金属纳米结构的制备和输运特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米结构以其特有的优势和引人注目的应用前景,成为当前科学研究的一大热点。本文研究了生长条件对金属薄膜质量的影响,利用微纳米加工技术制备了高质量的纳米点接触结构,并对其输运特性进行了研究。
     首先,采用真空蒸镀系统,通过改变生长参数,制备了一系列金属Au、Ag薄膜,并用原子力显微镜对样品进行了表征。通过分析比较,得到薄膜生长过程中真空度、生长速度、过渡层、衬底以及薄膜厚度等生长条件对薄膜质量的影响,并确定了高质量金属薄膜的优化生长条件。
     其次,采用磁控溅射和热蒸发沉积薄膜方法,配合电子束曝光技术,通过溶脱和刻蚀工艺,制备了坡莫合金纳米点接触结构。采用磁控溅射方法制备的坡莫合金薄膜表面致密,粒径较小;而热蒸发制备的薄膜表面平整,粒径较大,但是薄膜组分比磁控溅射薄膜更加接近源材料。通过对制备工艺摸索,得到了制备高质量纳米点接触结构的条件,应用热蒸发沉积薄膜和溶脱工艺即可得到高质量的纳米点接触结构;而对于磁控溅射方法制备薄膜,需要采用刻蚀工艺才能得到高质量的纳米点接触结构。
     最后,采用四电极Ⅰ-Ⅴ测试法对多种金属纳米点接触结构的输运特性进行了研究。结果表明,纳米点接触结构的电阻随着测试电流的增加而增加,电阻的变化量随着纳米点接触宽度的增加而减小,说明热效应非常明显,而热平衡的时间很短。
In this dissertation, the growth conditions for high quality metal thin film, the fabrication of nanocontact structure and their transport properties were investigated.
     Firstly, Thermal evaporation system was chosen to deposit metal thin film. A series of Au, Ag film samples were deposited with different conditions. The as-grown films were characterized by atom force microscope. The films with high quality can be obtained by adjusting the total pressure, growth speed, buffer layers, substrates and film thickness.
     Secondly, the fabrication processes of permalloy nanocontact structures were investigated by different deposition and fabrication methods and characterized by the SEM, AFM and EDAX. The film deposited by magnetic sputtering has high quality surface morphology but poor composition consistency with the target material compared with that for the film deposited by the thermal evaporation method. The high quality nanocontact structure with perfect surface morphology can be fabricated by lift-off process for the film deposited by thermal evaporation. However, to the film deposited by magnetic sputtering, an etching process is needed to form the nanocontacts.
     Finally, the transport properties of nanocontacts were measured by Kelvin method. The resistance of metallic nanocontact structure increases with increasing the current, and the change of resistance decreases with the increase of the nanocontact's width, which can be attributed to the heating effect.
引文
[1]Feynman R. P.1960 There is plenty of Room at the Bottom, an invitation to enter a new field of physics[N], Eng. Sci. Mag.1960, V23:143-150.
    [2]A. Einstein, A new determination of molecular dimensions[J], Ann. Phys.1905, V19: 289-292.
    [3]M. Knoll, Aufladepotential und sekundaremission electronenbestrahlter korper[J], Z. Tech. Phys.1935, V16:467.
    [4]N. Taniguchi, On the basic concept of nano-technology[M], Proc. Int. Conf. Prod. Eng. (Tokyo) Japan Soc. of Precision Eng.1974, p245 Part Ⅱ.
    [5]G Binnig, H. Rohrer, Ch Gerber, et al., Surface studies by scanning tunneling microscopy[J], Phys. Rev. Lett.1982, V49(1):47-50.
    [6]D. M. Eigler and E. K. Schweitzer, Positioning single atoms with a scanning tunnelling microscope[J], Nature,1990, V344:524-526.
    [7]S. J. Tans, A. R. M. Verschueren and C. Dekker, Room-temperature transistor based on a single carbon nanotube[J], Nature,1998, V393:49-52.
    [8]Prashant V. Kamat, Meeting the Clean Energy Demand:Nanostructure Architectures for Solar Energy Conversion[J], J. Phys. Chem. C,2007, V111 (7):2834-2860.
    [9]Kai Wen Cheng, Da Hua Wei, Yeong Der Yao, et al., Color Light Guide Plate with Metallic Ag Nanostructures for TFT-LCD[J],2008, V39(1):1621-1624.
    [10]Regina Luttge, Massively parallel fabrication of repetitive nanostructures: nanolithography for nanoarrays[J], J. Phys. D:Appl. Phys.2009, V42(12): 123001-1-123001-18.
    [11]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity[J], Phys. Rew. Lett., 2000, V84(18):4184-4187.
    [12]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, Terahertz magnetic response from artificial materials[J], Science,2004, V303:1494-1496.
    [13]D. Schurig, J. J. Mock, B. J. Justice, et al., Metamaterial electromagnetic cloak at microwave frequencies[J], Science,2006, V314:997-1001.
    [14]Nicholas Fang, Hyesog Lee, Cheng Sun, et al., Sub-Diffraction-Limited Optical Imaging with a Silver Superlens[J], Science,2005, V308:534-537.
    [15]Jason Valentine, Shuang Zhang, Thomas Zentgraf, et al., Three-dimensional optical metamaterial with a negative refractive index[J], nature,2008, V455(18):376-380.
    [16]Jie Yao, Zhaowei Liu, Yongmin Liu, et al., Optical Negative Refraction in Bulk Metamaterials of Nanowires[J], Science,2008, V321:930-930.
    [17]M. Julliere, Tunneling between ferromagnetic films[J], Phys. Lett. A,1975, V54(3): 225-226.
    [18]M. N. Baibich, J. M. Broto, A. Fert, et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices[J], Phys. Rev. Lett.1988, V61(21):2472-2475.
    [19]S. S. Parkin, Oscillations in giant magnetoresistance and antiferromagnetic coupling in [Ni81Fe19/Cu]N multilayers[J],Appl. Phys. Lett.1992, V60(4):512-514.
    [20]S. S. Parkin, R. Bhadra and K. P. Roche, Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures:Co/Ru, Co/Cr, and Fe/Cr[J], Phys. Rev. Lett.1990, V64(19):2304-2307.
    [21]Stuart S. P. Parkin, Masamitsu Hayashi, Luc Thomas, Magnetic Domain-Wall Race-track Memory[J], Science,2008, V320:190-194.
    [22]P. Bruno, Geometrically Constrained Magnetic Wall[J], Phys. Rev. Lett.1999, V83(12), 2425-2428.
    [23]N. Garcia, M. Munoz and Y. W. Zhao, Magnetoresistance in excess of 200% in Ballistic Ni Nanocontacts at Room Temperature and 100Oe[J], Phys. Rev. Lett.1999, V82(24): 2923-2926.
    [24]M. Miyake, K. Shigeto, Y. Yokoyama, Exchange biasing of a Neel wall in the nanocontact between NiFe wires[J], J. Appl. Phys.2005, V97(1):014309-1-014309-6.
    [25]P. P. Freitas, L. Berger, Observation of s-d exchange force between domain walls and electric current in very thin Permalloy films[J], J. Appl. Phys.1985, V57(4):1266-1269.
    [26]M. D. Levenson[N], Physics today, July,1993 (P.28).
    [27]D. Chiba, Y. Sato, T. Kita, et al., Current-Driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction[J], Phys. Rev. Lett.2004, V93(21):216602-1-216602-4.
    [28]A. Imre, G. Csaba, L. Ji, et al, Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata[J], Science,2006, V311:205-208.
    [29]Peng Xu, Ke Xia, Changzhi Gu, et al., An all-metallic logic gate based on current-driven domain wall motion[J], Nature nanotechnology,2008, V3:97-100.
    [30]H. R. Stuart, D. G. Hall, Nanopatricle, enhanced photodetection[J], Optics& Photonics News,1999, V7(12):26-27.
    [31]M. H. Nayfeh, S. Rao, O. M. A. Nayfeh, et al. UV photodetectors with thin-film Si nanoparticle active medium[J], IEEE Trans. Nanotechnology,2005, V4(6):660-667.
    [32]Hu Jiangtao, Odom Teri Wang, Lieber Charles M, Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes[J], Acc. Chem. Res., 1999, V32(5):435-445.
    [33]N. Grobert, J. P. Hare, W. K. Hsu, et al., Electronic Properties of Novel Materials——Progress in Molecular Nanostructures[C],1998, V442:29-33.
    [34]Shingubara Shoso, Okino Osamu, Sayarna Yssuyuki, et al.[J], Jpn. J. ApplPhys. Part1 1997, V36(12B):7791-7795.
    [35]Y. Zhou, S. H. Yu, X. P. Cui, et al., Formation of Silver Nanowires by a Novel Solid? Liquid Phase Arc Discharge Method[J], Chem. Mater,1999, V11(3):545-546.
    [36]D. Kǖpper, T. Wahlbrink, J. Bolten, Megasonic-assisted development of nanostructures[J], J. Vac. Sci. Technol. B,2006, V24(4):1827-1832.
    [37]崔铮,微纳米加工技术及其应用综述[J],物理.2006,V35:34-39.
    [38]O. Dial, C. C. Cheng, and A. Scherer, Fabrication of high-density nanostructures by electron beam lithography[J], J. Vac. Sci. Technol. B,1998, V16(6):3887-3890.
    [39]M. A. Mohammad, S. K. Dew, K. Westra, et al., Nanoscale resist morphologies of dense gratings using electron-beam lithography[J], J. Vac. Sci. Technol. B,2007, V25(3):745-753.
    [40]P. P. Pompa, L. Martiradonna, A. Della Torre, et al., Fluorescence enhancement in colloidal semiconductor nanocrystals by metallic nanopatterns[J], Sensors and Actuators B, 2007,V126(1):187-192.
    [41]Saul Griffith, Mark Mondol, David S. Kong, et al., Nanostructure fabrication by direct electron-beam writing of nanoparticles[J], J. Vac. Sci. Technol. B,2002, V20(6):2768-2772.
    [42]Runsheng Wang, Jing Zhuge, Ru Huang, et al., Investigation on Self-Heating Effect in Gate-All-Around Silicon Nanowire MOSFETs From Top-Down Approach[J], IEEE ELECTRON DEVICE LETTERS,2009, V30(5):559-561.
    [43]Yulong Ding, Hajar Alias, Dongsheng Wen, et al., Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)[J], International Journal of Heat and Mass Transfer, 2006, V49(1-2):240-250.
    [44]Ki-Jung Parka and Dongsoo Jung, Enhancement of nucleate boiling heat transfer using carbon nanotubes[J], International Journal of Heat and Mass Transfer,2007, V50(21-22): 4499-4502.
    [45]Ki-Jung Parka and Dongsoo Jung, Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning[J], Energy and Buildings,2007, V39(9):1061-1064.
    [46]J. Sakurai, M. Horie, S. Araki, et al. [J], J. Phys. Soc. Japan 1991, V60:2522.
    [47]M. Hatami, G. E. W. Bauer, Q. F. Zhang, et al., Thermal Spin-Transfer Torque in Magnetoelectronic Devices[J], Phys. Rev. Lett.2007, V99(6):066603-1-066603-4.
    [48]R. P. Singh and G. S. Third-Order Elastic Constants of GaAs and Keating's Theory[J], J. Appl. Phys.1968, V39(8):4032-4034.
    [49]杨海方,徐鹏,唐令等,基于铁磁金属纳米点接触结构的全金属逻辑电路[P],物理,2008,V38:691-696.
    [50]崔铮,微纳米加工技术[M].北京:高等教育出版社,2005:100-101.
    [51]H. F.Yang, A. Z. Jin, Q.Luo, et al, Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process[J], Microelectron. Eng.2008, V85:814-817.
    [52]M. Johnson, R. H. Silsbee, Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system[J], Phys. Rev. B 1987, V35:4959-4972.
    [53]Zhe Yuan, Shuai Wang, Ke Xia, Thermal spin-transfer torques on magnetic domain walls[J], Solid State Communications,2010, V150:548-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700