SQUID左手材料特性及各向异性左手材料性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2000年Smith首次实现介电常数和磁导率同时为负的左手材料以来,这一领域引起了人们的强烈关注。左手材料是一种新型的人造材料,人们已经发现它具有一些新的物理效用及奇特的性质。因此,研究左手材料的性质以及如何实现左手材料在理论和实践上具有重要意义。
     本论文的中心是SQUID左手材料的构建以及具有特定介电常数和磁导率形式的各向异性材料性质的研究,具体集中在以下几个方面。
     首先提出了基于SQUID和金属导线构建具有量子特性的左手材料的设想,并系统研究了在微波探测场和微波耦合场作用下这种左手材料的特性,重点考察了微波耦合场通过量子相干效应对这种左手材料的磁导率的调控。
     其次研究了SQUID阵列在另一种工作方式——直流偏置磁场作用下对小信号微波探测场的响应。我们发现磁导率及其共振频率均可以通过直流偏置磁场进行调节,并且在一定条件下出现双稳特性。这使实现极低频的负磁导率以及通过磁场脉冲实现磁导率在正负之间快速跳变成为可能。
     然后求解了具有一定色散关系的两半无穷左手材料界面上的表面等离子体激元模式,讨论了各向异性左手材料界面上的表面等离子体激元的新特性,并探讨各向异性左手材料对金属中表面等离子体激元的衰减的抑制的可能性。我们还提出了一种“衰逝波放大型”模式,并讨论了实验验证这种模式的可能性。
     最后研究了普通单轴晶体内表面的反射现象,提出了光线负反射的概念,讨论了实现负反射的条件。系统分析了电磁波在各向异性材料界面上的行为。得到了波法线的入射角和反射角之间、光线入射角和反射角之间的简单关系以及反射透射系数。我们通过分析发现,对于ε⊥、εz异号的左手材料,通过选择合适的主轴倾角,其反射折射行为的“怪异”会更明显。
Since the left-handed materials (LHM) having both negative permeability and negative permittivity were first realized by Smith in 2000, this area has aroused strong concern. The LHM is a new kind of artificial materials, which has some new physical effects and peculiar properties. Therefore, studying how to construct LHM and about the properties of the LHM, is of great significance both in theory and application.
     The central aim of the thesis is the investigation of design the SQUID LHM and studying anisotropic materials with specific permittivity and permittivity. It focuses on the following areas:
     First, a new design of LHM based on SQUIDs and metal wires is proposed. And the quantum properties induced by a microwave probe field and a microwave coupling field in the LHM is systematicly studied, mainly focusing on controlling the permeability through the coupling field because of quantum coherence effects .
     Second, the response on the weak signal microwave probe field of the SQUID array working in another way– under DC bias magnetic field is studied. We find that the permeability and the resonance frequency can be adjusted by the DC bias magnetic field, and the bistable characteristic arises under certain conditions. This makes achieving negative permeability under extremely low frequency as well as the permeability switching between positive and negative value rapidly through a magnetic field pulse into possible.
     And then, we analyse the surface plasmon polaritons (SPPs) on the surface between two semi-infinite LHM having dispersion. Then we discuss the new features of the SPPs on the anisotropic LHM, and explore the possibility of inhibiting the decay. We also propose a“amplification of the decay wave”mode and discuss the possibility of the experimental examination for such a mode.
     Finally, the concept of the negative reflection (that is, the incident and reflected light lie on the same side of the normal) is proposed based on studying the negative reflection phenomenon on the inner surface of the uniaxial crystal. Conditions for achieving negative reflection in common uniaxial crystals is discussed too. After analysing the behavior of the electromagnetic waves in anisotropic materials, the simple relationship between the incident and the reflected angle of the wave vector and the incidence and the reflection angel of the ray is constructed. Also the reflection and transmission coefficients of the electromagnetic field at the interface is got. Our analysis found that for LHM having negativeε⊥and positiveεzor positiveε⊥and negativeεz , by choosing a suitable axis angle, its reflection and refraction behaves will be even more "strange".
引文
[1] V.G.Veselago. The electrodynamics of substances with simultaneously negative ofεandμ. Sov.Phys.Usp., 1968, 10:509-514.
    [2] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett., 2000, 84:4184-4187.
    [3] The News and Editorial Staffs.‘Breakthrough of the Year’. Science,2003, 302: 2039-2046.
    [4] J.B.Pendry, A.J.Holden, D.J.Robbins, and W.J.Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory & Techniques,1999, 47: 2075-2084.
    [5] J.B.Pendry, A.J.Holden, W.J.Stewart, and I.Youngs. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev. Lett., 1996, 76: 4773- 4776.
    [6] R.A.Shelby, D.R.Smith and S.Schultz. Experimental Verification of a Negative Index of Refraction. Science, 2001, 292: 77-79.
    [7] R.A.Shelby, D.R.Smith, S.C.Nemat-Nasser, and S.Schultz. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Applied Physics Letters, 2001,78(4):489-491.
    [8] Pendry J B. Negative Refraction Makes a Perfect Lens. Phys.Rev.Lett., 2000,85: 3966-3969.
    [9] I.V.Lindell, S.A.Tretyakov, K.I.Nikoskinen, and S.Ilvonen. BW Media-Media with negative parameters, capable of supporting backward waves. Microwave Opt.Tech.Lett.2001,31(2):129-133.
    [10] Richard W. Ziolkowski, Ehud Heyman. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E, 2001, 64:056625-056639.
    [11] Ziolkowski, Richard. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Optics Express, 2003, 11:662-681.
    [12] M.W.McCall, A.Lakhtakia, and W.S.Weiglhofer. The negative index of refraction demystified. Eur.J.Phys., 2002, 23: 353-359.
    [13] A.Lakhtakia. Reversed circular dichroism of isotropic chiral mediums with negative permeability and permittivity. Microwave Opt.Technol.Lett., 2002,33:96-97.
    [14] I.V.Lindell. Image theory for VED above a half-space of Veselago medium. Microwave Opt.Technol.Lett., 2004,44:185-190.
    [15]冉立新,章献民,陈抗生,T.M.Grzegorezyk, J.A.Kong.异向介质及其实验验证.科学通报,2003, 6:1271-1273.
    [16]冉立新,陈红胜,皇甫江涛,章献民,陈抗生,孔金瓯.异向介质研究进展.微波学报, 2004, 20:89-95.
    [17] P. M. Valanju, R. M. Walser, and A. P. Valanju. Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous. Phys. Rev. Lett., 2002, 88:187401-187404.
    [18] Garcia and M.Nieto-Vesperinas. Is there an experimental verification of a negative index of refraction yet? Optics Letters, 2002, 27:855-887.
    [19] J. Pacheco, Jr., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong. Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media. Phys. Rev. Lett., 2002, 89:257401.
    [20] J. B. Pendry, D.R.Smith. Comment on“wave refraction in negative-index media”: Always positive and very inhomogeneous”. Phys.Rev.Lett., 2003, 90:029303.
    [21] M. Sanz, A. C. Papageorgopoulos, W. F. Egelhoff, Jr., M. Nieto-Vesperinas, and N. García1.Transmission measurements in wedge-shaped absorbing samples: An experiment for observing negative refraction. Phys. Rev. E, 2003, 67: 067601-067604.
    [22] S. Foteinopoulou and C. M. Soukoulis. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys. Rev. B, 2003, 67:235107-235111.
    [23] Venema, Liesbeth. A lens less ordinary. Nature, 2001, 420:119-121.
    [24] Patanjali V. Parimi, Wentao T. Lu, Plarenta Vodo, Srinivas Sridhar. Photonic crystals Imaging by flat lens using negative refraction. Nature, 2003, 426: 404.
    [25] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett., 2004,92: 127401
    [26] Kong, Jin Au; Wu, Bae-Ian; Zhang, Yan. Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability. Applied Physics Letters, 2002,80: 2084-2086.
    [27] P.Gay-Balmaz and O.J.F.Martin. Efficient isotropic magnetic resonators. Appl.Phys.Lett., 81:939-941,2002.
    [28] Albrecht, M.Strunk, H. P.Weyher, J. L.Grzegory, I.Porowski, S.Wosinski. Carrier recombination at single dislocations in GaN measured by cathodoluminescence in a transmission electron microscope. Journal of Applied Physics, 2002, 92:2929-2034.
    [29] S.O.Brien,J.B.Pendry. Magnetic activity at infrared frequencies in structured metallic photonic crystals. J.Phys:Condensed Matter., 2002,14:6383-6394.
    [30] H.Chen,L.Ran,J.Huangfu,X.Zhang,K.Chen,T.M.GZregoreZyk,J.A.Kong. Left-handed material only composed of S-shape resonator. Physical Review E, 2004,70:057605.
    [31] H.Chen, L.Ran, J.Huangfu, et al. Metamaterial exhibiting left-handed properties over multiple frequency bands.J.Appl.Phys.,2004, 96:5338.
    [32] Ran L, Huangfu J, Chen H, Li Y, Zhang X, Chen K, Kong J A, Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss. Phys.Rev.B, 2004 ,70 :073102
    [33] Zhou J F, Koschny T, Zhang L, Tuttle G, Soukoulis C M. Experimental demonstration of negative index of refraction. Appl.Phys.Lett., 2006,88:221103.
    [34]赵乾,赵晓鹏,康雷,等.一维负磁导率材料中的缺陷效应.物理学报.2004,53:2206.
    [35]康雷,赵乾,赵晓鹏.二维磁导率材料中的缺陷效应.物理学,2004,53:3379.
    [36] Zhao X P, Zhao Q, Zhang FL,et al. Stopband Phenomena in the Passband of Left-Handed Metamaterials.Chin.Phys.Lett.,2006,23:99
    [37] Zhang F L, Zhao Q,Liu Y H,et al. Behaviour of Hexagon Split Ring Resonators and Left-Handed Metamaterials,Chin.Phys.Lett.,2004,21:1330
    [38]郑晴,赵晓鹏,付全红,等.左手材料的反射特性与负折射率行为.物理学报,2005, 54:5683
    [39] Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis CM. Magnetic Response of Metamaterials at 100 Terahertz. Science, 2004, 306:1351.
    [40] Wei Wu, Zhaoning Yu, Shih-Yuan Wang, et al. Midinfrared metamaterials fabricated by nanoimprint lithography. APPLIED PHYSICS LETTERS,2007,90:063107
    [41] Zhang S,Fan W J,Malloy K J,Brueck S R J, Near-infrared double negative metamaterials, Optics Express 2005,13 :4922-4930
    [42] Enkrich C,Wegener M,Linden S et al. Magnetic Metamaterials at Telecommunication and Visible Frequencies[J].Phys.Rev.Lett.,2005,95: 203901
    [43] Grigorenko A N,Geim A K,Gleeson H F et al. Nanofabricated media with negative permeability at visible frequencies[J].Nature,2005,438:335-338.
    [44] George V.Eleftheriades, Omar siddique, Ashwin K.Iyer. Transmission Line Models for Negative refractive index media and associated Implementations without excess resonators.Ieee Microwave and wireless components letters,2003, 13:51-53.
    [45] Jingsong Wei, and Mufei Xiao, Negative refraction via domain wall resonances in a homogeneous mixture of ferro- and nonmagnetic substances. Journal of Physics: Condensed Matter, 2007, 19: 072203.
    [46] Y.Zhou,B.Gu,F.Wang. Ferromagnetic wire lattice with a tunable negative index of refraction for microwaves using an external magnetic field. EUROPHYSICS LETTERS, 2006, 75:737.
    [47] S. T. Chui and Liangbin Hu. Theoretical investigation on the possibility of preparing left-handed materialsin metallic magnetic granular composites. PHYSICAL REVIEW B, 2002, 65:144407.
    [48] R.X. Wu, Xiaokai Zhang, Z.F. Lin, S.T. Chui, John Q. Xiao. Possible existence of left-handed materials in metallic magnetic thin films. Journal of Magnetism and Magnetic Materials, 2004,271: 180–183.
    [49] SHEN Jian-qi , RUAN Zhi-chao , HE Sai-ling,How to realize a negative refractive index material at the atomic level in an optical frequency range?. Journal of Zhejiang University SCIENCE,2004 5:1322-1326
    [50] Michael Ricci, Nathan Orloff, and Steven M. Anlage,Superconducting metamaterials. APPLIED PHYSICS LETTERS,2005 ,87:034102.
    [51] C.Du, H.Chen and S.Li. Quantum left-handed metamaterial from superconducting quantum-interference devices. Phys. Rev.B, 2006,74:113105.
    [52] Pendry J B. Negative Refraction Makes a Perfect Lens. Phys.Rev.Lett., 2000,85:3966-3969
    [53] Z.M.Zhang and C.J.Fu. Unusual photon tunneling in the presence of a layer with a negative refractive index. APPLIED PHYSICS LETTERS,2002, 80: 1097-1100.
    [54]杨立功,顾培夫,黄弼勤,王建浦.光波在左右手系材料界面处的传输特性.光子学报,2003,32:1225-1227.
    [55] N.Garcia, M.Nieto-Vesperinas. Is there an experimental verification of a negative index of refraction yet?. Optics Letters, 2002,27: 885.
    [56] G.W.Hooft, Comment on“Negative Refraction Makes a Perfect Lens”. Phys. Rev. Lett. ,2001 87: 249701.
    [57] J. B. Pendry, Nieto-Vesperinas and Garcia .Reply: .Phys. Rev. Lett., 2003,91: 099701.
    [58] John Pendry, Pendry Replies: Phys. Rev. Lett., 2001,87: 249702.
    [59] John Pendry, Pendry Replies: Phys. Rev. Lett., 2001, 87: 249704.
    [60] J. M. Williams. Some Problems with Negative Refraction. Phys. Rev. Lett. , 2001,87:249703.
    [61] Zhen Ye. Optical transmission and reflection of perfect lenses by left handed materials. PHYSICAL REVIEW B, 2003,67: 193106.
    [62] L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong. Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss. PHYSICAL REVIEW B, 2004,70: 073102.
    [63] X. S. Rao, C. K. Ong. Subwavelength imaging by a left-handed material superlens. PHYSICAL REVIEW E, 2003, 68: 067601.
    [64] Anthony Grbic and George V.Eleftheriades. Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens. PHYSICAL REVIEW LETTERS, 2004,92: 117403.
    [65] Feise M W, Bevelacqua P J, Schneider J B. Effects of surface waves on the behavior ofperfect lenses[J].Phys. Rev. B,2002,66(3):035113-035117.
    [66] Smith D R, Schurig D, Rosenbluth M, et al. Limitations on subdiffraction imaging with a negative refractive index slab[J].Appl. Phys. Lett.,2003,82(2):1506-1508.
    [67] Ramakrishna S A, Martin O J F. Resolving the wave vector in negative refractive index media[J].Optics Letters,2005,30(19):2626-2638.
    [68] Rao X S, Ong C N. Amplification of evanescent waves in a lossy left-handed material slab[J].Phys Rev B,2003,68(5):113103(1)-113103(6).
    [69] Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes and negative refraction in metal nanowire composites[J].Optics Express,2003,11(7):735-745.
    [70] Lingbin Hu and S.T.Chui. Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials. Phys.Rev.B, 2002, 66:085108.
    [71] D. R. Smith and D. Schurig, Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors, Phys. Rev. Lett., 2003 90:077405
    [72] Nicholas Fang, Zhaowei Liu, Ta-Jen Yen, and Xiang Zhang. Regenerating evanescent waves from a silver superlens. OPTICS EXPRESS,2003 11: 682-687
    [73] N.Fang, Z.Liu, T.Yen, X.Zhang. Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation. Appl. Phys. A 2005,80: 1315–1325
    [74] Nicholas Fang, Hyesog Lee, Cheng Sun, Xiang Zhang. Sub–Diffraction-Limited Optical Imaging with a Silver Superlens. SCIENCE,2005, 308: 534-537
    [75] Ruppin R. Surface polaritons of a left-handed medium[J]. Physics Letters A, 2000, 277(3):61–64.
    [76] Ruppin R. Surface polaritons of a left-handed material slab[J]. Journal of Phys:Condensed Matter, 2001,13:1811–1819.
    [77]顾本源.表面等离子体亚波长光学原理和新颖效应.物理, 2007, 36:280.
    [78] Yong Zhang, B. Fluegel, and A. Mascarenhas. Total Negative Refraction in Real Crystals for Ballistic Electrons and Light[J]. Phys.Rev.Lett., 2003, 91:157404-157407.
    [79] A.Grbic, and G.V.Eleftheriades. Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J.Appl.Phys., 2002, 92(10):5930-5935.
    [80] G.V.Eleftheriades, A.K.Iyer and P.C.Kremer. Planar negative refractive index media using periodically L-C loaded transmission lines. Ieee Trans.Microwave Theory Tech., 2002, 50(12): 2702-2712
    [81] P.V.Parimi,W.T.Lu,P.Vodo,et al. Photonic crystals: Imaging by flat lens using negative refraction. Nature, 2003, 426:404.
    [82] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar. NegativeRefraction and Left-Handed Electromagnetism in Microwave Photonic Crystals. Phys. Rev. Lett., 2004, 92:127401.
    [83] M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B, 2000, 62: 10696– 10705.
    [84] Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos. All-angle negative refraction without negative effective index. Phys. Rev. B, 2002, 65: 201104.
    [85] Gennady Shvets. Photonic approach to making a material with a negative index of refraction. Phys. Rev. B, 2003, 67: 035109
    [86] Hu Wei, Luo Hai-Lu and Cao Jing-Xiao. Anomalous Positive Refraction in an Anisotropic Left-Handed Medium. Chinese Phys. Lett., 2005, 22(8): 2069-2072
    [87] D. R. Smith and D. Schurig. Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors. Phys. Rev. Lett. 2003, 90: 077405-077408
    [88]姜永远,张永强,时红艳,侯春风,孙秀冬.单轴各向异性左手介质表面的Goos-Hanchen位移.物理学报,2007,56:798.
    [89] Shadrivov I V, Sukhorukov A A, Kivshar Y S. Complete Band Gaps in One-Dimensional Left-Handed Periodic Structures. Phys.Rev.Lett., 2005, 95 :193903.
    [90] Li J, Zhou L, Chan C T, Sheng P. Photonic Band Gap from a Stack of Positive and Negative Index Materials. Phys.Rev.Lett., 2003, 90: 083901.
    [91] Xu K Y, Zheng X G, Li C L, She W L. Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index. Phys.Rev. E, 2005, 71: 066604.
    [92] Wu L, He S L, Shen L F. Band structure for a one-dimensional photonic crystal containing left-handed materials[J]. Phys Rev B, 2003, 67(11):235103(1)-235103(6).
    [93] Chen Y H, Liang G Q, Dong J W et al. Derivtion and characterization of dispersion of defect modes in photonic band gap from stacksof positive and negative index material[J]. Phys.Lett.A, 2006,351(6):446-451.
    [94] Chen Y H, Dong J W, Wang H Z. Conditions of near-zero dispersion of defect modes in one-dimensional photonic crystal containing negative-index materials[J]. J.Opt.Soc.Am.B,2006,23(4):776-781.
    [95] Ho Trung Dung, Stefan Yoshi Buhmann, Ludwig Knoll, and Dirk-Gunnar Welsch. Electromagnetic-field quantization and spontaneous decay in left-handed media. Phys. Rev. A,2003, 68:043816.
    [96] Jiang HT, ChenH, Li HQ, ZhangYW, Zhu SY. Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials. J.Appl.Phys., 2005,98: 013101.
    [97] JiangHT, Chen H, Zhu S Y. Localized gap-edge fields of one-dimensional photonic crystals with an -negative and aμ-negative defect. Phys.Rev.E, 2006, 73: 046601.
    [98] Wang L G, ChenH, Zhu S Y. Omnidirectional Gap and Defect Mode of One-dimensional Photonic Crystals with Single-negative Materials[J]. Phys.Rev.B, 2004, 70:245102.
    [99] JiangH T,ChenH,LiH Q, etal. Properties of One-dimensional Photonic Crystals Containing Single-negative Materials[J]. Phys.Rev.E, 2004, 69:066607.
    [100]尹承平,刘念华.两类单负材料组成的一维光子晶体的光学特性研究[J].量子光学学报, 2004, 10(4): 169-172.
    [101] Li J, Zhao D G, Liu Z Y. Zero-n photonic band gap in a quasiperiodic stacking of positive and negative refractive index materials[J]. Phys.Lett.A, 2004,332:461-468.
    [102] Peter W. Milonni, G. Jordan Maclay. Quantized-field description of light in negative-index media. Optics Communications, 2003,228: 161–165.
    [103] J.Kastel and M.Fleischhauer. Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction. Phys. Rev. A, 2005,71:011804(R).
    [104] Jing-ping Xu,Ya-ping Yang,Hong Chen,and Shi-Yao Zhu. Spontaneous decay process of a two-level atom embedded in a one-dimensional structure containing left-handed material. Phys. Rev. A,2007,76:063813.
    [105] Jing-Ping Xu,Nian-Hua Liu,and Shi-Yao Zhu. Spontaneous emission field of a two-level atom embedded in one-dimensional left-handed- and right-handed-material photonic crystals. Phys. Rev. E, 2006,73:016604.
    [106] D.R.Smith, N.Kroll. Negative refractive index in left-handed materials. Phys.Rev.Lett., 2000,85:2933.
    [107]李继军,吴耀德,宋明玉.表面等离子体激元基本特征研究.长江大学学报(自然版)理工卷,2007,4:46.
    [108]陈红胜.异向介质等效电路理论及实验的研究[博士学位论文].浙江杭州:浙江大学国际电磁科学院浙江大学分院, 2005.
    [109] H.Salehi, A.H.Majedi, R.R.Mansour. Analysis and design of Superconducting left-handed transmission lines. IEEE transactions on applied superconductivity,2005,15:996.
    [110] ZHENGZHENG ZHANG, QIANG LAN,JIE ZHANG and JIANYING ZHOU. Producing negative permittivity via quantum coherence and local field effect in dense media. Journal of Modern Optics,2006, 53: 2225–2232
    [111]章立源,张金龙,崔广霁.超导物理.北京:电子工业出版社,1987.
    [112]毛广丰,于扬.基于约瑟夫森器件的超导量子比特.物理学进展,2007,26(1):36-43.
    [113] M.O.Scully, M.S.Zubairy. Quantum Optics.北京:世界图书出版公司北京公司,2000:220-247.
    [114] Hau L V,Harris S E, Dutton Z et al. Light speed reduction to 17metres per second in an ultracold atomic gas. Nature 1999,397:594-598
    [115] E.Paspalakis, N.J.Kylstra, and P.L.Knight. Transparency near a photonic band edge. Physical Review A, 1999,60:R33-R36.
    [116] E.Paspalakis and N.J.Kylstra. Coherent manipulation of superconducting quantum interference devices with adiabatic passage. Journal of Modern Optics,2004,51:1679- 1689.
    [117] N.A.Zafiris, and E.Paspalakis. Influence of the asymmetry of the potential on the dynamics of a two-level superconducting quantum interference device qubit. Phys.Rev.A 2005,72: 014303-014306.
    [118] A.A.Zharov,I.V.Shadrivov, and Y.S.Kivshar. Nonlinear Properties of Left-Handed Metamaterials. Phys.Rev.Lett,2003, 91,037401-037404.
    [119] Z.Zhou S.I.Chu, and S.Han. Quantum computing with superconducting devices: a three-level SQUID qubit. Phys.Rev.B, 2002, 66 :054527-054532.
    [120] K. V. R. M. Murali, Z. Dutton, W. D. Oliver, D. S. Crankshaw, and T. P. Orlando. Probing Decoherence with Electromagnetically Induced Transparency in Superconductive Quantum Circuits. Phys. Rev. Lett. 2004, 93: 087003-087006.
    [121] Y. N. Ovchinnikov, P. Silvestrini, V. Corato, and S. Rombetto. Resonance phenomena in macroscopic quantum tunneling for an rf SQUID. Phys. Rev. B 2005,71: 024529-024535.
    [122] C. P. Yang, Shih-I Chu, and S. Han. Quantum Information Transfer and Entanglement with SQUID Qubits in Cavity QED: A Dark-State Scheme with Tolerance for Nonuniform Device Parameter. Phys. Rev. Lett., 2004, 92:117902-117905.
    [123] N.Lazarides, G.P.Tsironis. rf superconducting quantum interference device metamaterials. Applied Phys.Lett., 2007,90:163501.
    [124] S.N.Erne, H.-D.Hahlbohm, and H.Lubbig. Theory of rf-biased superconducting quantum interference device for nonhysteretic regime. App.Phys., 1976,47:5440.
    [125] Adi R.Bulsara. Subthreshold response of rf SQUIDs to a general external perturbation. J.Appl.Phys., 1996,60:2462.
    [126]王竹溪,郭敦仁.特殊函数概论.北京:北京大学出版社,2000:432.
    [127] Raether H. Surface Plasmons. Berlin: Springer,1988.
    [128]张斗国,王沛,焦小瑾,等.表面等离子体亚波长光学前沿进展.物理,2005,34:508.
    [129] S.A.Darmanyan, M.Neviere, A.A.Zakhidov. Surface modes at the interface of conventional and left-handed media. Optics Communications, 2003,255:233-240.
    [130] Ilya V. Shadrivov, Andrey A. Sukhorukov, and Yuri S. Kivshar. Nonlinear surface waves in left-handed materials. Phys. Rev. E, 2004,69:016617.
    [131] A.A.Krokhin, A.Neogi, and D.McNeil. Long-range propagation of surface plasmons in athin metallic film deposited on an anisotropic photonic crystal. Phys.Rev.B, 2007, 75:235420.
    [132] Lu Yonghua , Wang Pei, Yao Peijun, et al. Negative refraction at the interface of uniaxial anisotropic media[J]. Optics Communications, 2005,246,429–435.
    [133] Liliana I. Perez, Mar?′a T. Garea, Rodolfo M. Echarri. Isotropic-uniaxial crystal interfaces: negative refraction and backward wave phenomena. Optics Communications. 2005, 254:10–18.
    [134] Nian-Hai Shen, Qin Wang, Jing Chen, et al. Optically uniaxial left-handed materials. Physical Review B,2005,72:153104.
    [135] I.N. Bronshtein. Handbook of mathematics. New York : Pergamon Press, 1985:237-245
    [136]石刚,岑洁萍,樊莉,刘拥军.左右手系材料界面处全反射行为的特性.物理学报,2007,56:4653.
    [137] Yi-Fan Chen, Peer Fischer, and Frank W.Wise. Negative refraction at optical frequencies in nonmagnetic two-component molecular media. Physical review letters, 2005,95: 067402.
    [138] Tom G.Mackay, Akhlesh Lakhtakia. Comment on“Negative refraction at optical frequencies in nonmagnetic two-component molecular media”. Physical review letters,2006,96:159701.
    [139] Yi-Fan Chen, Peer Fischer, and Frank W.Wise. Chen, Fischer, and Wise Reply. Physical review letters,2006,96:159702.
    [140] S. Anantha Ramakrishna. Comment on“Negative refraction at optical frequencies in nonmagnetic two-component molecular media”. Physical review letters,2007,98: 059701.
    [141] Yi-Fan Chen, Peer Fischer, and Frank W.Wise. Chen, Fischer, and Wise Reply. Physical review letters,2007,98: 059702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700