TiCl_4水溶液稳定性及原位水解合成Li_4Ti_5O_(12)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石Li_4Ti_5O_(12)因其零应变、安全性能好、使用寿命长、环境友好等突出特点,成为现今倍受人们青睐的最理想的锂离子电池负极材料之一。目前Li_4Ti_5O_(12)的合成无论是固相法还是水热法都离不开以TiO_2或其水合物为钛源,其原料来源有限且制备成本高。因此寻求新的合成方法是Li_4Ti_5O_(12)材料研究的热点。针对这一问题,本文在对TiCl_4水溶液稳定性研究的基础上,系统地研究了以廉价的TiCl_4水溶液为钛源,以LiOH·H_2O为锂源及水解诱导剂,在水溶液中采用水解-原位相转化法由TiCl_4直接合成Li_4Ti_5O_(12)。
     对TiCl_4水溶液水解机制与稳定性进行研究表明:低浓度钛液水解中间产物主要是[Ti(OH)_n(H_2O)_(6-n)]~((4-n)+),高浓度钛液为TiOCl_n~((2-n)+)。这些中间产物进一步水解,发生缩聚反应形成较大的聚合物团簇。当聚合物团簇长大到一定尺寸,达到临界晶核尺寸时,产生晶核。通过晶核的生长形成水合TiO_2一次粒子。TiCl_4水溶液稳定性随TiCl_4浓度的增加而增大,随温度的升高而降低。溶液中LiCl或HCl的存在有利于提高TiCl_4水溶液的稳定性,抑制Ti的水解。水解初期,随溶液中LiCl或HCl浓度的增加,稳定性增大;但水解后期,LiCl或HCl的影响不大。
     以TiCl_4水溶液和LiOH·H_2O为原料,原位水解合成了尖晶石Li_4Ti_5O_(12)。制备纯净尖晶石Li_4Ti_5O_(12)的适宜条件为:酸性环境、加料Li/Ti摩尔比4.8、搅拌速度250 rpm、反应温度60℃、反应2h后得到的产物用无水乙醇洗涤后,经800℃热处理6h。不同浓度TiCl4水溶液最有利于合成Li_4Ti_5O_(12)的水解时间分别是:0.5 mol/L TiCl_4水溶液(Ti-0.5)水解1h、添加1.0 mol/L LiCl的0.5 mol/L TiCl_4水溶液(Li-1.0)水解3h、1.0 mol/L(Ti-1.0)与1.5 mol/LTiCl_4水溶液(Ti-1.5)水解5h。高浓度TiCl_4水溶液(Ti-1.0与Ti-1.5)的合成产物团聚相对严重,而低浓度TiCl_4水溶液(Ti-0.5与Li-1.0)的合成Li_4Ti_5O_(12)分散性较好,平均粒径约为200 nm左右。
     电性能分析表明,0.1C倍率下,由高浓度TiCl_4水溶液(Ti-1.0与Ti-1.5)合成的Li_4Ti_5O_(12)首次充放电比容量低,电极极化严重;而低浓度TiCl_4水溶液(Ti-0.5与Li-1.0)合成的Li_4Ti_5O_(12)首次放电容量分别为140.3和100.3 mAh/g,循环性能较好,充放电平台与1.56V接近,该材料具有尖晶石Li_4Ti_5O_(12)典型电性能特性。二次配锂样品中以Li_(4.555)Ti_5O_(12)性能较佳。
Spinel Li_4Ti_5O_(12) has become one of the most promising Li-ion battery anode materials due to its distinct characteristics of zero-strain insertion, satisfactory safety, long cycle life and environmental friendliness. At present, Li_4Ti_5O_(12) is mainly prepared by solid-state or wet chemical reactions, both synthesis methods using TiO_2 as main raw material, which, however, increases the cost and results in low homogeneity and poor crystallinity. Therefore, exploring new raw materials and technology for the production of Li_4Ti_5O_(12) has become an intensive research topic. In order to solve the problem, the stability of aqueous TiCl_4 solution was investigated and then the synthesis of nano-sized Li_4Ti_5O_(12) powders via in-situ hydrolysis process was carried out using inexpensive aqueous TiCl_4 solution as Ti raw material and LiOH·H_2O as the inducer. The experiments and obtained results are reported in this paper.
     The stability of aqueous TiCl_4 solution and the mechanism of TiCl_4 hydrolysis have been studied. Based on experimental observation and some fundamental for generating particles from homogenous, the intermediates for the hydrolysis of aqueous TiCl_4 solution are proposed as follows: [Ti(OH)_n(H_2O)_(6-n)]~((4-n)+) as the main species at low Ti(Ⅳ) concentration and TiOCl_n~((2-n)+) as the major species at high Ti(Ⅳ) concentration. Larger polymeric clusters are formed by further hydrolysis of these intermediates and consequent condensation of the polymerization. When the polymer cluster grows and reach critical nucleus size, TiO_2 particles generate. The stability of aqueous TiCl_4 solution increases with increasing Ti(Ⅳ) concentration. and decreases with increasing hydrolysis temperature. The hydrolysis of aqueous TiCl_4 solution is inhibited by adding LiCl and HCl, which increases the stability. At the initial stage, the induced period is prolonged, the stability is increased accordingly. However, LiCl or HCl has minor effects on the stability at the later stage.
     Spinel Li_4Ti_5O_(12) procursor was synthesized via in-situ hydrolysis from aqueous TiCl_4 solution and LiOH·H_2O. The optimal synthetic condition were established as follows: acidic milieu, stoichiometry Li/Ti(mol ratio)=4.8, stirring rate 250 rpm, reaction temperation 60℃, reaction time 2h, washing with ethanol and sintering 6 h at 800℃. Also, the optimal time for the hydrolysis preparation of Li_4Ti_5O_(12) from various Ti(Ⅳ) concentrations were found to be as follows: 1h hydrolysis for 0.5 mol/L aqueous TiCl_4 solution (Ti-0.5), 3h for 0.5 mol/L aqueous TiCl_4 solution with adding 1.0 mol/L LiCl(Li-1.0) and 5 h for both 1.0 mol/L(Ti-1.0) and 1.5 mol/L(Ti-1.5) aqueous TiCl_4 solution. Agglomeration was found in the products obtained from high Ti(Ⅳ) concentration(Ti-1.0 and Ti-1.5). Products prepared from low Ti(Ⅳ) concentration(Ti-0.5 and Li-1.0) have octahedral spherical shape and a uniform particle size of 200nm as well as well-distribution. Thus, it is possible to recycle the LiCl produced from Li_4Ti_5O_(12) preparation, and thereby achieving zero release.
     The electrochemical property tests at 0.1 C show that the Li_4Ti_5O_(12) material prepared from high Ti(Ⅳ) concentration (Ti-1.0 and Ti-1.5) has low first discharge capacity and serious polarization. In comparison, the material obtained from low Ti(Ⅳ) concentration of Ti-0.5 and Li-1.0 has high first discharge capacity of 140.3 and 100.3 mAh/g, respectively, and shows good recycle performance and charge-discharge plateau close to 1.56 V, exhibiting representative electrochemical performance of typical spinel Li_4Ti_5O_(12). After secondary Li-doping, Li_(4.555)Ti_5O_(12) demonstrates better first discharge capacity and recycle performance.
引文
[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(14): 359-367
    [2] Zen-Ichiro Takehara, Kiyoshi Kanamura. Historical development of rechargeable lithium batteries in Japan[J]. Electro Acto, 1993, 38(2): 1169-1177
    [3] B Rosari. Lithium rocking chair batteries: an old concept [J]. J. Electrochem. Soc, 1992,139(10): 276-278
    [4] 吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社,2002:2-5
    [5] 马荣骏.锂离子电池负极材料的研究及应用进展[J].有色金属,2008,60(2):92-99
    [6] H.Shi, J.Barker. Structure and lithium intercalation Properties of synthetic and natural graphite[J]. J.Electroehem.Soc, 1996, 143(2): 3466-3472
    [7] K.Tatsumi, T.Akai, T.Imamura, et al. Li-nuclear magnetic resornance observation of lithium intercalation into mesocarbon microbeads[J]. J. Electroehem. Soc, 1996, 143(7): 1923-1930
    [8] R.Alcantara, F.J.Fenandez Madrigal, P.Lavela, et al. Characterisation of mesocarbon microbeads (MCMB) as active eletrode material in lithium and sodium cells[J]. Carbon, 2000, 38(8): 1031-1041
    [9] Y. Ein-eli, V. R. Koch. Chemical oxidation: a route to enhanced capacity in Li-ion graphite anodes [J]. J.Electroehem.Soc, 1997, 144(5): 2986-2973
    [10] M.C.Menchem, E. Peled, L.Burstein, et al. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries[J]. Journal of Power Sources, 1997, 68(2): 277-282
    [11] R. Tossici, M. Berrettoni, M. Rosolen, et al. Electrochemistry of KC_8 in lithium-containing electrolytes and its use in lithium-ion cells[J]. J. Electrochem. Soc, 1997, 144(2): 186-191
    [12] 张汉平,付丽君.锂离子电池负极材料的研究进展[J].电池,2005,35(4):571-572
    [13] Yamamoto O, Imanishi N. Rechargeable carbon anode[J]. Journal of Power Sources, 1995, 54(1): 72-75
    [14] Sato K, Noguchi M, Demachi A. A mechanism of lithium storage in disordered carbons [J]. Science, 1994, 264(5158): 556-558
    [15] Dahn J R, Xing W, Gao Y. The"Talling cards model"for the structure of micro-porous carbons[J]. Carbon, 1997, 35(1): 825-830
    [16] Buiel E, Dahn J R. Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries[J]. J. Electrochemical. Soc, 1998, 145(6): 1977-1981
    [17] Xue J S, Zheng T. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins[J]. Carbon, 1996, 34(2): 193-200
    [18] G.T.K.Fey, C.L.Chen. High- capacity carbons for lithium-ion batteries prepared from rice husk[J]. Journal of Power Sources, 2001, 97(8): 47-51
    [19] M. Nishijima, N. Tadokoro, Y. Takeda, et al. Li deintercalation-intercalation reaction and structural change in lithium transition metal nitride Li_7MnN_4[J]. J. Electrochem. Soc, 1994, 141(11): 2966-2971
    [20] S.Suzuki, T.Shodai. Electronic structure and electrochemical properties of electrode material Li_(7-x)MnN_4 [J]. J. Solid State Ionics, 1999, 116(4): 1-9
    [21] 吴国良.锂离子电池负极材料的现状与发展[J].电池,2001,31(2):54-57
    [22] 尹平,王庆,程新群.锂离子电池新型负极材料的研究进展[J].电池,1999,29(12):270-274
    [23] J. L. C. Rowsell, V. Pralong, L. F. Nazar. Layered lithium iron nitride: a promising anode material for Li-ion batteries[J]. J. Am. Chem. Soc, 2001, 123(2): 8598-8599
    [24] 任建国,王科,何向明.锂离子电池合金负极材料的研究进展[J].化学进展,2005,17(7):597-603
    [25] J.Q. Vang, L.D.Raistrick, R.A. Huggins. Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes [J]. J.Electrochem.Soc, 1986, 133(3): 457-460
    [26] A.Anani, S.Crouch-Baker, R.A.Huggins. Kinetic and thermodynamic parameters of several binary lithium alloy negative electrodes materials at ambient temperature [J]. J. Electrochem.Soc, 1987, 134(12): 3089-3102
    [27] Xiang-Wu Zhang, Chunsheng Wang, A.John.Appleby. Improving low temperature performance of Li-alloy anodes by optimization of electrolyte - electrode interface[J]. Journal of Power Sources, 2003, 114(1): 121-126
    [28] 林克芝,王晓琳,徐艳辉.锂离子电池锡基负极材料的改性研究进展[J].电源技术,2005,29(1):62-65
    [29] 汪飞,赵铭妹,宋晓平.锂离子电池负极材料的研究进展[J].电池,2005,35(4):152-154
    [30] Shigeki Ohara, Junji Suzuki, Kyoichi Sekine , et al. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life [J]. Journal of Power Sources, 2004,136(2): 303-306
    [31] 张丽娟,李涛,赵新兵.锂二次电池负极材料的研究进展[J].材料科学与工程,2000,18(4):126-129
    [32] 吴宇平,万春荣,姜长印.锂离子电池蓄电池锡基负极材料的研究[J].电源技术,1999,23(3):191-193
    [33] D.Ilic, M.Kilb, K.Holl, et al. Recent progress in rechargeable nickel/metal hydride and lithium-ion miniature rechargeable batteries [J]. Journal of Power Sources, 1999, 80(1): 112-115
    [34] Nam.S.C, Yoon.Y.S, Cho.W.I, et al. Reduction of irreversibility in the first charge of tin oxide thin film negative electrodes[J ]. J Electrochem Soc, 2001, 148(3): A220-A2231
    [35] Yan-Na Nuli, Sheng-Li Zhao. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries [J]. Journal of Power Sources, 2003 , 114(1): 113-1201
    [36] Brousse T, Crosnier O, Qi-Zong Qin. Advanced oxide and metal powders for negative electrodes in lithium-ion batteries [J]. Powder Technology, 2002 ,28 (2/3): 124-1301
    [37] T.W, Z.N.Ma. On the Aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium[J]. J. Electrochem. Soc, 1999, 146(1): 59-68
    [38] 齐智,吴锋.第二十六届全国化学与物理电源学术年会论文集,2004:A2
    [39] A. Chandra Bose, D. Kalpana. Synthesis and characterization of nanocrystalline SnO_2 and fabrication of lithium cell using nano-SnO_2 [J]. Journal of Power Sources, 2002, 107(1): 138-141
    [40] Omman K. Varghese, L.K. Malhotra. Electrode-sample capacitance effect on Ethanol sensitivity of nano-grained SnO_2 thin films[J]. Sensors and Actuators, 1998, 53(B): 19-23
    [41] Heon-Yonung Lee. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteriea[J]. Electrochemistry Communications, 2004, 12(6): 465-469
    [42] 张敬君,夏永姚.Co_2Sn合金作为锂离子电池负极材料的研究[J].高等学校化学学报,2006,27(10):1923-1926
    [43] Miyachi M, Yamamoto H. Carbon-coated Si as a lithium-ion battery anode [J]. Journal of the Electrochemical Society, 2005, 152(10): 208-213
    [44] A.N.Jansen, A.J.Kahaian, K.D.KePler, et al. Development of a high-power lithium-ion battery [J]. Journal of Power Sources, 1999, 81-82: 902-905
    [45] Ohzuku T, Ueda A, Yamamoto N. Zero-Strain insertion material of Li(Li_(1/3)Ti_(5/3))O_4 for rechargeable lithium cells[J]. J. Electrochem. Soc, 1995, 142(5): 1431-1436
    [46] I.A.Leonidov, O.N. Leonidova. Structure ionic conduction and phase transformation in lithium titanate Li_4Ti_5O_(12) [J]. Physics of the Solid State, 2003, 45(11): 2183-2188
    [47] Ferg E, Gummow R.J. A kinetic two-phase and equilibrium solid solution in spinel[J]. J. Electrochem. Soc, 1994, 141(3): 147-152
    [48] Huanqiao Songa, Xinping Qiu. Role of structural H_2O in TiO_2 nanotubes in enhancing Pt/C direct ethanol fuel cell anode electro-catalysts [J]. Journal of Power Sources, 2008, 178(2): 97-102
    [49] Zhen-Bo Wang, Ge-Ping Yin, Yong-Ge Lin. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell [J]. Journal of Power Sources, 2007, 170(2): 242-250
    [50] 叶静雅,赵新兵,余鸿明,等.Li_4Ti_5O_(12)/C复合负极材料的一步固相合成及不同碳源的影响[J].功能材料,2007,38(增刊):1423-1427
    [51] 杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究[J].电化学,2000,6(3):350-356
    [52] 徐宇虹,巩桂英,马萍,等.Li_4Ti_5O_(12)的合成及其在锂离子电池中的应用[J].金属材料与冶金工程,2007,35(1):14-18
    [53] Peramunage D, Abraham K.M. Preparation of micron-sized Li_4Ti_5O_(12) and its electrochemistry in polyacrylonitrile electrolyte based lithium cells [J]. J. Electrochem Soc, 1998, 145(8): 2609-2615
    [54] K. Zaghib, M. Simoneau, M. Armand, et al. Electrochemical study of Li_4Ti_5O_(12) as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources, 1999, 81-82: 300-305
    [55] Tsutomu Ohzuku, Atsushi Ueda. Factor affecting the capacity retention of lithium-ion cells [J]. Journal of Power Sources, 1995, 54(1): 99-102
    [56] LI Yue, Zhao Hail. Heat treatment efect on electrochemical properties of spinel Li_4Ti_5O_(12)[J]. Rare Metals, 2008, 27(2): 165-169
    [57] Nakahara K, Nakajima R. Si (-Zr)/Ag multilayer thin-film anodes for microbatteries [J]. Journal of Power Sources, 2003, 117(1): 131-136
    [58] Shahua Huang, Zhaoyin Wen. Li_4Ti_5O_(12)/Ag composite as electrode materials for lithium-ion battery[J]. Solid State Ionics, 2006, 177(4): 851-855
    [59] Shahua Huangan, Zhaoyin Wen. Improving the electrochemical performance of Li_4Ti_5O_(12)/Ag composite by an electroless deposition method[J]. Electrochimica Acta, 2007, 52(6): 3704-3708
    [60] J.Wolfenstine, J.L. Allen. Electrical conductivity and charge compensation in Ta doped Li_4Ti_5O_(12)[J]. Journal of Power Sources, 2008, 180(1): 582-585
    [61] 田志宏,赵海雷.负极材料Li_4Ti_5O_(12)的蔗糖改性研究[J].电化学,2008,14(3):330-334
    [62] 贺慧,程璇.锂离子电池负极材料Li_4Ti_5O_(12)的结构和性能[J].材料研究学报,2007,21(1):82-86
    [63] 刘东强,赖琼饪,郝艳静.Li_4Ti_5O_(12)溶胶-凝胶法合成及其机理研究[J].无机化学学报,2004,20(7):829-832
    [64] 高剑,姜长印.锂离子电池负极材料球形Li_4Ti_5O_(12)的合成及其性能研究[J].无机材料学报,2007,22(1):176-180
    [65] Guofeng Yana, Haisheng Fanga. Ball milling-assisted sol-gel route to Li_4Ti_5O_(12) and its electrochemical properties[J]. Journal of Alloys and Compounds, 2009, 470(1-2): 544-547
    [66] 熊利芝,何则强,尹周澜,等.Li_4Ti_5O_(12)/石墨复合材料的湿法制备与表征[J].中国有色金属学报,2008,18(S1):S306-S309
    [67] Seo Hee Ju , Yun Chan Kang. Characteristics of spherical shape Li_4Ti_5O_(12) anode powders prepared by spray pyrolysis[J]. Journal of Physics and Chemistry of Solids, 2009, 70(3): 40-44
    [68] Y.C. Kang, S.H. Ju. Effects of preparation conditions on the electrochemical, morphological characteristics of Li_4Ti_5O_(12) powders prepared by spray pyrolysis [J]. Journal of Power Sources, 2009, 189(1): 185-190
    [69] Kuang-Che Hsiao, Shih-Chieh Liao. Microstructure effect on the electrochemical property of Li_4Ti_5O_(12) as an anode material for lithium-ion batteries [J]. Electrochimica Acta, 2008, 53(4): 7242-7247
    [70] M.W. Raja, S. Mahanty. Synthesis of nanocrystalline Li_4Ti_5O_(12) by a novel aqueous combustion technique[J]. Journal of Alloys and Compounds, 2009, 468 (12): 258-262
    [71] Tao Yuan, Rui Cai. Combustion synthesis of high - performance Li_4Ti_5O_(12) for secondary Li-ion battery[J]. Ceramics International, doi: 10.1016 / j. ceramint. 2008.10.01
    [72] Tao Yuan, KeWang. Cellulose-assisted combustion synthesis of Li_4Ti_5O_(12) adopting anatase TiO_2 solid as raw material with high electrochemical performance [J]. Journal of Alloys and Compounds, doi: 10.1016/j. jallcom.2008.10.08
    [73] 周芝骏,宁崇德.钛的性质及其应用[M].北京:高等教育出版社,1993:62-90
    [74] 杨绍利.钒钛材料[M].北京:冶金工业出版社,2007:40-50
    [75] 莫畏,邓国珠,陆德祯.钛冶金[M].北京:冶金工业出版社,1979:27-36
    [76] 安德生MA,鲁宾AJ.水溶液吸附化学[M].刘莲生等译.北京:科学出版社,1989:15-21
    [77] D.M.Adams, D.C.Newton. Vibrational Spectra of Halides and Complex Halides. Part Ⅵ: The Ions [MCl_6]~(2-), M=Ti, Zr, Hf[J]. J.Chem. Soc, 1968(A): 2262-2263
    [78] J.E.D.Davies, D.A.Long. The Vibrational Spectra of Titanium Tetrachloride-Hydrochloric Acid and Titanium Tetrachloride-Tri-n-butyl Phosphate Systems and the Hexachloro-anions of Zirconium(iv), Hafnium(iv), Niobium(v), and Tantalum (v) [J]. J. Chem. Soc, 1968(A): 2560-2564
    [79] 陈瑞澄.四氯化钛水解过程的研究[J].湿法冶金,1999,71(3):1-6
    [80] I.Cservenyak, G.H.Kelsall, et al. Reduction of Ti~Ⅳ species in aqueous sulfuric and hydrochloric acids I . Titanium speciation [J]. Electrachemica Acta, 1996, 41(4): 563-572
    [81] Hisahiko Einaga. Hydrolytic precipitation reaction of titanium(Ⅳ) from (Na,H)Cl aqueous solution [J]. J.inorg.nucl.Chem, 1981, 43(10): 2443-2448
    [82] Yunjiao Li, George P. Demopoulos. Precipitation of nanosized titanium dioxide from aqueous titanium(Ⅳ) chloride solutions by neutralization with MgO [J]. Hydrometallurgy, 2008 (90): 26-33
    [83] Zhang Q. H, Gao L. Preparation and characterization of nanosized TiO_2 powders from aqueous TiCl_4 solution[J]. Nanostructured Materials, 1999, 11 (8): 1293-1300
    [84] Yin.H.Wada, Y. Kitamura. Novel synthesis of phase-pure nano-particulate anatase and rutile TiO_2 using TiCl_4 aqueous solution[J]. Journal of Materials Chemistry, 2002, 12(2): 378-383
    [85]Yang S, Gao L. Preparation of titanium dioxide nanocrystallites with high photocatalytic activities[J]. Journal of the American Ceramic Society, 2005, 88(4): 968-970
    [86]Hong Kyu Park, Do Kyung Kim. Effect of solvent on Titania Particle formation and morphology in thermal hydrolysis of TiCl_4 [J]. Journal of the American Ceramic Society, 1997, 80(3): 743-749
    [87]李国华,郑遗凡.95℃水溶液体系中溶胶水解法制备纯金红石纳米粉体[J].无机化学学报,2005,21(8):1231-1236
    [88]孙静,高濂.TiCl_4水解条件对相转变的影响[J].无机材料学报,2003,18(2):505-508
    [89]张青红,高濂,郭景坤.四氯化钛水解法制备二氧化钛纳米晶的影响因素[J].无机材料学报,2000,15(6):992-997
    [90]Y. Abe, E. Matsui. Preparation of phase pure and well-crystallized Li_4Ti_5O_(12) nanoparticles by precision control of starting mixture and caicining at lowest possible temperatures [J]. Journal of Physics and Chemistry of Solids, 2007, 68(8): 681-686
    [91]Malgorzata M. Lencka, Richard E. Riman. Thermodynamic modeling of hydrothermal synthesis of ceramic powders[J]. Chemistry of Materials, 1993, 5(1): 61-70
    [92]张祥麟,康衡.配位化学[M].长沙:中南工业大学出版社,1986:91-98
    [93]贾志谦,刘忠洲.液相沉淀法制备纳米粒子的过程特征和原理[J].化学工程,2002,30(1):38-41
    [94]田玉明,黄平,冷叔炎.沉淀法的研究及其应用现状[J].材料导报,2000,14(2):47-48
    [95]梅燕,韩业斌,聂祚仁.反应温度对Ce_2(C_2O_4)_3·10H_2O粉体形貌和形成机理的影响[J].物理化学学报,2006,22(4):492-495
    [96]张克从,张乐潓.晶体生长科学与技术(第二册)上册[M].北京:科学出版社,1997:91-98
    [97]李懋强.湿化学法合成陶瓷粉料的原理和方法[J].硅酸盐学报,1994,22(1):85-90
    [98]郑忠编.胶体科学导论[M].北京:高等教育出版社,1989:17-31
    [99]Kleykamp H. Phase equilibria in the Li-Ti-O system and physical properties of Li_2TiO_3 [J]. Fusion Engineering and Design, 2002, 61-62: 361-366
    [100]路密,尹鸽平,程新群.第二十四届中国化学与物理电源学术年会论文集 [C].哈尔滨,2000:300-301
    [101] 李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990:34-45
    [102] Kunimitsu Kataoka, Yasuhiko Takahashi. Crystal growth and structure refinement of monoclinic Li_2TiO_3 [J]. Materials Research Bulletin, 2009, 44(5): 168-172
    [103] Marnix Wagemaker, Ernst R.H.vaneck. Li-ion diffusion in the equilibrium nanomorphology of spinel Li_(4+x)Ti_5O_(12) [J]. J. Phys. Chem, 2009,113(B): 224-230
    [104] Eitaro Matsui, Yuichi Abe. Solid-state synthesis of 70nm Li_4Ti_5O_(12) particles by mechanically activating intermediates with amino acids [J]. Journal of the American Ceramic Society, 2008, 91(5): 1522-1527

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700