抗逆转录因子基因的功能验证与转基因百脉根的获得
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百脉根(Lotus corniculatus L.)别名牛角花,是豆科百脉根属多年生牧草,原产于欧亚温暖地区,目前在世界各地广泛种植。作为优良饲草,百脉根营养含量居豆科牧草的首位,成熟收种后,蛋白质含量可达17.4%。含皂素低,适口性好,耐牧性强,不会引起家畜膨胀病,为一般豆科牧草所不及。同时,百脉根也是建立人工草地、补播改良草场和建立人工放牧地的不可多得的牧草品种。近年从加拿大引进的品种里奥(Leo),抗寒性强,但其耐旱耐盐特性较差,难以适于国内极端气候日益频发的环境。为解决这一难题,本研究对本实验室从沙生植物胡杨(Populus euphratica)和铃铛刺(Halimodendron halodendron (Pall.)Voss.)中克隆的四个抗逆转录因子基因进行了功能分析,从中筛选了2个高抗基因PeDREB2a和HhERF2,构建单、双价以生物安全标记基因pmi为选择标记的植物表达载体,转化百脉根Leo品种,以期提高其在抗旱耐盐特性方面的能力,为我国畜牧业增添新的优良牧草种质资源。主要研究结果如下:
     1.本研究以实验室从沙生植物胡杨和铃铛刺中克隆的PeDREB2a、PeDREB2b、HhDREB2和HhERF2四个抗逆相关转录因子基因为基础,构建了分别含有PeDREB2a和PeDREB2b基因以诱导型启动子rd29A为启动子的植物表达载体:rd29A::PeDREB2a和rd29A:: PeDREB2b(rd29A::HhDREB2和rd29A::HhERF2实验室已构建);
     2.将四个转录因子基因分别转化模式植物拟南芥,通过潮霉素(Hyg)多代筛选获得纯合系转基因拟南芥植株分别为:PeDREB2a(20株)、PeDREB2b(18株)、HhDREB2(23株)和HhERF2(27株)。研究中对转基因拟南芥萌发期、幼苗期和生长期进行干旱控水和盐胁迫梯度实验,通过发芽率、含水量、可溶性糖、丙二醛(MDA)等抗逆指标检测,验证了四个转录因子在植物不同时期均提高了转基因拟南芥对干旱和盐胁迫的耐受力和适应性;
     3.结合四种转基因拟南芥各种指标结果的比较,发现PeDREB2a和HhERF2基因在植物抗逆调控中起到明显的调控作用。因此,本研究在实验室已构载体pCAMBIA1302-pmi的基础上,构建了pmi-rd29A::PeDREB2a、pmi-rd29A:: HhERF2和pmi-PeDREB2a::HhERF2三种单、双价安全型植物表达载体,为安全型抗旱耐盐百脉根转基因植株的获得打下基础;
     4.将以上构建的三种单、双价植物表达载体,通过农杆菌介导法转化百脉根子叶,对通过甘露糖筛选的抗性植株进行PCR和Southern-blotting检测,结果表明,目的基因均已整合入牧草百脉根的基因组中。现已获得转pmi-rd29A::PeDREB2a、pmi-rd29A:: HhERF2和pmi-PeDREB2a::HhERF2百脉根植株7株、12株和5株(其他转化事件还在检测当中)。干旱盐碱胁迫处理,初步结果表明,转录因子基因PeDREB2a和HhERF2明显改善了百脉根的抗逆特性,尤其双价转基因百脉根抗逆效果明显。
Lotus corniculatus L. (Birdsfoot), a member of the perennial Leguminosae native to warm regions of Eurasia, is non-bloating for cattle and sheep that have the potential to become a major crop in temperate forage-producing regions of the world. The Lotus has a high nutritive proportion rank first in legume forages. It has a protein content of as high as 17.4% even after seed harvest. It also has low saponin content, palatability and strong regrowth habits advantages. At the same time, the Lotus as a pioneer grass is often used in establishing managed grasslands and artificial sowing. Leo, one of Lotus breeds introduced from Canada, is more tolerant to environmental extremes of cold, but less tolerant to salt and drought that influenced popularization in China. In order to solve the puzzle, we identify two highly resistant genes PeDREB2a and HhERF2 through functional analysis of the four transcriptional factor genes cloning from Populus euphratica and Halimodendron halodendron, respectively. PeDREB2a and HhERF2 are two factors with synogestic effects involved in plant resistance. Based on this fact, a series of plant expression vectors either harboring PeDREB2a or HhERF2 or both were constructed with non-resistance marker gene pmi and transferred into the Lotus genome to expect to improve salt endurance and drought resistance and adding fine varieties of herbage to Animal Husbandry Industry of China. The major work includes:
     1. By genetic recombination technology, the transcription factors, PeDREB2a, PeDREB2b, HhDREB2 and HhERF genes, cloned from Populus euphratica and Halimodendron halodendron, were amplified by PCR. Based on the vector pCAMBIA1302, two plant expression vectors rd29A::PeDREB2a and rd29A:: PeDREB2b were constructed under the controlling of rd29A promoter. (rd29A::HhDREB2 and rd29A::HhERF2 had already constructed by other person and conserved in our laboratory).
     2. The transcription factor genes were transferred into Arabidopsis. Under the selection of Hyg, 20,18, 23 and 27 pure transgenic lines of Arabidopsis were obtained for PeDREB2a, PeDREB2b, HhDREB2 and HhERF2 genes,respectively. These transgenic lines were further evaluated according to their germination rate, moisture content, soluble sugar and MDA of Arabidopsis induced by dehydration and high salt within germinating, seedling stage and leaf growth periods.The results thus obtained suggested that the introduction of these four genes into the Arabidopsis genomes can improve drought and salt resistance of the transgenic Arabidopsis at the different growth stages.
     3. The results further showed that the introduction of PeDREB2 and HhERF2 genes enhanced drought and salt tolerance of transgenic Arabidopsis significantly. Three plant expression vectors pmi-rd29A::PeDREB2a, pmi-rd29A::HhERF2, pmi-PeDREB2a::HhERF were further constructed basing on pCAMBIA1302-PMI, for transformation of the genes into Lotus corniculatus L.
     4. The constructed vectors were tranfered into the legume plant Lotus corniculatus“Leo”via Agrobacterium tumefaciens. PCR of the shoots thus obtained indicated that shoots had been transformed. Southern-blotting of selected regenerated plants further confirmed integration of the target genes into the Lotus genome. 7,12, and 5 transgenic lines of Lotus were obtained transfored by pmi-rd29A::PeDREB2a, pmi-rd29A::HhERF2, pmi-PeDREB2a::HhERF, respectively(Other transformed material detections are pending). Preliminary study of the transgenic regenerated plants under stress conditions showed that the transformed genes improved extreme environment tolerance of transgenic Lotus, especially the plant transformed with pCAMBIA1302-pmi-PeDREB2a::HhERF2.
引文
1.陈鹏,潘晓玲.干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化(简报).植物生理学通讯,2001,37(6):520-522
    2.崔洪志,郭三堆.双价杀虫基因植物表达载体的构建及其在烟草中的表达.农业生物技术学报,1998,1:7-13
    3.杜青林.中国草业可持续发展.北京:中国农业出版社,2006
    4.陈丽萍,何道一.植物抗旱耐盐基因的研究进展.基因组学与应用生物学,2010,29(3):542-549
    5.葛宝宇,林轶,侯和胜. ERF类转录因子的结构与功能.安徽农学通报, 12007, 13 (20):32-35
    6.贺红霞,林春晶,王铭,等.乙肝表面抗原基因表达载体的构建及对百脉根的转化.农业生物技术学报, 2007, 15(1): 115-118
    7.何亚丽,刘友良,陈权,卞爱华.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系.植物生理与分子生物学学报, 2002, 28(2) :89-95
    8.何勇,田志宏.草坪植物遗传转化的研究进展.生物技术通讯, 2003, 14: 539-542
    9.侯向阳.发展草原生态畜牧业是解决草原退化困境的有效途径.中国草地学报,2010,32(4):1-9
    10.黄骏麒,钱思颖,刘桂玲,等.外源海岛棉DNA导致陆地棉性状的变异.遗传学报, 1981, 8(1): 56-62
    11.景蕊莲,胡荣海,昌小平,等.冬小麦不同基因型幼苗形态性状遗传和抗旱性的研究.西北植物学报, 1997,8 (3) : 67-72
    12.籍越,孔德政,杨芳缄,刘辉志.不同品种草坪草抗旱性的初步研究.河南科学,2000,18(4):412-414
    13.雷志栋,胡和平,杨诗秀.关于提高灌水利用率的认识.中国水利,1999,(7):13-14
    14. .李鸿雁,李志勇,师文贵,李兴酉,刘磊. 6种豆科牧草叶片解剖性状与抗旱性关系研究.西北植物学报,2010,30 (10):1989-1994
    15.李青云,葛会波,胡淑明.NaCl胁迫下外源腐胺和钙对草莓幼苗离子吸收的影响.植物营养与肥料学报,2008,14(3):540-545
    16.黎万奎,陈幼竹,周宇,等.肝片吸虫抗原基因转基因苜蓿再生的研究.四川大学学报(自然科学版). 2003, 40(1): 144-147
    17.梁哲,姜三杰,吴燕民,等.三叶草基因工程研究进展.草业学报, 2009, 18(2): 205-211
    18.李志昂.旱地小麦节水高产栽培.栽培技术, 2008(10)
    19.李智元,刘锦春.植物响应干旱的生理机制研究进展.西藏科技,2009,11:70-72
    20.刘根齐,张孔恬.高粱不育系与保持系授粉过程中外源恢复基因的引入及其后代表现.作物学报, 1987, 13(2): 123-127
    21.刘延吉,张珊珊,田晓艳,任大明.盐胁迫对NHC牧草叶片保护酶系统,MDA含量及膜透性的影响.草原与草坪,2008,2:30-33
    22.刘毅,陈同斌,邵雪梅等(翻译).全球环境展望3.中国环境科学出版社,2002
    23.陆定志,傅家瑞,宋松泉.植物衰老及其调控.北京:中国农业出版社,1997
    24.陆静梅,张常钟,张洪芹,杨凤清.单子叶植物耐盐碱的形态解剖特征与生理适应的相关性研究.东北师大学报(自然科学版),1994,2:79-82
    25.马江涛,王宗礼,黄东光,吴燕民.基因工程在牧草培育中的应用.草业学报,2010,19(6):248-262
    26.史胜青,齐力旺,孙晓梅,韩素英,张守攻.植物抗旱相关基因研究进展.生物技术通报,2006(增刊):6-13
    27.孙鏖,易自力,蒋建雄,陈智勇.植物抗旱基因及其在草坪草中的应用.生物技术通报,2007,4:22-26
    28.孙建明,沈益新.水杨酸对匍匐翦股颖耐热性的影响.草原与草坪,2008,6:43-45
    29.唐广立,李传山,陈明利,等.百脉根高频再生体系的建立及兔出血症病毒衣壳蛋白VP60基因的转化.分子植物育种, 2007, 5(4): 593-600
    30.田晓艳,刘延吉,郭迎春,任大明.盐胁迫对NHC牧草I AA、ABA、Ca M及NADKase的动态变化.草业科学,2008,25(11):50-53
    31.王宝琴,王小龙,张永光,等. FMDV vp1基因在豆科牧草百脉根中的转化与表达.中国病毒学, 2005, 20 (5): 526-529
    32.王晨阳.土壤水分胁迫对小麦形态及生理影响的研究.河南农业大学学报,1992,26(1):89-98
    33.王萍,郭继勋.盐碱化草地常见牧草耐盐机理研究.东北师大学报(自然科学版),1998,3:116-119
    34.王素平,郭世荣,李璟,等.盐胁迫对黄瓜幼苗根系生长和水分利用的影响.应用生态学报,2006,17(10):1883-1888
    35.王炜,张永光,潘丽,等.口蹄疫病毒P12A-3C免疫原基因在百脉根中的遗传转化与表达.中国人兽共患病学报, 2007, 23(3): 236-247
    36.王伟青,周珍辉,曹授俊,等.植物基因工程疫苗在畜牧业上的应用与发展前景.畜牧与兽医, 2009, 41(5): 92-94
    37.王宗礼,杨效忠,余大有,孙启忠,吴新宏.我国草原生态环境急需保护和建设.中国畜禽种业, 2005(8):45-46
    38.吴新江,杨特武,何光明.脱落酸(ABA)对白三叶抗旱作用机理的初步研究.湖北畜牧兽医,1998,2:3-5
    39.武维华.植物生理学(第二版).科学出版社,2008
    40.邢更生,周功克,李志孝,崔凯荣.水分胁迫下山黧豆多胺代谢与β-N-草酰-L-α,β-二氨基丙酸积累相关性的研究.植物学报, 2000,42 (10) :1039-1044
    41.辛国荣,董美玲,宋淑明.牧草抗旱性研究:1水分胁迫下几种燕麦品种的一些生理生化变化及其与植物抗旱性关系的研究.草业科学,1996,13(5):50-55
    42.杨顺强,任广鑫,杨改河,冯永忠. 8种美国引进禾本科牧草保护酶活性与抗旱性研究.干旱地区农业研究,2009,27(6):144-148
    43.颜振德,朱崇文,盛家廉.甘薯品种的耐旱性及其鉴定方法的研究.作物学报,1964,3(2):183-194
    44.曾兵,张新全,彭燕,兰英.优良牧草鸭茅的温室抗旱性研究.湖北农业科学,2006,45(1):103-106
    45.张翠丽.西部草原旅游发展研究.青海师范大学学报(自然科学版),2007,2:84-87
    46.张改娜,贾敬芬.豌豆清蛋白1( PA1)基因的克隆及对苜蓿的转化.草业学报, 2009, 18(3): 117-125
    47.张孔恬,刘根齐,孔繁瑞.高粱恢复不育系基因的非配子融合转移及其后代表现.遗传学报, 1982, 9(3): 209-213
    48.张力建,陈乐玫,袁静,等.超声波法直接导入外源基因:高效烟草转化系统的建立.中国农业科技, 1991, 24(2): 83-89
    49.张木青,陈如凯等.作物抗旱分子生理与遗传改良.北京:科学出版社,2005
    50.张义丰,王又丰,刘录祥,侯向阳.中国北方旱地农业研究进展与思考.地理研究,2002,21:305-312
    51.张永彦,徐子勤.多年生黑麦草成熟胚再生体系的建立及基因枪转化[J]. China Biotechnology, 2005, 25 (3): 53-59
    52.张占路,唐益雄,吴燕民,等.百脉根表达H5N1亚型禽流感血凝素的研究.中国农业科学, 2008, 41(1): 303-307
    53.赵桂琴,慕平.苜蓿花叶病毒外壳蛋白基因对红三叶的遗传转化及转基因植株的抗病性分析.西北植物学报, 2004, 24(10): 1850-1855
    54.赵桂琴,慕平, Paul Chu.苜蓿花叶病毒外壳蛋白基因在白三叶中的表达及转基因植株的抗病性分析.农业生物技术学报, 2005, 13(2): 230-234
    55.周光宇,翁坚,龚蓁蓁,等.农业分子育种授粉后外源DNA导入植物的技术.中国农业科技, 1988, 21(3): 1-6
    56.朱培冲,王鸣歧,陆妙康等.动态导入法获得的杂种青菜——甘蓝及其子代.上海农业学报, 1986, 2(3): 17-26
    57.朱维琴,吴良欢,陶勤南.作物根系对干旱胁迫逆境的适应性研究进展.土壤与环境,2002,11(4): 430-433
    58.朱义,谭贵娥,何池全,等.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响.生态学报,2007,20(12):5447-5454
    59. Abogadallah G M and Quick W P. Fast versatile regeneration of Trifolium alexandrinum L.. Plant Cell Tissue and Organ Culture, 2010, 100: 39-48
    60. Akashi R, Kawano T, Hashiguchi M, et al. Super roots in Lotus corniculatus:A unique tissue culture and regeneration system in a legume species. Plant and Soil, 2003, 255: 27-33
    61. Altpeter F, Xu J P, Ahmed S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage- and turf-type cultivars. Molecular Breeding, 2000, 6: 519-528
    62. Avraham T, Badani H, Galili S, et al. Enhanced levels of methionine and cysteine in transgenicalfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionineγ-synthase gene. Plant Biotechnology Journal, 2005, 3: 71-79
    63. Bagga S, Potenza C, Ross J, et al. A transgene for high methionine protein is posttranscriptionally regulated by methionine. In Vitro Cellular and Developmental Biology - Plant, 2005, 41: 731-741
    64. Bajaj S, Ran Y, Phillips J, et al. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Reports, 2006, 25: 651-659
    65. Bajaj Y P S, Sidhu B S, Dubey V K. Regeneration of genetically diverse plants from tissue cultures of forage grass—Panicum sps. Euphytica, 1981, 30: 135-140
    66. Beattie L D, Garrett R G. Adventitious shoot production from immature embryos of white clover. Plant Cell Tissue and Organ Culture, 1995, 42: 67-72
    67. Bettany A J E, Dalton S J, Timms E, et al. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Reports, 2003, 21: 437-444
    68. Borsani O, Diaz P, Agius M F, et al . Water st ress generates an oxidative stress through the induction of specific Cu/ Zn superoxide dismutasein lotus corniculatus leaves.Plant Science, 2001,161: 757-763
    69. Burris J N, Mann D G J, Joyce B L, et al. An Improved Tissue Culture System for Embryogenic Callus Production and Plant Regeneration in Switchgrass (Panicum virgatum L.). Bioenerg Research, 2009, 2: 267-274
    70. Calderini O, Bovone T, Scotti C, et al. Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Reports, 2007, 26: 611-615
    71. Carron T R, Robbins M P, Morris P. Genetic modification of condensed tannin biosynthesis in Lotus corniculatus.1. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in "hairy root" cultures. Theoretical and Applied Genetics, 1994, 87: 1006-1015
    72. Chen L F O, Hwang J Y, Charng Y Y, et al. Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation. Molecular Breeding, 2001, 7: 243-257
    73. Chen X, Yang W Q, Sivamani E, et al. Selective elimination of perennial ryegrass by activation of a pro-herbicide through engineering E. coli argE gene. Molecular Breeding, 2005, 15: 339-347
    74. Chiang, Y.C. and Kiang, Y.T., Genetic Analysis of mannose-6-phosphate isomerase in Soybeans. Genome,1988, 30:808-811
    75. Cho H J, Brotherton J E, Widholm J M. Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation. Plant Cell Reports, 2004, 23: 104-113
    76. Cho M J, Ha C D, Lemaux P G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Reports, 2000, 19: 1084-1089
    77. Choo T M. Plant regeneration in zigzag clover(Trifofium medium L.). Plant Cell Reports, 1988, 7: 246-248
    78. Clough S J., Bent A F. Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998,16(6):753-743
    79. Crossway A, Oakes J V, Irvine J M, et al. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Molecular and General Genetics, 1986, 202: 179-185
    80. Dale P J, Thomas E, Brettell R I S, et al. Embryogenesis from cultured immature inflorescences and nodes of Lolium multiflorum. Plant Cell Tissue and Organ Culture, 1981, 1: 47-55
    81. Dalton S J, Thomas I D. A statistical comparison of various factors on embryogenic proliferation, morphogenesis and regeneration in Lolium temulentum cell suspension colonies. Plant Cell Tissue and Organ Culture, 1992, 30: 15-29
    82. Dong S J, Shew H D, Tredway L P, et al. Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. Transgenic Research, 2008, 17: 47-57
    83. Dus Santos M J, Wigdorovitz A, Trono K, et al. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine, 2002, 20: 1141-1147
    84. Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270(5244):1986–1988
    85. Gao C X, Jiang L, Folling M, et al. Generation of large numbers of transgenic Kentucky bluegrass (Poa pratensis L.) plants following biolistic gene transfer. Plant Cell Reports, 2006, 25: 19-25
    86. Gao C X, Liu J X, Nielsen K K. Agrobacterium-mediated transformation of meadow fescue (Festuca pratensis Huds.). Plant Cell Reports, 2009, 28: 1431-1437
    87. Gao C X, Long D F, Lenk I, et al. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Reports, 2008, 27: 1601-1609
    88. Ge Y X, Norton T, Wang Z Y. Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Reports, 2006, 25: 792-798
    89. Guo Y D, Hisano H, Shimamoto Y, et al. Transformation of androgenic-derived Festulolium plants (Lolium perenne L.×Festuca pratensis Huds.) by Agrobacterium tumefaciens. Plant Cell Tiss and Organ Culture, 2009, 96: 219-227
    90. Hand S C, Somero G M. Urea and methylamine effects on rabbit muscle phosphofructokinase. J Biochem Biophys,1982,257:734- 741
    91. Heszky L E, Binh D Q, Kiss E, et al. Increase of green plant regeneration efficiency by callus selection in Puccinellia limosa (Schur.) Holmbg.. Plant Cell Reports, 1989, 8: 174-177
    92. Horn M E, Conger B V, Harms C T. Plant regeneration from protoplasts of embryogenic suspension cultures of orchardgrass (Dactylis glomerata L.). Plant Celt Reports, 1988, 7: 371-374
    93. Incharoensakdi A, Takabe T, Akazawa T. Effect of Betaine on Enzyme Activity and Subunit Interaction of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from Aphanothece halophytica. Plant Physiol,1986 (81):1044-1049
    94. Jiang H F, Fry J. Drought responses of perennial ryegrass treated with plant growth regulators. Hortscience.1998,33:270-273
    95. Jin T C, Chang Q, Li W F, et al. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue and Organ Culture, 2010, 100: 219-227
    96. Jongedijk E, Tigelaar H, Roekel J S C, et al. Synergistic activity of chitinases andβ-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 1995, 85: 173-l80
    97. Kaeppler H F, Gu W N, Somers D A, et al. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Reports, 1990, 9: 415-418
    98. Kalla R, Ludlow E, Lepage C, et al. Development of clovers with immunity to white clover mosaic virus. Abstracts 2nd International Symposium Molecular Breeding of Forage Crops. Victoria: Lorne and Hamilton, 2000: 106
    99. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shi-nozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17: 287–291
    100. Kazuko Yamaguchi-Shinozaki and Kazuo Shinozaki. Transcriptional Regulatory Networks in Cellular Responses and Tolerance to Dehydration and Cold Stresses. Annu. Rev. Plant Biol,2006,57:781-803
    101. Ke H Q, Lee CW. Plant regeneration in Kentucky bluegrass (Poa pratensis L.) via coleoptile tissue cultures. Plant Cell Reports, 1996, 15: 882- 887
    102. Klein T M, Wolf E D, Wu R, Sanford J C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, 1987, 327: 70-73
    103. Kuthleen D H, Willy J B, Greef D. Eegineering of Herbicide-resistant Alfalfa and Evaluation Under Field Conditions.Crop Science, 1990, 30: 866-871
    104. Li D X, Sun Q, Huang M, et al. Agrobacterium–mediated genetic transformation of Elymus breviaristatus with Pseudomonas pseudoalcaligenes insecticidal protein gene. Plant Cell Tissue and Organ Culture, 2007, 89: 159-168
    105. Li J J, Wu Y M, Wang T, et al. In vitro direct organogenesis and regeneration of Medicago sativa. Biologia Plantarum, 2009, 53 (2): 325-328
    106. Li Q, Robson P R H, Bettany A J E, et al. Modification of senescence in ryegrass transformedwith IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Reports, 2004, 22: 816-821
    107. Li X L, Yu X M, Wang N N, et al. Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link). Plant Cell Tissue and Organ Culture, 2007, 90: 153-168
    108. Liu G S, Liu J S, Qi D M, et al. Factors affecting plant regeneration from tissue cultures of Chinese leymus(Leymus chinensis). Plant Cell Tissue and Organ Culture, 2004, 76: 175-178
    109. Maas H M, Jong E R, Rueb S, et al. Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.). Plant Molecular Biology, 1994, 24: 401-405
    110. MacLean N L, Nowak J. Plant regeneration from hypocotyl and petiole callus of Trifolium pratense L.. Plant Cell Reports, 1989, 8: 395- 398
    111. Marousky F J, West S H. Somatic embryogenesis and plant regeneration from cultured mature caryopses of bahiagrass (Paspalum notatum Flugge). Plant Cell Tissue and Organ Culture, 1990, 20: 125-129
    112. Masoud S A, Zhu Q, Lamb C, et al. Constitutive expression of an inducibleβ-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp medicaginis, but does not reduce disease severity of chitin-containing fungi. Transgenic Research, 1996, 5: 313-323
    113. Mckersie B D, Murnaghan J, Jones K S, et al. Iron-Superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance . Plant Physiology, 2000, 122: 1427-1437
    114. McLean N L, Nowak J. Inheritance of somatic embryogenesis in red clover (Trifolium pratense L.). Theoretical and Applied Genetics, 1998, 97: 557-562
    115. Molinari L, Busti A, Calderini O, et al. Plant regeneration from callus of apomictic and sexual lines of Paspalum simplex and RFLP analysis of regenerated plants. Plant Cell Reports, 2003, 21: 1040-1046
    116. Morris P, Robbins M P. Manipulating condensed tannins in forage legumes. In :McKersie B D, Brown D C W. Biotechnology and the Improvement of Forage Legumes. Wallingford, CT: CAB International, 1997: 147-173
    117. Nagarajan P, McKenzie J S, Walton P D. Embryogenesis and plant regeneration of Medicago spp. in tissue culture. Plant Cell Reports, 1986, 5: 77-80
    118. Nakamura T, Ishikawa M. Transformation of suspension cultures of bromegrass (Bromus inermis) by Agrobacterium tumefaciens. Plant Cell Tissue and Organ Culture, 2006, 84: 293-299
    119. Nayak P, Sen S K. Plant regeneration through somatic embryogenesis from suspension culture-derived protoplasts of Paspalum scrobiculatum L.. Plant Cell Reports, 1991, 10: 362-365
    120. Nielsen K A, Larsen E, Knudsen E. Regeneration of protoplast-derived green plants of Kentucky blue grass (Poa pratensis L.). Plant Cell Reports, 1993, 12: 537-540
    121. Nikolopoulos D and Manetas Y.Compatible solutes and in vitro stability of Salsola soda enzymes: Proline incompatibility. Phytochemistry,1991,30 (2): 411-413
    122. Parker R, Flowers T J, Moore A L, et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina.J.Exp.Bot.,2006,57:1109-1118
    123. Petrovska N, Wu X L, Donato R, et al. Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens. Molecular Breeding, 2004, 14: 489-501
    124. Quecini V M, Alves A C, Oliveira C A, et al. Microparticle bombardment of Stylosanthes guianensis: transformation parameters and expression of a methionine-rich 2S albumin gene. Plant Cell Tissue Organ Culture, 2006, 87: 167-179
    125. Richards H A, Rudas V A, Sun H, et al. Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Reports, 2001, 20: 48-54
    126. Robbins M P, Bavage A D, Strudwicke C, et al. Genetic Manipulation of Condensed Tannins in Higher Plants. Plant Physiol, 1998, 116: 1133-1144
    127. Samac D A. Strain specificity in transformation of alfalfa by Agrobacterium tumefaciens. Plant Cell Tissue and Organ Culture, 1995, 43: 271-277
    128. Shatters R. G., Wheeler R., West S. H.. Ethephon induced changes in vegetative growth of 'Tifton 85' bermudagrass.Crop Sci,1998,38:97-103
    129. Shu Q Y, Liu G S, Xu S X, et al. Genetic transformation of Leymus chinensis with the PAT gene through microprojectile bombardment to improve resistance to the herbicide Basta. Plant Cell Reports, 2005, 24: 36-44
    130. Smith R L, Grando M F, Li Y Y, et al. Transformation of bahiagrass (Paspalum notatum Flugge). Plant Cell Reports, 2002, 20: 1017-1021
    131. Smucker A J M, Aiken R M. Dynamic root response to water deficits.Soil Science, 1992, 154(4): 281-289
    132. Strizhov N, Keller M, J Mathur, et al. A Synthetic CryIC gene,encoding a Bacillus thuringiensisδ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proceedings of the National Academy of Science of USA, 1996, 93: 15012-15017
    133. Takahashi W, Fujimori M, Miura Y, et al. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Reports, 2005, 23: 811-818
    134. Thomas J C, Wasmann C C, Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plant Cell Reports, 1994, 14: 31-36
    135. T?pfer R, Gronenborn B, Schell J, et al. Uptake and Transient Expression of Chimeric Genes in Seed-Derived Embryos. The Plant Cell, 1989, 1(1): 133-139
    136. Toyama K, Bae C H, Kang J G, et al. Production of Herbicide-tolerant Zoysiagrass by Agrobacterium-mediated Transformation. Molecular Cells, 2003, 16(1): 19-27
    137. Tranel P J, Wassom J J, Jeschke M R, et al. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species. Theoretical and Applied Genetics, 2002, 105: 674-679
    138. Valk P, Ruis F, Tettelaar-Schrier A M, Velde C M. Optimizing plant regeneration from seed-derived callus cultures of Kentucky bluegrass. The effect of benzyladenine. Plant Cell Tissue and Organ Culture, 1995, 40: 101-103
    139. Valk P, Zaal M A C M, Creemers-Molenaar J. Somatic embryogenesis and plant regeneration in inflorescence and seed derived callus cultures of Poa pratensis L. (Kentucky bluegrass). Plant Cell Reports, 1989, 7: 644-647
    140. Vikrant, Rashid A. Somatic embryogenesis from immature and mature embryos of a minormillet Paspalum scrobiculatum L.. Plant Cell Tissue and Organ Culture, 2002, 69: 71-77
    141. Vincent D, Ergül A, Bohlman MC, et al. Proteomic analysis reveals differences between Vitis vinifera L.cv.Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. Journal of Experimental Botany,2007,58(7):1873-1892
    142. Voisey C R, Dudas B, Biggs R, et al. Transgenic pest and disease resistant white clover plants[A]. Spangenberg G. Molecular breeding of forage crops. Kluwer Academic Publishers, 2000, 11: 19-24
    143. Wandelt C I, Khan M R I, Craig S, et al. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. The Plant Journal, 1992,2(2):181-192
    144. Wang L J, Li X F, Chen S Y, et al. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnology Letters, 2009, 31: 313-319
    145. Wang Z, Lehmann D, Bell J, et al. Development of an efficient plant regeneration system for Russian wildrye (Psathyrostachys juncea). Plant Cell Reports, 2002, 20: 797-801
    146. Wang Z Y, Bell J, Lehmann D. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells. Plant Cell Reports, 2004, 22: 903-909
    147. Wang Z Y, Ge Y X. Recent Advances in Genetic Transformation of Forage and Turf Grasses . In Vitro Cellular & Developmental Biology-Plant, 2006, 42: 1-18
    148. Wang Z Y, Scott M, Bell J, et al. Field performance of transgenic tall fescue (Festuca arundinacea Schreb.) plants and their progenies. Theoretical and Applied Genetics, 2003, 107: 406-412
    149. Wang Z Y, Ye X D, Nagel J, et al. Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants. Plant Cell Reports, 2001, 20: 213-219
    150. Weber G, Monajembashi S, Greulich K O, et al. Microperforation of Plant Tissue with a UV Laser Microbeam and Injection of DNA into Cells. Naturwissenschaften, 1988, 75: 35- 36
    151. Weeks J T, Ye J S, Rommens C M. Development of an in planta method for transformation ofalfalfa (Medicago sativa). Transgenic Research, 2008, 17: 587-597
    152. Wenck A, Coako M, Kanevski I, et al. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol, 1997, 34: 913-922
    153. Wigdorovitz A, Carrillo C, Dus Santos M J, et al. Induction of a Protective Antibody Response to Foot and Mouth Disease Virus in Mice Following Oral or Parenteral Immunization with Alfalfa Transgenic Plants Expressing the Viral Structural Protein VP1. Virology, 1999, 255: 347-353
    154. Wu Y Y, Chen Q J, Chen M, et al. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+antiporter gene. Plant Science, 2005, 169: 65-73
    155. Ye X, Wang Z Y, Wu X, et al. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Reports, 1997, 16: 379-384
    156. Zhang Gaiyun, Chen Ming, Li Liancheng, Xu Zhaoshi, Chen Xueping, Guo Jiaming and Ma Youzhi. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt,drought, and diseases in transgenic tobacco.Journal of Experimental Botany,2009, 60(13):3781-3796
    157. Zhao J S, Ren W, Zhi D Y, et al. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Reports, 2007, 26: 1521-1528
    158. Zhou Mei-Liang, Ma Jiang-Tao, Pang Jun-Feng , Zhang Zhan-Lu , Tang Yi-Xiong and Wu Yan-Min. Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. African Journal of Biotechnology,2010,9(54):9255-9279
    159. Ziauddin A, Lee R W H, Lo R, et al. Transformation of alfalfa with a bacterial fusion gene, Mannheimia haemolytica A1 leukotoxin50-gfp: Response with Agrobacterium tumefaciens strains LBA4404 and C58. Plant Cell Tissue and Organ Culture, 2004, 79: 271-278
    160. Zwierzykowski Z, Zwierzykowska E, Slusarkiewicz-Jarzina A, et al. Regeneration of anther-derived plants from pentaploid hybrids of Festuca arundinacea×Lolium multi?orum. Euphytica, 1999, 105: 191-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700