林,张国印,刘庆梅,石油羧酸盐的研制及其在三次采油中的应用,油气地质与采收率,2001,8(1):62—63.
    129.张国印,伍晓林等,三次采油用烷基苯磺酸盐类表面活性剂研究,大庆石油地质与开发,2001,20(2):26-28.
    130.伍晓林,陈坚,伦世仪,生物表面活性剂在提高原油采收率方面的应用,生物学杂志,2000(6):25-27.
    131.崔正刚,张天林,邹文华,重烷基苯磺酸盐的合成及其在提高石油采收率中的应用研究,表面活性剂/洗涤剂技术与经济进展,太原:山西经济出版社,1995.
    132.黄宏度,驱油用石油羧酸盐的研制,油田化学,1991,8(3):235-239.
    133.黄宏度,赵林,石油羧酸盐复合体系中各组分的影响,江汉石油学院学报,1992,14 (13):53-56.
    134.黄宏度,姬中复,吴一慧等,石油羧酸盐和大庆原油间的界面张力,江汉石油学院学报,1992,14(4):53-57.
    135.王业飞,李继勇,赵福麟,高矿化度条件下应用的表面活性剂驱油体系,油气地质与采收率,2001,8(1):67-69.
    136.杨金华,曹亚,李惠林,高分子表面活性剂与原油形成超低界面张力的研究,精细化工,1999(2):3.
    137.单希林,康万利,孙洪彦等.烷醇酰胺型表面活性剂的合成及在EOR中的应用.大庆石油学院院报.1999.23 (1):32.
    138.童正新,王芳,吴庆红,鼠李糖脂发酵液与OP类非离子表面活性剂复配驱油体系的研究,油气采收率技术,1998,5 (2):6-20.
    139.吴军政,陈惠琴,徐艳妹,中当量石油磺酸盐形成低界面张力的条件研究,沈阳化工,1997 (3):20.
    140.康万利,祁宝艳,单希林,应用络合剂提高复合体系的界面活性,大庆石油学院院报,1998,22 (1):17.
    141.刘德新,黄宏度,吴一慧.非离子表面活性剂对石油氧化皂及其复配体系界面活性的影响,江汉石油学院学报,1997,19(4):51-54.
    142.康万利,李俊刚,单希林,大庆原油馏分与复合体系界面活性及乳化性研究,油田化学,1999,16(4):345-347
    143. Rosen M J, Surfactants and interracial phenomena, New York: John Wiley & Sons, Inc, 1998, 229-235.
    144.Chan K S,在油-盐水界面上产生超低界面张力必须的物化条件,杨普华,杨承志译,化学驱提高石油采收率,北京:石油工业出版社,1988,43-48.
    145.陈咏梅,焦丽梅,李之平,石油磺酸盐中极性组分的协同效应,石油学报,1999,20 (2):73.
    146. Zhu Y P, Masuyama A. Preparation and properties of double-or triple-chain surfactants with two sulfonate groups derived from N-acylidiethanolamines. J. Am. Oil Chem. Soc. 1991 (68) : 539-543.
    147. Berger P D, Lee C H. Ultra-low Concentration Surfactants for Sandstone and Limestone Floods, 2002, SPE 75186.
    148. Hodyson P K G, et al. Alkyl ethoxy-ethane, two techniques for improving syntetic conversions. J. Am. Oil Chem. Soc, 1990, 67 (11) : 730-732.
    149. Kalfoglou George. Surfactants fluid suitable for use in waterflood oil recovery method [P]. US: 4373711, 1982.
    150.康万利,刘桂范,李金环,油水乳化液流变性研究进展,日用化学工业,2004,34(1):34-39.
    151.李学文,康万利,原油乳状液的稳定性与界面膜研究进展,油气田地面工程,2003,22 (10):7-8.
    152.康万利,张红艳,李道山,吴肇亮,李明远,高慧梅,破乳剂对油水界面膜作用机理研究,物理化学学报,2004,20 (2):194-198.
    153. Khan M R, Rheological properties of heavy crude oils and heavy oil emulsions, Energy Sources, 1996, 18(3): 56-60.
    154. Omar A E, Desouky S M, Karama B, Rheotogical characteristics of Saudi crude oil emulsions. J Pet Sci Eng, 1991, 7 (6) : 149-160.
    155. Ahmed N S, Nassar A M, Zaki N N, Stability and rheology of heavy crude oil-in-water emulsion stabilized by an anionic-nonionic surfactant mixture, Pet Sci Tech, 1999, 17 (5-6) : 553-576.
    156. Omar A E, Flow behavior of Saudi heavy oil emulsions under turbulent conditions. Oil Gas Europe Mag, 1992, 18 (1) : 42-44.
    157. Clark P E, Characterization of crude oil-in-water emulsions, J Pet Sci Eng, 1993, 9 (3) : 165-181.
    158. Seibert K H, Rheology partical size distribution and asphaltene depostion of viscous asphaltic crude oil-in-water emulsions for pipeline transportion, J Pet Sci Eng, 2001, 17 (3-4) : 425-436
    159.刘永建,钟立国,蒋生健,孙宪利,宫宇宁,水热裂解开采稠油技术研究的进展,燃料化学学报,2004,32 (1):117-131.
    160.王弥康.热力采油与提高原油采收率.油气采收率技术,1994年,1(1):6-11.
    161.Hyne J B.重油的水热解,王鸿勋译,国际重质原油开采会议论文选集,第一版,石油工业出版社,1986年,278-286.
    162. Hyne, J B. Synopsis Report No. 50, Aquathermolysis. Alberta Oil Sands Technology and Research Authority. April, 1986.
    163. Clark P D, Hyne J B, Tyrer J D, Chemistry of Organosulfur Compound Types Occurring in Heavy Oil Sands. 1: High Temperature Hydrolysis and Thermolysis of Tetrahydrothiophene in relation to Steam Stimulation Processes, Fuel, 1983, 62: 959-962.
    164. Clark P D, Hyne J B, Tyrer J D, Chemistry of Organosulfur Compound Types Occurring in Heavy Oil Sands. 2: Influence of pH on the high temperature hydrolysis of tetrahydrothiopene and thiophene, Fuel, 1984, 63: 125-128.
    165. Clark P D, Hyne J B, Tyrer J D, Chemistry of Organosulfur Compound Types Occurring in Heavy Oil Sands. 3: Reaction of Tetrahydrothiopene and Thiophene with Vanadyl and Nickel Salts, Fuel, 1984, 63: 1649-1654.
    166. Clark P D, Dowling N I, Hyne J B, Lesage K L. Chemistry of Organosulfur Compound Types Occurring in Heavy Oil Sands. 4: The High-temperature Reaction of Tetrahydrothiopene with Aqueous Solutions of Aluminium and First-row Transition-metal Cations, Fuel, 1987, 66: 1353-1357.
    167. Clark P D, Dowling N I, Lesage K L, Hyne J B. Chemistry of Organosulfur Compound Types Occurring in Heavy Oil Sands. 5: Reaction of Thiophene and Tetrahydro-thiopene with Aqueous Group ⅧB Metal Species at High Temperature, Fuel, 1987, 66: 1699-1702.
    168.Hepler L G,Chu Hsi主编,梁文杰等译,李奉孝等校,AOSTRA油砂、沥青、重质油技术手册,第一版,东营:石油大学出版社,1992年,P29-30.
    169. Gould-K A. Influence of Thermal Processing on The Properties of Gold Lake Asphaltenes. 2. Effect of Steam Treatment during Oil Recovery. Fuel, 1983, 62: 370~373.
    170. Monin J C, Audibert A. Alteration of Heavy Crudes under High Pressure Stream Conditions, ACS Symp. On the Chem. Of Enhanced Oil Recovery in Philadelphia, Div. Of Pet. Chem. Preprints. 1984. 29 (4) : 1223-1231.
    171. Fassihi M R, Meyers K O, Weisbrod K R, Thermal Alteration of Viscous Crude Oils. SPE 14225.
    172. Jacobson J M, Gray M R. Use of I. R. Spectroscopy and Nitrogen Titration Date in Structural Group Analysis of Bitumen, Fuel, 1987, 66: 749-752.
    173.李春孝,王鸿勋主编,赵兰玉副主编.AOSTRA大学研究报告译文汇编(一)沥青化学.第一版.山东:石油大学出版社,1991年.P134-153.
    174.李春孝,王鸿勋主编,赵兰玉副主编.AOSTRA大学研究报告译文汇编(一)沥青化学.第一版.山东:石油大学出版社,1991年.P117-133.
    175. Lin C Y, Chen W H, Culham W E. New Kinetic Nodels for Thermal Cracking of Crude Oils in In-situ Combustion Processes, SPE 13074.
    176.范洪富,刘永建等,地下水热催化降粘开采稠油新技术研究,油田化学,2001,18 (1):13-16.
    177.范洪富,刘永建等,金属盐对辽河稠油水热裂解反应影响研究,燃料化学学报,2001 (5):430-433.
    178.刘永建,刘喜林等,稠油的水热裂解反应及其降粘机理,大庆石油学院学报,2002,26 (3):95-98.
    179.刘永建,钟立国等,辽河油田稠油水热裂解采油现场试验,大庆石油学院学报,2002,26 (3):99-101.
    180.闻守斌,刘永建,宋玉旺等,硅钨酸对胜利油田超稠油的催化降粘作用,大庆石油学院学报,2004,28 (1):25-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700