模板辅助下氧化锌微纳结构的生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用模板辅助对ZnO微纳结构的大小、形貌、结构和排布等进行控制,在ZnO微纳器件制备及应用方面具有重要意义。
     在本文中,我们首先采用低温液相水热法,在预修饰了磁控溅射制备的籽晶层的衬底上,成功制备了大密度且高度取向的ZnO纳米棒阵列,首次对籽晶层制备时的磁控溅射参数对ZnO纳米棒形貌的影响进行了探讨。通过调节前驱体溶液浓度、加入柠檬酸钠或聚乙醇胺,制得了不同形貌、不同长径比的取向ZnO纳米棒/塔/线阵列。
     在此基础上,通过在籽晶层上覆盖光刻胶层做为模板, ZnO微纳结构的在衬底上的空间分布控制得以实现,在调整生长参数后,得到了周期性排列的ZnO纳米棒/管/线/环状阵列。
     更为重要的是,通过将生长过程分为两步,并使用柠檬酸钠和聚乙醇胺这两种作用相反的辅助剂,在光刻胶模板微孔的限制下实现了籽晶层多晶晶种的融合,首次在多晶衬底上以传统光刻技术精确控制了单个ZnO晶体的生长位置,并将控制单个ZnO棒晶的模板尺寸由文献普遍报道的100nm左右拓展至微米量级。提出了模板限制与辅助剂修饰双重作用下的生长机理,在模板微孔的作用下,相同水热生长条件下制得的纳米柱增粗至了光刻胶微孔粗细,制备的一维棒晶的直径和长度均可控制。
     最后,通过使用自组装聚苯乙烯胶体晶体做模板,我们发展了一种采用磁控溅射技术制备面积达到厘米尺寸的ZnO纳米碗阵列薄膜的方法。通过改变聚苯乙烯微球直径及磁控溅射时间,制备的纳米碗尺寸及纳米碗阵列薄膜的厚度均可调整。
Using templates to control the size, morphology, structure and arrangement of ZnO micro-nano structures is of great significance in preparations and applications of ZnO micro/nano-devices.
     In this thesis, we synthesized well-aligned ZnO nanorod arrays by hydrothermal method on Si substrates that were covered with pre-deposited ZnO films as seed layers. The ZnO seed layers were deposited by RF magnetron sputtering. We explored the effect of sputtering parameters of seed layers such as oxygen partial pressure and annealing on the morphology of ZnO nanorod arrays. To the very best of our knowledge, these works have seldom been done before. By adjusting the precursor concentration, or adding different capping agents like sodium citrate and polyethylenimine(PEI), aliened ZnO nanrod/towe/wire arrays with different morphologies and aspect ratios were successfully synthesized.
     Besides, by patterning photoresist layer on the surface of seed layers via conventional lithography, a simple aqueous solution route was demonstrated to control the growth positions of ZnO micro/nanno-structure arrays on the substrates. Through adjusting the growth parameters, periodic ZnO nanorod/tubes/wire/circular arrays were prepared with the assist of photoresist templates.
     Furthermore, under the functions of capping agents like citrate and polyethylenimine (PEI), two kinds of organic molecules that could hinder the axial and lateral growth of the nanorod and separating the growth process into two steps, multi grains within one photoresist hole fused together into single crystal with restriction of photoresist template. For the first time, it is possible to define the position of single oriented one dimensional ZnO crystal on polycrystalline substrates instead of expensive single crystal substrates at low temperatures and large scale. The size of template to control the growth position of single ZnO nanorods has been extended from 100nm that literature generally reported to the range of micrometer. A crystal growth mechanism was proposed when growing under the functions of photoresist templates and capping agents.With restriction of photoresist templates, the diameters of nanorods were enlarged to the size of photoresist holes under the same hydrothermal growth conditions, the prepared ZnO one dementional structures have controlled diameters and lengths.
     At last, ordered ZnO nanobowl arrays over cm2 areas were prepared by magnetron sputtering using the self-assembled colloidal crystals as templates. The process started with self-assembled sedimentation of there-dimensional (3D) hexagonal polystyrene sphere arrays. By depositing ZnO within the interstitials of 3D colloidal crystal templates using magnetron sputtering, large-area ordered ZnO nanobowl sheets were prepared after removing the spheres by annealing. The whole nanobowl sheet could be lifted off, leaving accidentally observed inverse opal structures. The sizes of the nanobowls could be controlled by the size of the polystyrene spheres, the height of nanobowl sheets could be altered by changing sputtering parameters.
引文
[1]CHOOPUN s, VISPUTE R D, NOCH W el:at. A. P. L 1999,75(25):3947-3949
    [2]W. I. Park, G.C. Yi. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater.2004.16(1):87-90.
    [3]Zhonglin Wang. ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering.2009.64:33-71
    [4]Z. Y. Fan, J. G. Lu. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett.2005.86:123510-123512
    [5]B. Liu, H. C. Zeng. Hollow ZnO microspheres with complex nanobuilding units. Chem. Mater.2007.19(24):5824-5826
    [6]X. Zhou, D. Zhang, Y. Zhu, Y. Shen, X. Guo, W. Ding, Y. Chen. Mechanistic investigations of PEG-directed assembly of one-dimensional ZnO nanostructures. J. Phys. Chem. B.2006.110:25734-25739
    [7]H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu. Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl Phys Lett.2004.84:3376
    [8]C.H. Liu, W.C. Yiu, F. C. K. Au, J. X. Ding, C. S. Lee, S. T. Lee. Electrical properties of zinc oxide nanowires and intramolecular p-n junctions. Appl. Phys. Letter.2003.83:3168-3170
    [9]Q. H. Li, Q. Wan, Y. X. Liang, T. H. Wang. Electronic transport through individual ZnO nanowires. Appl. Phys. Lett.2004.84:4556
    [10]Y. W. Heo, L. C. Tien, D. P. Norton. Electrical transport properties of single ZnO nanorods. Appl. Phys. Lett.2004.85:2002
    [11]Z. Fan, J. G. Lu. Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes. Appl. Phys. Lett.2005.86:032111
    [12]Dongxu Zhaoa, Caroline Andreazzaa, Pascal Andreazzaa, Jiangang Mab, Yichun Liub, Dezhen Shenb. Temperature-dependent growth mode and photoluminescence properties of ZnO nanostructures. Chem. Phys. Lett.2004.399(4-6):522-526
    [13]W. Lee, M. C. Jeong, J. M. Myoung. Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation. Nanotechnology.2004.15:1441-1445
    [14]X. D. Wang, Y. Ding, C. J. Summers, Z.L.Wang. Large-scale synthesis of six-nanometer-wide ZnO nanobelts. J. Phys. Chem. B.2004.108:8773-8777
    [15]M. Law, D.J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P. D. Yang. Nanoribbon waveguides for subwavelength photonic integration. Science.2004. 305(5688):1269-1273
    [16]C.Liu,J.A. Zapien,Y. Y. Meng,C. G. Lee, S. Fan, Y. Lifshitz, S. T. Lee. High-Denisty,orders ultraviolet light-emiting ZnO nanowire arrays. Adv. Funct. Mater.2003.15(10):838-841
    [17]Z. L. Wang, J. H. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science.2006.312(5771):242-246
    [18]J. H. Song, J. Zhou, Z. L. Wang. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano letters.2006.6(8):1656-1662
    [19 P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, J. G. Lu. Nanowires synthesized by vapor trapping CVD method. Chem. Mater.2004.16:5133-5137.
    [20]Shizuo Fujita, Sang-Woo Kima, Masaya Uedac, Shigeo Fujita. Artificial control of ZnO nanostructures grown by metalorganic chemical vapor deposition. Journal of Crystal Growth.2004.272:138-142
    [21]F. Wang, L. Cao, A. Pan, R. Liu, X. Wang, X. Zhu, S. Wang, B. Zou. Synthesis of tower-like ZnO structures and visible photoluminescence origins of varied-shaped ZnO nanostructures. J. Phys. Chem. C,2007,111(21):7655-7660
    [22]R. S. Wagner, W. C. Ellis. Vapor-liquid-solid mechanism of single crystal growth (new method growth catalysis from impurity whisker exitaxial large crystals Si). Appl. Phys. Lett.1964.4(2):89
    [23]X. Wang, J. Song, Z. L. Wang. Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J. Mater. Chem.2007.17:711-720
    [24]L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Matter.2003.15(5):5464-466
    [25]E. C. Greyson, Y. Babayan, T. W. Odom. Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater.2004.16:1348-1352
    [26]S. Xu, Y. G. Wei, M. Kirkham, J. Liu, W. J. Mai, R. L. Snyder, Z.L.Wang, Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc.2008.130:14958
    [27]A. Korsiorek, W. Kandulski, P. Churdziski, K. Kempa, M. Giersig. Nanotechnology.2004.15:1359
    [28]K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, Z. F. Ren, Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett.2003.3:13
    [29]H. J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias, Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. J. Cryst. Growth.2006.287:34
    [30]H. Matsuda, F. Fukuda. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science.1995.268:1466
    [31]W. Lee, M. Alexe, K. Nielsch, U. Gosele. Metal membranes with hierarchically organized nanotube arrays. Chem. Mater.2005.17:3325-3327
    [32]H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, M. Zacharias. Arrays of vertically aligned and hexagonally arranged ZnO nanowires:A new template-directed approach. Nanotechnology.2005.16:913-917
    [33]M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater.2001.13:113
    [34]K. S. Kim, H. W. Kim. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition, Physica B:Condensed Matter.2003.328:368
    [35]Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Appl. Phys. Lett.2000.76:2011
    [36]L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Matter.2003.15(5):5464-466
    [37]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. D. Yang. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett.2005.5:1231
    [38]Q. Ahsanulhaq, A. Umar, Y. B. Hahn. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution:growth mechanism and structural and optical properties. Nanotechnology.2007.18:115603
    [39]Y. Tak, K. Yong. Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 2005.109:19263
    [40]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. D. Yang, General route to vertical ZnO nanowire arrays using textured ZnO seeds, Nano Lett.2005.5:1231-1236
    [41]C.H. Ahn, Y. Y. Kim, S. W. Kang, B. H. Kong, S. K. Mohanta, H. K. Cho, J. H. Kim, H. S. Lee, Dependency of oxygen partial pressure on the characteristics of ZnO films grown by radio frequency magnetron sputtering. Journal of Materials Science: Materials in Electronics.2008.19:744-748
    [42]L. Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater.2003.15:464-466
    [43]G. Z. Xing, B. Yao, C. X. Cong, T. Yang, Y. P. Xie, B. H. Li, D. Z. Shen. Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering, Journal of Alloys and Compounds.2008.457:36-41
    [44]L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt. Purpose-built anisotropic metal oxide material:3D highly oriented microrod array of ZnO. J. Phys. Chem. B. 2001.105:3350-3352
    [45]L. Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater.2003.15:464-466
    [46]K. Govender, D. S. Boyle, P. B. Kenway, P.O. Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem.2004.14:2575
    [47]Z. Wang, X. F. Qian, J. Yin, Z. K. Zhu. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir. 2004.20:3441
    [48]R. A. Laudise, A. A. Ballman. Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem.1960.64:688
    [49]仲维卓,刘光照,施尔畏,华素坤,唐鼎元,赵庆兰.在热液条件下晶体的生长基元与晶体形成机理.中国科学(B).1994.24(4):349-355
    [50]Anabel Lopez-Macipe, Jaime Gomez-Morales, Rafael Rodriguez-Clemente. The Role of pH in the Adsorption of Citrate Ions on Hydroxyapatite. Journal of Colloid and Interface Science,1998,200(1),114-120
    [51]Parkinson, J. A.; Sun, H. Z.; Sadler, P. J. Chem. Commun.1998,8,881.
    [52]Y Zhou, W Wu, G Hu, H Wu, S Cui. Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine. Materials Research Bulletin.2008.43: 2113-2118
    [53]J. Noborisaka, J. Motohisa, T. Fukui. Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Appl. Phys. Lett.2005.86: 213102.
    [54]J. Cui and U. Gibson, Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures, Nanotechnology.2007.18:155302.
    [55]C. Pacholski, A. Kornowski, H. Weller. Self-assembly of ZnO:from nanodots to nanorods. Angew. Chem. Int. Ed.2002.41:1188
    [56]J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000.289:751
    [57]R.L. Penn, J. F. Banfield. Imperfect oriented attachment:dislocation generation in defect-free nanocrystals. Science.1998.281:969
    [58]J. Cui and U. Gibson, Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures, Nanotechnology.2007.18:155302
    [59]Lionel Vayssieres, Karin Keis, Anders Hagfeldt, Sten-Eric Lindquist. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001.13(12):4395-4398
    [60]C.M. Lieber, MRS Bull.2003.28:486
    [61]H. Yang, N. Coombs, G. A. Ozin. Nature 1997.386:692
    [62]Y. Xia, E. Kim, X. Zhao, J. Rogers, M. Prentiss, G. M. Whitesides Science. 1996.273:347
    [63]S.Y. Chou, C. Keimel, J. Gu. Nature.2002 417:835
    [64]D. S. Ginger, H. Zhang, C. A. Mirkin, Angew. Chem. Int. Ed.2004.43:30
    [65]J. Rybczynski, U. Ebels, M. Giersig, Colloids Surf. A 2003.219:1
    [66]A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig, Nano Lett. 2004.4:1359
    [67]P. Jiang, J. F. Bertone, V. L. Colvin, Science.2001.291:453
    [68]X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang and C. J. Summers, Nano Lett.2004. 4:2223
    [69]X.D. Wang, C. J. Summers and Z. L. Wang, Nano Lett.2004.4:423
    [70]J. E. Barton, T. W. Odom, Nano Lett.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700