LY12铝合金表面微弧氧化膜层制备及热阻隔应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天、航空工业中各种飞行器飞行速度不断提高,服役环境越来越恶劣,飞行器表面气动加热和热冲击问题十分突出。飞行器用材料要求具有足够高的强度和刚度,通常作为结构材料的铝合金难以承受如此高的热载荷,而限制了铝合金的广泛应用。因此必须对其表面进行热防护处理。微弧氧化技术在金属表面原位生长陶瓷膜,可以制备高结合强度、优良热稳定性和耐热冲击性能的膜层。本文针对微弧氧化膜层的上述特点,制备优良热阻隔性能的膜层。
     本文首先选定了硅酸钠体系做为制备热阻隔膜层的电解液体系。研究了不同反正向电流比j-/j+对微弧氧化电特性、生长速率及能耗的影响。结果显示:反向电流对放电过程产生调制作用,柔化了放电过程,提高了膜层的生长速率,降低了膜层的单位能耗。通过向电解液中添加氟锆酸钾的方式,大大提高了膜层生长速率,较Na_2SiO_3-KOH体系单位能耗大大降低,随着K2ZrF6浓度的提高,膜层生长速率提高,单位能耗降低。
     通过SEM及附带的能普和XRD测试分析了膜层的形貌、成分和结构。在Na_2SiO_3-KOH体系中,反向电流对微弧放电产生了柔化作用,对膜层的形貌、结构、成分产生了影响,使膜层的致密度提高。当j-/j+=0.5时,膜层中大缺陷消失,孔洞尺寸小,分布均匀,膜层质量最好,并使得膜层的晶体峰明显减少,非晶相增多。Na_2SiO_3-K_2ZrF_6-KOH体系中,反向电流的引入,改善了j-/j+=0时放电通道残留的孔洞尺寸,表面形成的“圆饼”尺寸小。截面形貌显示,与Na_2SiO_3-KOH体系中制备的膜层相比,膜层质量较好,且反向电流引入之后,膜层中的晶体相含量提高。各浓度下膜层的形貌和结构相差不大,膜层由内向外,Si和Zr元素含量逐渐升高。
     经微弧氧化处理之后,铝合金的拉伸性能基本上没有受到影响;耐磨性能提高,有效地保护了铝合金基体。热冲击测试显示,膜层与基体结合良好。对比分析可知,反向电流的引入提高了膜层与基体的结合力。LY12铝合金经微弧氧化处理之后,抗高温氧化性能提高。火焰烧蚀测试结果显示,微弧氧化膜层提高了LY12铝合金基体的抗火焰烧蚀能力。Na_2SiO_3-KOH体系中不同j-/j+对膜层隔热性能的研究表明,j-/j~+=0.5时膜层的隔热性能最好,15 min之后温度为180℃,比基体15 min之后的212℃低32℃。电解液中K_2ZrF_6的引入提高膜层的隔热性能。当K_2ZrF_6浓度为7 g/L厚度为90μm的膜层隔热性能最好,15 min后比基体温度低45. 5℃。
With the increasing need of high flight speed in space industry and aircraft industry, the components frenquently work in the harsh environment and temperature-rise and thermal shock on aerocrafts surface are quite severe, thus enough strength and rigidity of the utilized materials are necessary. Aluminum alloys, frequently as structural material of aerocrafts, can not bear such high heat effects and widely limited in the high-speed applications. Consquently thermal protection process is required. The micro-arc oxidation (MAO) technique, by which a compound ceramic coating grows in situ on Al, Ti, Mg and many other valve-metals directly, has been developed rapidly in recent years. The MAO coatings exhibit excellent combination of extremely high adhesion, thermal stability and thermal shock. In view of the features above, Coatings with excellent thermal resistance performance are expected to fabricate using MAO technics.
     Silicate system is chosen to prepare heat resistance coatings. The influence of different current ratio j-/j~+ (j- reprents the reverse current desity and j~+ reprents the positive current desity) on electric characteristics, growth rate and power consumption has been studied. The results show that the reverse current results in a“softer”effect on micro-discharges. The growth rate has been improved and the power consumption is reduced. By introducing K_2ZrF_6 to the solution, the growth rate is promoted greatly with lower power consumption.
     Micro-structure, element distribution and phase composition has been analyzed using SEM, EDS and XRD respectively. In Na_2SiO_3-KOH solution, the reverse current, which affects micro-structure and phase composition by changing discharge characteristics, improves the density of MAO coatings with fewer large-scale defects. Micro-discharges may be interrupted suddenly when the reverse current is applied, so melt materials cool very rapidly without crystallizing. This may reduce the number of crystal peaks. In Na_2SiO_3- K_2ZrF_6-KOH solution, the discharge channel and pancake become small. The MAO coatings are of good quality prepared in Na_2SiO_3- K_2ZrF_6-KOH solution compared with that produced in Na_2SiO_3-KOH solution. The reverse current also improves the quality of MAO coatings and increases the concentration of crystal phase. The content of Si and Zr gradually increase towards the external surface of MAO coatings.
     Tensile strength of aluminum substrates rarely changes and anti-wear performance has been enhanced after MAO process. This may protect LY12 aluminium alloy from severe wear.
     The thermal shock experiment shows high adhesion between substrate and coatings. Coatings prepared in Na_2SiO_3-K_2ZrF_6-KOH solution have higher adhesion, due to the effect of the reverse current. In the high temperature oxidation experiment the weight of the control samples increases quickly at the beginning and then slowly with increasing oxidation time. In contrast, the weight of the samples with MAO coatings decreases and then keeps unchangeable. Flame ablation experiment shows the MAO coatings may effectively protect substrates from flame ablation, j-/j~+ of 0.5 leads to the best heat insulation performance of coatings fabricated in Na_2SiO_3-KOH solution. By introducing K_2ZrF_6 to the solution, the heat insulation performance is improved. The 90μm coatings produced with the K_2ZrF_6 concentration of 7 g/L has the best heat insulation properties, i.e. the temperature on the surface is lower 45.5℃than that of untreated samples after 15 min exposure to 500℃.
引文
1王成,江峰. LY12铝合金钼酸盐转化膜及其耐腐蚀性.电镀与环保. 2001, 21(5):16~18
    2 Kurze P, Krysmann W, Schreckenbach J, et al. Coloured ANOF Layers on Aluminium. Crystal Research Technology. 1987, 22(1):53~58
    3 Wirtz G P, Brown S D, Kriven W M. Ceramic coatings by anodic spark deposition. Materials Manufacture Process. 1991, 6(1):87~115
    4 Krysmann W, Kurze P, Dittrich K H, et al. Process characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF). Crystal Research Technol. 1984, 19(7):973~979
    5蒋永锋,李均明,蒋百灵,等.铝合金微弧氧化陶瓷层形成因素的分析.表面技术, 2001, 30(2):37~39.
    6钟涛生,蒋百灵,李均明.微弧氧化技术的特点、应用前景及其研究方向.电镀涂饰. 2005, (6):47~50
    7 Miller Robert A. Current ststus of thermal barrier coatings-an overview. Surface Coatings Technology, 1987, 30:1~11
    8刘纯波,林锋,蒋显亮.热障涂层的研究现状与发展趋势.中国有色金属学报. 2007, 17(1):1~13
    9 Schulz U, Leyensa C, Fritscher K. Some recent trends in research and technology of advanced thermal barrier coatings . Aerospace Science and Technology, 2003, 7: 73~80.
    10 XU Huibin, GAO Hongbo, LIU Fushun, et al. Development of gradient thermal barrier coatings and their hot-fatigue behavior. Surface and Coatings Technology, 2000, 130: 133~139
    11 Miller Robert A. Thermal barrier coatings for aircraft engines: History and directions. Journal of Thermal spray Technology, 1997, 6(1):35~142
    12 Miller Robert A. Thermal barrier coatings for aircraft engines: History and directions. Journal of Thermal spray Technology, 1997, 6(1):35~142
    13刘淑艳.热障涂层用氧化锆空心球形粉末.西南大学博士论文. 2008:7
    14刘志,周宏.热障涂层研究进展.河海大学常州分校学报. 2006, 20(3):913
    15林锋,蒋显亮.热障涂层的研究进展.功能材料. 2003, 34(3):254~261
    16 Schilbe J E. Substrate alloy element diffusion in thermal barrier coatings . Surface and Coatings Technology. 2000, 133?134 : 35~39
    17 Lelait L, Alperin S, Merrel R. Alumina scale growth at zirconia-MCrAlY interface: a microstructural study. Journal of Materials Science. 1992, 27: 5~12
    18徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究.航空学报. 2001, 21: 7~12
    19李晓海,陈贵清,孟松鹤,等.热障涂层的研究进展.宇航材料工艺. 2004, (1): 1~6
    20 Goward G W. Progress in coatings for gas turbine airfoils. Surface and Coatings Technology. 1998, 108-109: 73~79
    21 wamy, S. Seetharamu, K.B.R. Varma et al. Evaluation of CaO-CeO2-partially stabilized zirconia thermal barrier coatings. Ceramics International. 1999, (25):317~324
    22 J. Manara, M. Arduini-Schuster, H. J. R?tzer-Scheibe. Infrared-optical properties and heat transfer coefficients of semitransparent thermal barrier coatings. Surface and Coatings Technology. 2009, 203(9):1059~1068
    23 Duvall D S, Ruckle DL. Ceramic thermal barrier coatings for turbine engine components. American Society Of Mechanical Engineers. 1982:82~32
    24 Sodeoka S, Suzuki M,Inoue T, et al. Thermal barrier coatings with two ZrO2 based ceramic layers. Surface Engineering. 1998, 14(2): 152~156
    25 Hengbei Zhao, Carlos G. Levi, Haydn N.G. Wadley. Vapor deposited samarium zirconate thermal barrier coatings. Surface and Coatings Technology. 2009, 203(20-21):3157~3167
    26 Chunbo Liu, Zhimin Zhang, Xianliang Jiang, et al. Comparison of thermal shock behaviors between plasma-sprayed nanostructured and conventional zirconia thermal barrier coatings. Transactions of Nonferrous Metals Society of China. 2009, 19 (1):99~107
    27 Yerokhin A L,Voevodin A A, LyubimovV V, et a.l Plasma electrolytic fabrication ofoxide ceramic surface layers for tribotechnicalpurposes on aluminium alloys. Surface and Coatings Technology. 1998, 110 (3):140~146.
    28薛文斌,邓志威,陈如意,等. LY12铝合金微弧氧化陶瓷膜的纳米压入研究.稀有金属材料与工程. 2001, 30(4): 282~285
    29薛文斌,邓志威,陈如意,等.钛合金在硅酸盐溶液中微弧氧化陶瓷膜的组织结构.金属热处理. 2000, 25(2): 5~7
    30 Sun X T, Jiang ZH, Xin SG, et al Composition andmechanical properties of hard ceramic coating containingα-Al2O3 produced by microarc oxidation on Ti6Al4V alloy. Thin Solid Films. 2005, 471:194~199
    31 WangYM, Wang FH, XuM J, et a.l Microstructure and corrosion behavior ofcoated AZ91 alloy bymicroarc oxidation for biomedical application. Applied Surface Science. 2009, 255: 9124~9131
    32 Liang J, Hu L, Hao J. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Applied Surface Science. 2007, 253: 4490~4496
    33张以忱,徐辉,郭元元.氧化时间对铝合金表面微弧氧化膜层的影响.见:巴德纯主编.第八届全国真空冶金与表面工程学术会议论文集,电子工业出版社. 2007, 196~202
    34阎峰云,范松岩,张文群,等.镁合金微弧氧化绿色陶瓷膜的制备.材料保护. 2008, 41(7):4~6
    35杨建,李元东,马颖,等. NaOH对铝合金A356微弧氧化膜形成及其耐腐蚀的影响.中国表面工程. 2008, 21(5):49~53
    36阎峰云,范松岩,张文群,等.镁合金微弧氧化绿色陶瓷膜的制备.材料保护. 2008, 41(7):4~6
    37刘超锋.压铸镁合金AZ91微弧氧化的研究进展. 2007年中国压铸、挤压铸造、半固态加工学术年会专刊. 2007:199~202
    38 J. L. Patel, N. Saka. Microplasmic coating. Amirical Ceramic Society of Bulletin. 2001, 80(4):27~29
    39 A.L. Yerokhin, V.V. Lyubimov, R.V. Ashitkov. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminum alloys. Ceramics International. 1998, 24(1): 1~6
    40 B. Kasalica, M. Petkovic, I. Belca, S. Stojadinovic, Lj Zekovic. Electronic transitions during plasma electrolytic oxidation of aluminum. Surfance and Coatings Technology. 2009, 203(20-21):3000~3004
    41 W.B. Xue, Z.W. Deng, R.Y. Chen, T.H. Zhang, H. Ma. Microstructure and properties of ceramic coatings on 2024 aluminum alloy by microarc oxidation. Journal of Materials Science. 2001, 36(11):2615~2619
    42 F.Y. Jin, K. Wang, M. Zhu, L.R. Shen, J. Li, H.H. Hong, P.K. Chu. Infrared reflection by alumina films produced on aluminum alloy by plasma electrolytic oxidation. Materials Chemistry and Physics. 2009, 114(1):398~401
    43 Sluginov N P. Electric discharges in water . Jounal of Russia Physical and Chemical Society. 1980, 12 (12) : 193
    44赵玉峰,杨世彦,韩明武.等离子体微弧氧化技术及其发展.材料导报. 2006, 20(6):102~104
    45薛文斌,邓志威,来永春,等.有色金属表面微弧氧化技术评述.金属热处理. 2000, (1):1~3
    46蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状和产业化前景.金属热处理. 2004, 29(1):23~29
    47左洪波,孔庆山,尚久琦,等.离子体增强电化学表面陶瓷化技术.材料保护. 1995, 28 (7): 21~222
    48吴汉华,汪剑波,龙北玉等.电流密度对铝合金微弧氧化膜物理化学特性的影响.物理学报.2005, 54(12):5743~5749
    49陈宏,冯忠绪,郝建民等.负脉冲对铝合金微弧氧化的影响.长安大学学报(自然科学版). 2007, 27(1):96~98
    50陈宏,郝建民.负脉冲对铝合金微弧氧化膜耐蚀性影响的研究.材料保护. 2007, 40(9):17~19
    51乌迪,刘向东,吕凯.负向电压与氧化时间对AZ91D微弧氧化膜层形成特性的影响.特种铸造及有色合金. 2008, 28(7):564~566
    52 Peibo Su, Xiaohong Wu, Yun Guo et al. Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60Mgalloy. Journal of Alloys and Compounds. 2009, 4785(1-2):773~777
    53 F.Jaspard-Mecuson, T.Czerwiec, G.Henrion et al. Tailored aluminium oxidelayers by bipola rcurrent adjustment in the Plasma Electrolytic Oxidation(PEO) process. Surface and Coatings Technology. 2007, (201) 8677~8682
    54吴振东.铝合金表面原位生长陶瓷膜及摩擦磨损与耐蚀研究.哈尔滨工业大学博士论文. 2007:54~90
    55 Haihe Luo, Qizhou Cai, Bokang We, et al. Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation. Journal of Alloys and Compounds. 2009, 474(1-2):55~556
    56 Haihe Luo, Qizhou Cai, Jian He, et al. Preparation and properties of composite ceramic coating containing Al2O3– ZrO2– Y2O3 on AZ91D magnesium alloy by plasma electrolytic oxidation. Journal of Alloys and Compounds. 2009, 9(6): 1341~1346
    57 Zhongping Yao, Yanli Jiang, Zhaohua Jiang. Preparation and structure of ceramic coatings containing zirconium oxide on Ti alloy by plasma electrolytic oxidation. Journal of Materials Processing Technology. 2008, 205(1-3) :303~307
    58 E. Matykina, R. Arrabal, F. Monfort, P. Skeldon, et al. Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions. Applied Surface Science. 2008, 255:2830~2839
    59 Wei Shang, Baizhen Chen, Xichang Shia, et al. Electrochemical corrosion behavior of composite MAO/sol–gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol–gel technique. Journal of Alloys and Compounds. 2009, (474):541~545
    60席晓光.微弧氧化技术述.表面技术,2007, 36(4):66~67
    61 Xin Shi-Gang, Song Li-Xin, Zhao Rong-Gen et al. Properties of aluminium oxide coating on aluminium alloy produced by micro-arc oxidation. Surface and Coatings Technology. 2005, 199:184~188
    62 Zhongping Yao, Zhaohua Jiang, Fuping Wang, et al. Oxidation behavior of ceramic coatings on Ti–6Al–4V by micro-plasma oxidation. Journal of Materials Processing Technology. 2007, 190: 117~122
    63 J. C. Tan, S. A. Tsipas, I. O. Golosnoy, et al. A steady-state Bi-substrate technique for measurement of the thermal conductivity of ceramic coatings. Surface and Coatings Technology. 2006, 201: 1414~1420
    64 J.A. Curran, T.W. Clyne. The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium. Surface and Coatings Technology. 2005, 199:177~183
    65 J.A. Curran, H. Kalkanc? , Yu. Magurova. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications. Surface and Coatings Technology. 2007, 201 :8683~8687
    66王亚明,崔艳芹,侯正全. LY12铝合金微弧氧化/树脂填料复合涂层的组织与防热性能.金属热处理. 2010, 35(3):7~12
    67 R. Arrabal, E. Matykina, T. Hashimoto, et al. Characterization of AC PEO coatings on magnesium alloys, Surface and Coatings Technology. 2009, 203(16): 2207~2220
    68 Magurova. Yu V, Timoshenko.A V Zashch. Met. 1995 (31):414 (in Russian) (for English translation see Prot. Met. ISSN 0033~1732)
    69 A L Yerokhin, L O Snizhko, N L Gurevina et al. Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D: Applied. Physics. 2003, 36: 2110~2120
    70 L.Dujardin, A.Viola, J.Beauvir. Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process. Surface and Coating Technology. 2007, 201:8677~8682
    71 Xuetong Sun, Zhaohua Jiang, Zhongping Yao et al. The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology. Applied Surface Science. 2005, 252: 441~447
    72 Shigang Xin, Lixin Song, Ronggen Zhao et al. Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films. 2006, 515:326 ~332
    73骆海贺. AZ91D镁合金微弧氧化ZrO2-Y2O3复合陶瓷膜层的制备表征及性能研.华中科技大学博士论文. 2009:23
    74张欣盟,陈东方,巩春志,等. K2ZrF6添加对LY12铝合金微弧氧化膜层结构调制及隔热性能影响,无机材料学报, 1000-324X(2010)01-0000-06
    75 Zhong ping Yao, Zhao hua Jiang, Xue tong Sun, et al. Influences of current density on structure and corrosion resistance of ceramic coating sonTi-6Al-
    4V alloy by micro-plasma oxidation, Thin Solid Films. 2004, 468:120~125
    76陈宏,郝建民.负脉冲对铝合金微弧氧化膜耐蚀性影响的研究,材料保护. 2007, 40(9):17~19
    77 S. Moon, Y. Jeong. Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions. Corrosion Science. 2009, (51): 1506~1512
    78 Wenbin Xue, Zhiwei Deng, Ruyi Chen et al. Growth regularity of ceramic coatings formed by microarcoxidation on Al-Cu-Mg alloy. Thin Solid Films. 2000, 372:114~117
    79 XiShu Wang, XiQiao Feng, XingWu Guo. Failure behavior of anodized coating-magnesium alloy substrate structures. Key Engineering Materials Vols. 2004, 261-263:363~368
    80 K. Wu, Y.Q. Wang, M.Y. Zheng. Effects of microarc oxidation surface treatment on the mechanical properties of Mg alloy and Mg matrix composites. Materials Science and Engineering A. 2007, 447: 227~232
    81 P.A. Dearnley, J. Gummersbach, H. Weiss, et al. The sliding wear resistance and frictional characteristics of surface modified aluminium alloys under extreme pressure. Wear, 1999, (225–229): 127~134
    82 Yongjun Xu, Zhongping Yao, Fangzhou Jia et al. Preparation of PEO ceramic coating on Ti alloy and its high temperature oxidation resistance. Current Applied Physics, 2010, 10:698~702

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700