基于表面等离子体激元的亚波长聚焦与光子晶体移相器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的迅猛发展,各项工艺技术都在向着微型精细的领域发展。尤其是对于高端纳米光学技术应用,如光集成器件、光学成像、光刻、光学信息存储、生物传感等领域,常常需要纳米量级的光学器件。然而,由于衍射极限的存在,限制了传统光学技术的进一步发展。因此,如何在纳米量级上实现光操控和突破衍射极限成为重要的研究方向。
     首先,基于零折射光子晶体研究分析,提出了一种工作在光学频段的光子晶体移相器。零折射率材料意味着光处于一种准无限大相速度和无限长波长状态,因此,当平面波从自由空间入射到零折射率材料区域,波在通过零折射率材料区域时就像这个区域不存在一样,离开零折射率材料区域时波的形态完全取决于入射时的形态,利用这个性质,将两个完全相同的零折射率光子晶体结构级联,通过调节两个光子晶体结构之间的距离,可以线性的改变入射波的相位。与此前复杂的电压调整相移器不同,这种相移器仅仅通过调整距离就可以十分方便的实现相移,与温度、电压、功率等无关,并且损耗极低,同时工作频率也与传统的相移器相比有了极大的提高,这在光集成电路中有着十分重要的作用。
     其次,基于表面等离子体激元,我们又自行设计了一种对称金属双缝介质光栅聚焦透镜模型,实现双向聚焦。接下来,我们通过改变光源与透镜之间距离,研究了距离对聚焦效果的影响。我们发现这种透镜模型的最优聚焦点每隔半个波长出现一次,在距离透镜501nm时,聚焦能量峰值达到1215,焦距达到2.67um,呈现出十分优异的聚焦特性,这对以后聚焦模型的设计与应用有重要的价值。
     最后,克服现有的聚焦透镜结构对入射波波长的依赖,我们又设计出一种对称金属双缝梯形介质光栅聚焦透镜模型,在入射波波长561nm到590nm范围内,以1nm为步长,仿真结果显示,聚焦点能量峰值从3缓慢下降到2.1,焦斑半径从438.5nm降低到347.7nm,焦距从2.4um下降到2.34um,也就是说在分辨率有所提高的情况下,聚焦能量并没有显著的降低,聚焦效果保持相对稳定,这在实际光子器件中有重要的应用前景。
The steadily decreasing dimensions in semiconductor devices are for filling the rapid development of the scientific technology, especially for the high-end nano-optical imaging technology. Nano-optical devices are widely required in many fields, such as optical integrated circuit, optical imaging, optical lithography, high-density optical storage, bio-sensor, etc. However, traditional optical techniques have been blocked for the diffraction limit. Therefore, nanoscale optical manipulation and breaking the diffraction limit to become an important research direction.
     Firstly, based on the analysis of zero-refractive-index PCs, we present a novel phase-shifter. A refractive index of zero implies that light enters a state of quasi-infinite phase velocity and infinite wavelength. Thus, a plane wave incident from the left air region can pass through the zero-refractive-index metamaterials (ZRIM) as if it were not there and the shape of the wavefronts leaving the ZRIM depends solely on the shape of the exit surfaces of the ZRIM, which provides high flexibility in the design of phase patterns. By the way of reasonably adjusting the distance between the ZRIMs, the wave phase on the right side of the second ZRIM can be changed linearly compared to the incident wave phase. This structure can decrease the loss and avoid the effect of operation voltage fluctuation. It can be easily nanofabricated within current silicon foundries, suggesting significant potential for the development of future electronic-photonic integrated circuits.
     Following, Based on SPPs, beam optical focusing structures capable of double side beam focusing are proposed. The relationships between focal intensity, focal length, focal width and the distance from optical source to lens structure are investigated and numerically simulated. We found that the optimal focusing point of this lens model appears at a period of half wavelength. When the distance became501nm, the focused energy peak reached1215and focal length was2.67um. These excellent focusing characteristics are of great value for the focusing model design and application.
     Finally, a beam optical focusing structure with double subwavelength metal slits surrounded by tapered surface trapezoid dielectric gratings (DTDG) is proposed. By increasing the incident wavelength from560nm to591nm at a step of1nm, the focal length decreases monotonously from2.4um to2.34um, and the focal length maintains constant in the wavelength domain. The FWHM of focal width and peak intensity decrease monotonously from438.5nm to347.7nm and3to2.1respectively as well. Above all, it maintains constant for a large wavelength domain (560nm-591nm), which is a great potential for integrated optics, biomedicine sensing, nanophotonics, optical measurement and related applications.
引文
[1]Hu Changkui, Liu Deming. Transmission-type SPR sensor based on coupling of surface Plasmons to radiation modes using a dielectric grating, Frontiers of Optoelectronics in China,2009,2(2):182-156
    [2]胡昌奎,刘德明,基于纳米金属光栅结构的表面等离子体共振传感研究[D].华中科技大学,2010.
    [3]王跃科,魏台辉,宋瑛林,表面等离子体分束器和亚波长金属阵列中的儿种新颖效应[D].哈尔滨工业大学,2010.
    [4]Robert F. Service and Adrian Cho, Strange New Tricks with Light, Science,2010, Vol.330.
    [5]Patanjali V. Parimi, Wentao T. Lu, Plarenta Vodo and Srinivas Sridhar, Imaging by flat lens using negative refraction, Nature,2003, Vol.426.
    [6]Pi-Gang Luan, Chen-Yu Chiang and Hsiao-Yu Yeh, Influences of source displacement on the features of subwavelength imaging of a photonic crystal slab, Physics.Optics,2010:1012.
    [7]R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, Negative refraction and superlens behavior in a two-dimensional photonic crystal, Phys. Rev. B.2005, 71:085106.
    [8]J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett.2000,85:3966.
    [9]Han-Youl Ryu and Masaya Notomi, Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab, Phys. Rev. B.2003,68:045209.
    [10]Soon-Hong Kwon, Han-Youl Ryu, Guk-Hyun Kim, and Yong-Hee Lee, Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs, Appl. Phys. Lett.2003,83:3870.
    [11]M. Notomi, Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B.2000,62:10696.
    [12]Kwangchil Lee, Youngjean Jung, Gumin Kang, Haesung Park, and Kyoungsik Kim, Active phase control of a Ag near-field superlens via the index mismatch approach, Appl. Phys. Lett.2009,94: 101113.
    [13]Ciaran P. Moore, Richard J. Blaikie, and Matthew D. Arnold, An improved transfer-matrix model for optical superlenses, Opt. Express.2009,17:14260-14269.
    [14]Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and Mu Wang, Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays, Phys. Rev. B.2007,76:195405.
    [15]E A Bezus, D A Bykov, L L Doskolovich and I I Kadomin, Diffraction gratings for generating varying-period interference patterns of surface plasmons, J. Opt. A.2008,10:095204.
    [16]B. Wood and J. B. Pendry, Directed subwavelength imaging using a layered metal-dielectric system, Phys. Rev. B.2006,74:115116.
    [17]Wei Wang, Hui Xing, Liang Fang, Yao Liu, Junxian Ma, Lan Lin, Changtao Wang, and Xiangang Luol, Far-field imaging device:planar hyperlens with magnification using multi-layer metamaterial, Opt. Express.2008,16:21142-21148.
    [18]Ivan Avrutsky, Ildar Salakhutdinov, Justin Elser and Viktor Podolskiy, Highly confined optical modes in nanoscale metal-dielectric multilayers, Phys. Rev. B.2007,75:241402.
    19] Nicholas Fang and Xiang Zhang, Imaging properties of a metamaterial superlens, Appl. Phys. Lett. 2003,82:161-163.
    [20]Xiang Zhang and Zhaowei Liu, Superlenses to overcome the diffraction limit, Nature Materials.2008, 7:435-441.
    [21]T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C.Wang, Q. Feng and X. Luo, Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns, Appl. Phys. B. 2009,97:175-179
    [22]Alexander V. Kildishev, Uday K. Chettiar, Zubin Jacob, Vladimir M. Shalaev, andEvgenii E. Narimanov, Materializing a binary hyperlens design, Appl. Phys. Lett.2009,94:071102.
    [23]L L Doskolovich, E A Kadomina and I I Kadomin, Nanoscale photolithography by means of surface plasmon interference, J. Opt. A.2007,9:854-857.
    [24]Andrea Alu, Mario G. Silveirinha, Alessandro Salandrino and Nader Engheta, Epsilon-near-zero metamaterials and electromagnetic sources:Tailoring the radiation phase pattern, Phys. Rev. B.2007, 75:155410.
    [25]Zubin Jacob, Leonid V. Alekseyev and Evgenii Narimanov, Optical Hyperlens:Far-field imaging beyond the diffraction limit, Opt. Express.2006,18:8247-8256.
    [26]Nicholas Fang, Hyesog Lee, Cheng Sun and Xiang Zhang, Sub-Diffraction-Limited Optical Imaging with a Silver Superlens, Science.2005,308:534-537.
    [27]马锡英,光子晶体原理及应用[J].科学出版社,2010.
    [28]张冬梅,何赛灵,基于全息光刻及软刻蚀技术制备二维光子晶体模板[D].浙江大学,2007.
    [29]孙静,沈廷根,二维光子晶体特性及应用研究[D].江苏大学,2010.
    [30]范长林,阮成礼,光子晶体的全新应用及其研究[D].电子科技大学,2003.
    [31]Taro Ikeda, Kazunori Takahashi, Yoshiaki Kanamori and Kazuhiro Hane, Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator, Opt. Express. 2010,18:7031-7037.
    [32]S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong and C. W. wong, Observation of Zeroth-Order Band Gaps in Negative-Refraction Photonic Crystal Superlattices ant Near-Infrared Frequencies, Phys. Rev. Lett.2009,102:203905.
    [33]P. He, P. V. Parimi, Y. He, V. G. Harris and C. Vittoria, Tunable negative refractive index metamaterial phase shifter, Electron. Lett.2007,43(25).
    [34]J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, Extremely Low Frequency Plasmons in Metallic Mesostructures[J].Phys. Rev. Lett.1996,76:4773-4776.
    [35]Xueqin Huang, Yun Lai, Zhi hong Hang, Huihuo Zheng and C. T. Chan, Dirac cones induced by accidential degeneracy in photonic crystals and zero-refractive-index materials, Nat. Materials.2011, 10:582-586.
    [36]Wu, Y., Li, J., Zhang, Z. Q. and Chan, C. T, Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit, Phys. Rev. B.2006,74:085111.
    [37]S. Kocaman, M. S. Aras, P. Hsieh, J.F. McMillan, C. G. biris,N. C. Panoiu, M. B. Yu, D. L. Kwong, A. Stein and C. W. Wong, Zero phase delay in negative-refractive-index photonic crystal superlattices, Nat. Photonics.2011.
    [38]Tianrui Zhai, Jinwei Shi, Shujing Chen and Dahe Liu, Electromagnetic Shielding and Energy Concentretion Using Zero-Index Metamaterials, Appl. Phys. Express.2011,4:074301.
    [39]Marco A. Antoniades and George V. Eleftheriades, Compact Linear Lead/Lag Metamaterial Phase Shifters for Broadband Applications, IEEE Antennas Wireless Propagat. Lett.2003,2:103-105.
    [40]A. S. Tatarenko, G. Srinivasan and M. I. Bichurin, Magnetoelectric microwave pahse shifter, Appl. Phys. Lett.2006,88(18):183507.
    [41]Weiqi Xue, Salvador Sales, Jose Capmany and Jesper Mork, Wideband 360 microwave photonic phase shifter based on slow light in semiconductor optical amplifiers, Opt. Express.2010,18(6):6156-6163.
    [42]Jiaming Hao, Wei Yan and Min Qiu, Super-reflection and Cloaking Based on Zero Index Metamaterial, J. Lightwave Techno.2000,18:252-259.
    [43]Jorg Schilling, The quest for zero refractive index, Nat. Photonics.2011,5:449-451.
    [44]李娜,倪晓昌,王彬,栗岩峰,李形,李毅,宋振明,表面等离子体激元研究进展[J].天津工程师范学院学报,2010,20(4).
    [45]Lin Cheng, Pengfei Cao, Yuee Li, Weijie Kong, Xining Zhao and Xiaoping Zhang, High Efficient Far-Field Nanofocusing with Tunable Focus Under Radial Polarization Illumination, Plasmonics.2012, 7:175.
    [46]H.J.Lezec, A.Degiron, E.Devaux, R.A.Linke, L.Martin-Moreno, F.J.Garcia-Vidal and T. W. Ebbesen, Beaming light from a subwavelength aperture, Science.2002,297:820-822.
    [47]F. J. Garcia-Vidal, L. Martin-Moreno, H.J. Lezec and T.W. Ebbesen, Focusing light with a single subwavelength aperture flanked by surface corrugations, Appl. Phys. Lett.2003,83:4500.
    [48]Haofei Shi, Chunlei Du and Xiangang Luo, Focal length modulation based on a metallic slit surrounded with grooves in curved depths, Appl. Phys. Lett.2007,91:093111.
    [49]Daqing Zou, Jianli Jiang and Xiangyin Li, Beam Adjustment with Double Subwavelength Metal Slits Surrounded by Tapered Dielectric Gratings, Chin.Phys. Lett.2010,27:017801.
    [50]Seyoon Kim, Yongjun Lim, Junghyun Park and Byoungho Lee, Bundle Beaming From Multiple Subwavelength Slits Surrounded by Dielectric Surface Gratings, J. Lightwave Technol.2010,28: 2023.
    [51]Zubin Li, Jianguo Tian, Zhibo Liu, Wenyuan Zhou and Chunping Zhang, Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric, Opt. Express.2005,13:9071-9077.
    [52]S.Sena Akarca-Biyikli, Irfan Bulu and Ekmel Ozbay, Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture, Appl. Phys. Lett.2007,85:1098.
    [53]Changchun Yan, Daohua Zhang, Yuan Zhang, Dongdong Li and M.A. Fiddy, Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths, Opt. Express.2010,18:14794.
    [54]Liangbin Yu, Dingzheng Lin, Yichun Chen, Youchia Chang, Kuotung Huang, Jiunnwoei Liaw, Jyityan Yeh, Jongmin Liu, Chaushioung Yeh and Chihkung Lee, Physical origin of directional beaming emitted from a subwavelength slit, Phys. Rev. B.2005,71:041405.
    [55]Hwi Kim, Junghyun Park and Byoungho Lee, Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings, Opt. Express.2009,34:2569.
    [56]Nandor Bokor, Revital Shechter, Nir Davidson, Asher A. Friesem and Erez Hasman, Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength, Appl. Opt.2001,40:2076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700