以氨基酸为有机质仿生合成碳酸钙
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在生物矿化理论的引导下,以无机纳米及微米结构材料的仿生合成工作为宗旨,将最主要的生物材料——碳酸钙作为研究对象,利用仿生合成技术,制备出具有多种特殊精美形貌的碳酸钙材料,并对其结构和形貌进行表征。
     以天冬氨酸为有机质,采用碳化的方法,制备出分散性很好的方解石纳米碳酸钙粒子,通过控制反应的条件,可以制备出花状、枝状、短链状等多种形貌碳酸钙粒子。首次在甲硫氨酸存在的条件下,采用液相法,合成由纳米碳酸钙微粒自组装形成的类姜状球霰石碳酸钙粒子,根据其合成的粒子表征,提出了合理的机理,并在此基础上加深对仿生矿化理论的理解。
     将丙氨酸加入到碳化体系中,在其为有机质诱导作用下,通过温度、浓度等条件控制,制备出花状、枝状的碳酸钙粒子。以组氨酸为有机质,液相诱导合成针状碳酸钙,有利于其在工业上广泛应用。
     本论文将与生命体相关的氨基酸引入到碳酸钙的仿生合成过程中,通过实践合成了多种特殊形貌和多种晶型共存的碳酸钙材料。在此基础上的理论探讨是对仿生矿化概念的深化,有望为今后的工业生产提出新的指导思路。
Biological mineral is the step which minerals are becoming in organism, in fact, they are very important components of organism and high-performance composite materials. The most immediately striking aspect of biomaterials is the range of exquisite and unique morphologies, which are frequently disparate from their synthetic counterpart. Typical products of biomineralization are bones, teeth, shells, pearls, and so on. The general principles of biomineralization are introduced into the synthesis process of inorganic materials. Simulating the biomineralization process of the nucleation and growth of inorganic materials mediated by organic matrixes and biomimetic synthesis of inorganic materials with higher performance and more exquisite morphologies have become the focus of material science.
     CaCO3 is one of the important fillers used in the industries of plastics, rubber, paint, and so on. As an important harvest of nanotechnology, nanoparticles have attracted many attentions in the field of materials science. However, the nano-CaCO3 is easily aggregated because of small particle size, high surface activity and energy. Controlling the particle size during the preparation process, avoiding the aggregation of particles and inducing the powders to re-disperse in the medium are‘hot topics’in the field of nanomaterials. Surface modification of CaCO3 would lead to a great expansion in its applications since mineral particles are hardly dispersed in a polymer matrix.
     According to the general principles of biomineralization, we used amino-acid as the organic template, which can efficiently interact with CaCO3 crystal, to control the polymorphs and the morphologies of CaCO3. These as-prepared CaCO3 materials with unusual morphologies can be potentially promising candidates for advanced materials due to the importance of shape and texture in determining properties of materials. The amino acids in organisms constitute the basic units of protein molecules, the organisms with the most basic life activities related to substances and biological activities of life are closely related. It is an indispensable component of nutrition with a special antibody in the physiological function of the body
     In this paper, we synthesize calcium carbonate and modified the calcium carbonate surface with new ideas. In accordance with the basic principles of biomineralization, we select amino acids as the template to regulate calcium carbonate growth and crystal morphology. Series calcium carbonate materials with special profiles synthesize in biomimetic ways and this depth study provides a theoretical and experimental basis.
     Aspartate is used as organic substrate to biomimetic synthesize calcium carbonate. The different weight of aspartate was dissolved in deionized water with stirring. Put it into the aged calcium hydroxide slurry, let them react at room temperature with stirring for 0.5 h, then the liquid was transferred into the cube reactor, carbon dioxide and nitrogen-gas mixture are introduced into the reactor, finally, nano-particles (diameter approximately 40 nm around), the flower-like calcium carbonate crystals, branched calcium carbonate crystals, short-chain (average diameter of about 30 nm), irregular morphology and calcium carbonate crystals with good dispersion have been synthesized. From the X-ray test results we can know the products are all calcite with high purity, also, infrared spectroscopy indicate that ion bond of aspartate reacts with calcium carbonate. All these proved that aspartate can control the crystal size and morphology of calcium carbonate, and we will reach nano-sized calcium carbonate. From the test, we can know that the structure of organic molecule is the key to control the formation if special nuclei in the mineralization step.
     Methionine was used as organic substrate, biomimetic synthesized calcium carbonate in liquid phase. 20 mg methionine was put into calcium chloride solution, stirred till the solid dissolved in the mixture. Then we dropped the mixture into sodium carbonate solution slowly with stirring. Aged for 30 minutes after dropping, a unique morphology of ginger-like calcium carbonate was becoming. From scanning electron microscope photographs, we can see that the ginger-like calcium carbonate and irregular hexagon calcium carbonate are together in the picture. From the view of overall photos, the ginger-like calcium carbonate comes from the irregular cube; from the view of partial enlarge pictures, we can see that the ginger-like morphology are made of 100-200nm self-assembled particles under the induction effect of methionine. The X-ray powder results show that the products are consisted of calcite and vaterite. In the picture of infrared spectra, CH3 and -CH2 stretching vibration peak which belongs to methionine can be seen clearly. This can prove that methionine do react during the formation of calcium carbonate and TGA results also prove the above ideas. In the system in the presence of methionine, vaterite can exist at the end of test, it means methionine can prevent the transition from vaterite to calcite in the solution.
     This may be the existence of methionine can reduce the vaterite surface energy and stabilize the vaterie. The procedure may be due to the C=O bond with negative charge in amino acids lean to oxygen atoms, Ca2+ with positive charge was attracted by this, then CO32- combined with the chelate material of amino acid with Ca2+, this would be the critical particles of vaterite.
     The multi-shaped calcite particles have been biomimetically synthesized through the carbonation route, in which CO2 gas at a constant gas feed rate of 0.1 L/min is bubbled through aqueous slurry of calcium hydroxide, in the presence of alanine acid (ALA) and different temperature was selected. The effects of the reaction temperature and the concentration of ALA on the nucleation and growth of calcite were investigated. The possible growth mechanism of the calcite particles was discussed. This research not only can make us further understood the general principles of biomineralization, but also can open up a new avenue of industrial production of CaCO3 particles with exquisite and unique morphologies due to the preparation method employed by us is simple, low-cost, mild condition.
     Exquisite and unusual needle-shaped CaCO3 particles were successfully biomimetically synthesized through a facile precipitation reaction of Na2CO3 with CaCl2 in the presence of histidine(HIS). The X-ray powder results showed that the products were consisted of calcite. From SEM picture, we could see that the needle-like morphology was made of 20-40nm self-assembled particles. The imitation of biological mineralization, which reflect the structure between inorganic materials and organic matrix and specific requirements of stereochemistry.
     In this paper, we attempted a biomimetic method to obtained CaCO3 with special properties, introduced a novel ideal to synthesis CaCO3 under the control of amino acids. For the benefits of simple, uninterrupted and inexpensive products, this innovatory technique has potential use in application and guide meaning in large-scale industrialization manufacture of CaCO3.
引文
[1].戴永定,沈继英,生物系统中的矿物[J].动物学杂志,1995,30(4),58-61.
    [2]. S. Mann, Biomineralization: Principles and concepts in bioinorganic materials chemistry[M]. Oxford University Press, 2001, 6.
    [3]. Addadi L., Weiner S. Biom ineralization—Crystals, asymmetry and life [J]. Nature, 2001, 411 (6839), 753-755.
    [4].毛传斌,李恒德,崔福斋,冯庆龄,王浩,无机材料的仿生合成[J].化学进展,1988,10(3),246-254.
    [5]. I. A. Aksay, M. Traus, S. Mann, I. Honma, N. Yao, L. Zhou, P. Fenter, P. M. Eisenberger, S. M. Gruner, Biominetic pathways for assembling inorganic thin films[J]. Science, 1996, 273, 892-898.
    [6]. T. Ogoshi, H. Itoh, K. M. Kim, Y. Chujo, Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex[J]. Macromolecules, 2002, 35, 334-338.
    [7]. Weiner S, Addadi L. Design strategies in mineralized biological materials[J]. J Mater Chem, 1997, 7 (5), 689.
    [8]. W. Dominic, D. Jeremy, S. Mann, Crystal Tectonics: Construction of Reticulated Calcium Phosphate Frameworks in Bicontinuous Reverse Microemulsions[J]. Nature, 1994, 264, 1576-1578.
    [9]. A. H. Heuer,D. J. Fink,V. J. Laraia, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackwell, P. C. Rieke, D. H. Thompson[J]. Science, 1992, 255, 1098-1105.
    [10]. K. M. Kim, K. Naka, Y. Chujo, Preparation of hydrophobic CaCO3 compsodite particles by mineralization with sodium trisilanolate in a methanol solution[J]. J. Mater. Chem., 2002, 12, 2449-2452.
    [11].夏和生,王琪,聚合物纳米材料研究进展Ⅰ-纳米聚合物[J].化学研究与应用,2002,14(l),27-30.
    [12]. H. Lin, H. Sakamoto, W. S. Seo, K. Kuwabara and K. Koumoto, Crystal Growth of Lepidocrocite and Magnetite under Langmuir Monolayers[J]. Cryst. Growth,1998,192, 250-256.
    [13].王满、潘兆橹、翁玲宝,系统矿物学(下册)[M].北京:地质出版社,1987.
    [14].戴永定,生物矿物学[M].北京:石油工业出版社,1994.
    [15]. Schmidt, W.J., Dic Bausteine des Tierkorpers in Polarisiertem Lichte[J]. Cohen Verlag, Bonn, 1924.
    [16]. Bggild, 0.B., The shell structure of the mollusks[J]. Nature, 1930, 9, 233-326.
    [17]. Austin, S.R., Academic[M]. London, 1924.
    [18]. Lowenstam, H.A., Biomineralization processes and products and theevolution of biomineralization[J]. Science, 1984, 1(2), 79-95.
    [19]. Lowenstam, H.A., Kirschvink, J.L., Iron biomineralization a geobiological perspective[J]. Biom Magn.Org, 1985, 3-15.
    [20]. Lowenstam, H.A., Mineralization processes in monerans and protoctists[J]. Biomi in Lower Plants and Animals, 1986, 1-17.
    [21]. Lowenstam, H.A., Wein, On biomineraliztion[J]. Biomineraliztion, 1989, 324-336.
    [22]. Simkiss, K., Wilbur, K.M., Biomineralization: Cell Biology and Mineral Deposition[M]. New York: San Diego Academic, 1989, 337-339.
    [23]. Mann, S., Webb, J., Williams, R.J.P., Biomineralization:Chemical Perspectives[J]. Biom Chem Pers, 1989, 541.
    [24]. Lowenstam, H.A., Minerals formde by organisms[J]. Science, 1981, 211(4487), 1126-1131.
    [25]. Yang, R. A., Brown, W.E., Structures of Biological Minerals [J]. Biol Min and Demin, 1982, 101-142.
    [26]. K. Severin, K. Johnsson, 37th ESF/EUCHEM Conferenceon Stereochemistry[J]. CHIMIA, 2002, 56(7-8).
    [27]. J. R. Young, S. A. Davis, P. R. Bown, S. Mann, Structural biology, 1999, 126, 195.
    [28].薛中会,武超,戴树玺,杜祖亮,生物矿化研究进展[J].河南大学学报(自然科学版),2003,3,21-25.
    [29].姜国良,陈丽,刘云,贝壳有机基质与生物矿化[J],海洋科学,2002,26,16-18.
    [30]. A. Krysztafkiewicz, T. Jesionowski, S. Binkowski, Precipitated silicas modifiedwith 3-amino propyltrie thoxy silane[J]. Colloids Surf. A: Physicochemical Eng. Aspects, 2000, 173, 73-84.
    [31]. I. Samuel, V. Stupp Paul, Braun, Molecular manipulation of microstructures: biomaterial sceramics and semiconductors[J]. Science, 1997, 277, 1242-1248.
    [32]. X. K. Zhao, J. Yang, L. D. Mc Cormick, J. H. Fendler, Epitaxial Formation of PbS Crystals under Arachidic Acid Monolayers[J]. J. Phys. Chem., 1992, 96, 9933-9939.
    [33]. A. Laro, Estroff, D. Andrew, Hamilton,At the Interface of organic of Composite Materials[J]. Chem. Mater., 2001, 13, 3227-3235.
    [34]. K. M. McGrath, Probing Material Formation in the Presence of Organic and Biological Molecules[J]. Advanced Materials, 2001, 13, 989-992.
    [35].仲维卓,华素坤,晶体生长形态学[J].科学出版社,1999,114-123.
    [36].姚连增,晶体生长基础[M].北京:中国科学技术大学出版社,1995,29-291.
    [37]. M. J. Lochhead, S. R. Letellier, V. Vogel,Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged monolayers[J]. J. Phys. Chem., 1997, 101B, 6665-6669.
    [38]. C. A. WanAndrew, G. W. Hasting, E. Khor, The influence of anionic hitinder ivativeson calcium phosphate crystallization[J]. Biomaterials, 1998, 19, 1309-1316.
    [39].郝保红,黄俊华,晶体生长机理的研究综述[J].北京石油化工学院学报,2006,14(2),58-64.
    [40]. C. Denis, E. Cline, R. Ramin, B. Sylvain, D. Guy, F. Yannick, P. Marc,Effect of fibronectinon hydroxyapatite formation[J]. Journal of Inorganic Biochemistry, 1999, 73, 129-136.
    [41]. W. L. Murphy, D. J. Mooney,Bioinspired Growth of Crystalline Carbonate Apatite on Biodegradable Polymer Substrata[J]. J. Am .Chem. Soc., 2002, 124, 1910-1917.
    [42].李斌,张希,白玉白,徐如人,磷脂酰胆碱LB单分子膜诱导下KDP晶体取向生长的研究[J].高等化学学报,2000,21,185-186.
    [43].曾鑫华,欧阳健明,郑文杰,姚秀琼,雷远江,杨芳,二棕榈磷脂酰胆碱LB膜诱导下草酸钙晶体生长的SEM研究[J].暨南大学学报(自然科学版), 2001,22,70-73.
    [44].王荔军,李敏,李铁津,王运华,张福锁,植物体内的纳米结构SiO2[J].科学通报,2001,46,625-632.
    [45]. J. H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry[J]. Chem. Rev., 1987, 87, 877-899.
    [46]. C. M. Zaremba, A. M. Belcher, M. Fritz, Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls[J]. Chem. Mater. 1996, 8(3), 679.
    [47]. R. Lakshminamyanan, R. M. Kini, S. Valiyaveeuil, Supramolecular Chemistry And Self-assembly Special Feature: Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix[J]. PNAS, 2002, 99(8), 5155.
    [48]. M. Cusack, A. C. Fraser, Eggshell Membrane Removal for Subsequent Extraction of Intermineral and Intramineral Proteins[J]. Cryst.Growth Design, 2002, 2(6), 529.
    [49]. G. Falini, S. Albeck, S. Weiner, et al, Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules[J]. Science 1996, 271, 67.
    [50]. H. A. Lowenstarn, D. P. Abbot, Vaterite a mineralization product of the hard tissues of a marine organism [J]. Science, 1975, 188(4186), 363.
    [51]. J. Aizenberg, G. Lambert, S. Weiner, Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate A Study of an Ascidian Skeleton[J]. J. Am. Chem. Soc. 2002, 124(1), 32.
    [52]. L. Addadi, S. Raz, S. Weiner, Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization[J]. Adv. Mater. 2003, 15(12), 959-970.
    [53]. M. G. Taylor, V. Vasil, I. K. Vasil, Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize uhiquitin-based plasmid pAHC25[J]. Plant Cell Reports, 1993,12(9),491-495
    [54]. P. Fratzi, S. Schreiber, P. Roscher, Effect of sodium fluoride and alendronate on the bone mineral in minipigs[J]. J. Bone and Mineral Research, 1996, 11(2), 248-253
    [55]. T. Ikoma, H. Kobayashi, J. Tanaka, et al, Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major[J]. J. Struct. Biol. 2003, 142(3), 327-333.
    [56]. A. Bigi, M. Burghammer, R. Falconi, Twisted Plywood Pattern of CollagenFibrils in Teleost Scales An X-ray Diffraction Investigation[J]. J. Struct. Biol, 2001, 136(2), 137.
    [57]. I. Leveque, M. Cusack, S. A. Davis, Promotion of Fluorapatite Crystallization by Soluble-Matrix Proteins from Lingula Anatina Shells[J]. Angew. Chem. lnt. Ed, 2004, 43(7), 885-888.
    [58]. O. Susuki, H. Yagishita, T. Amano, Reversible structural changes of octacalcium phosphate and labile acid phosphate[J]. J. Dental Res, 1995, 74(11), 1764.
    [59]. V. Franceschi, H. Homer, Calcium oxalate crystals in plants[J]. Bot. Rev., 1980, 46(4), 361-372.
    [60]. N. Bouropoulos, S. Weiner, L. Addadi, Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules[J]. Chemistry, 2001, 7(9): 1881-1888.
    [61]. G. A. Horridge, The Responses of Heteroxenia (Alcyonaria) to Stimulation and to some Inorganic Ions[J]. J. Exp Biol, 1956, 33, 604-614.
    [62]. W.S. Broecker, T.H. Peng, The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change[J]. Global Biogeochemical Cycle, 1987, 1, 15–39.
    [63]. L. W. Fritz, L. M. Ragonc, R. A. Lutz, Twentieth-century salinity and water-level fluctuations in Davils Lake, N. Dakota A test of a diatom-based transfer function, Limnol[J]. Oceanogr, 1990, 35(3), 1771-1781.
    [64]. P. D. Deckker, On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios[J]. Hydrobiologia 2004, 517(1-3), 1-13.
    [65]. Ph. Willenz W. D. Hartman, Micromorphology and ultrastructure of Caribbean sclerosponges[J]. Marine Biology, 1989, 103(3), 387-401.
    [66]. N. Kroger, M. Sumper, Weinheim Wiley-VCⅱ, 2000, 151.
    [67]. K. O. Konhauser, V. R. Phoenix, S. H. Bottrell, Microbial–silica interactions in Icelandic hot spring sinter possible analogues for some Precambrian siliceous stromatolites[J]. Sedimentology, 2001, 48(2), 415.
    [68]. A. G. Sangster,L. Ling, Frédéric Gérard, Martin J. Hodson, Acid Rain-Deposition to Recovery[M]. New York, 1981, 383.
    [69]. Y. A. Gorby, T. J. Beveridge, Characterization of the bacterial magnetosome membrane[J]. Bacteriol., 1988, 170(2), 834-841.
    [70]. J. L. Kirschvink, A. Kobayashi-Kirschvink, B. J. Woodford, Magnetite Biomineralization in the Human Brain[J]. PNAS, 1992, 89(16), 7683-7687.
    [71]. H. A. Lowenstam, Goethite in Radular Teeth of Recent Marine Gastropods[J]. Science, 1962, 137(3526), 279-280.
    [72]. X. Chatellier, D. Fortin, M. M. West, Effect of the presenceof bacterial surfaces during the synthesis of Fe oxides by oxidation of ferrous ions[J]. Eur. J. Mineral., 2001, 13(4), 705-714.
    [73]. H. Mann, K. Fazaki, W. S. Fyfe, Cellular lepidocrocite precipitation and heavy-metal sorption in Euglena sp[J]. Chem. Geol., 1987, 63(1-2), 39-43.
    [74]. J. A. Sawicki, D. A. Brown, T. J. Beveridge, Microbial precipitation of siderite and protoferrihydrite in a biofilm[J]. Can. Mineral., 1995, 33, 1-6.
    [75].张刚生,谢先德,CaCO3生物矿化的研究进展——有机质的控制作用[J].地球科学进展,2000,15(2),204-209.
    [76].王一平,朱丽,李韡,胡彤宇,廖明锋,冀秀玲,仿生合成技术及其应用研究[J]. 2001,18(5),272-278.
    [77].葛明桥,材料学科研究的新领域——仿生材料[J].南通工学院学报,2000,16,1-2.
    [78]. S. Mann, Webb J. Biomineralization: Chemical and Biochemical PersμPectives[M]. New York :VCH Publishers, 1989, 124.
    [79]. F. C. Meldrum, V. J. Wada, D. L. Nimmo, Synthesis of inorganic nanophase materials in supramolecular proteincages[J]. Nature, 1991, 349, 684-687.
    [80]. B. R. Heywood, S. Mann, Molecular construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed Langmuir monolayers[J]. Chem. Mater., 1994, 6, 311-318.
    [81]. S. Mann, B. R. Heywood, S. Rajam, Structural and stereochemical relationships between Langmuir monolayers and calcium carbonate nucleation[J]. J. Phys. D. Appl. Phys., 1991, 24, 154-164.
    [82]. G. F. Xu, N. Yao, I. A. Aksay, J. T. Groves, Biomimetic synthesis of macroscopic-scale calcium carbonate thin films, Evidence for amultistep assembly process[J]. J. Am. Chem. Soc., 1998, 120, 11977-11985.
    [83]. G. M. Bond, R. H. Richman, W. P. Mcnaughton, Mimicry of natural material designs and processes[J]. J. Mater. Eng. Perform., 1995, 4, 334-345.
    [84]. M. Vu?ak, J. Peri?, M. N. Pons, S. Chanel, Morphological development in calcium carbonate precipitation by the ethanolamine process[J]. Powder Technology, 1999, 101, 1-6.
    [85]. D. Walsh, S. Mann, Fabrication of hollow porous shells of calcium carbonate from self-organizing media[J]. Nature, 1995, 377, 320-324.
    [86]. A. Sellinger, P. M. Weiss, A. Nguyen, Y. Lu, R. A. Assink, W. Gong, C. J. Brinker, Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre[J]. Nature, 1998, 394, 256-260.
    [87]. S. Oliver, A. Kuperman, N. Coombs, A. Lough, G. A. Ozin, Lamellar alumino phosphates with surface patterns that mimic diatomand radiolarian micro skeletons[J]. Nature, 1995, 378, 47-50.
    [88]. F. Z. Cui, L. F. Zhou, H. Cui, C. L. Ma, H. B. Lu, H. D. Li, Phase diagram for controlled crystallization of calcium phosphate under acidic organic monolayers[J]. J. Cryst. Growth, 1996, 169, 557-562.
    [89]. H. B. Lu, C. L. Ma, H. Cui, L. F. Zhou, R. Z. Wang, F. Z. Cui, Controlled crystallization of calcium phosphate under stearic acid monolayers[J]. J. Crystal Growth, 1995, 155, 120-125.
    [90]. C. L. Ma, H. B. Lu, R. Z. Wang, L. F. Zhou, F. Z. Cui, F. Qian, Comparison of controlled crystallization of calcium phosphates under three kinds of monolayers[J]. Crystal Growth, 1997, 173, 141-149.
    [91].刘海涛,杨郦,张树军,林蔚,无机材料合成(第一版)[M].北京:化学工业出版社,2003,343.
    [92]. L. A .Aksay, M. Trau, S. Manne, Biomimetic Pathways for Assembling Inorganic Thin Films[J]. Science 1996, 273(5277), 892-898.
    [93]. H. Yang, A. Kuperman, N. Coombs, Synthesis of oriented films of mesoporous silica on mica[J]. Nature 1996, 379, 703-705.
    [94]. C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al.,Ordered meso-porous molecular sieves synthesized by aliquid-crystal template mechanism[J]. Nature, 1992, 359, 710-712.
    [95].夏和生,王琪,聚合物纳米材料研究进展Ⅱ-聚合物∕无机纳米复合材料[J].化学研究与应用,2002,14(2),127-132.
    [96]. B. L. Smith, Molecular mechanistic origin of the toughness of natural adhesives,fibers and composite[J]. Nature, 1999, 399, 761.
    [97]. D. Kralj, L. Brecevic, A. E. Nielsen, Vaterite growth and issolution in aqueous solution I. Kinetics of crystal growth[J]. J. Cryst. Growth, 1990, 104, 793-800.
    [98]. H. A. Lowenstam, Minerals formed by organisms[J]. Science, 1981, 211, 1126-1131.
    [99]. T. Ogino, N. Tsunashima, T. Suzuki, M. Sakaguchi, K. Sawada, Nippon Kagaku Kaishi, Nippon Kagaku Kaishi, 1988, 6, 899-905.
    [100]. D. K. Keum, K. M. Kim, K. Naka, Y. Chujo, Polym. Prepr. Jpn., 2001, 50, E564.
    [101]. L. A. Gower, D. A. Tirrell, Calcium carbonate films and elices grown in solutions of poly[J]. J. Cryst. Growth, 1998, 191, 153-160.
    [102]. G. Xu, N. Yao, I. A. Akasay, J. T. Groves, Biomimetic Synthesis of Macroscopic-Scale Calcium Carbonate Thin Films. Evidence for a Multistep Assembly Process[J]. J. Am. Chem. Soc., 1998, 120, 11977-11985.
    [103]. D.Verdoes, D. Kashichiev, G. M. van Rosmalen, Determination of nucleation and growth rates from induction times in seeded and unseeded precipitation of calcium carbonate[J]. J. Cryst. Growth, 1992, 118, 401-413.
    [104]. S. Boggavarapu, J. Chang, P. Calvert, A test for mineralization inhibition for calcium salts using agarose hydrogels[J]. Mater. Sci. Eng. C., 2000, 11, 47-49.
    [105]. J. M. Didymus, P. Oliver, S. Mann, A. L. Devries, P. V. Hauschka, P. Westbroek[J]. Chem. Soc., Faraday Trans. 1993, 89, 2891.
    [106]. H. C?lfen, M. Antonietti, Crystal Design of Calcium Carbonate Microparticles Using Double-Hydrophilic Block Copolymers[J]. Langmuir, 1998, 14, 582-589.
    [107]. H. C?lfen, L. Qi, A Systematic Examination of the Morphogenesis of Calcium Carbonate in the Presence of a Double-Hydrophilic Block Copolymer[J]. Chem. Eur. J., 2001, 7, 106.
    [108]. M. Sedlák, M. Antonietti, H. C?lfen, Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals[J]. Macromol. Chem. Phys., 1998, 199, 247-254.
    [109]. S. Weiner, Y. Talmon, W. Trabu, Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase[J]. Int. J. Biol. Macromol, 1983, 5, 325-328.
    [110]. A. Berman, D. J. Ahn, A. Lio, Total Alignment of Calcite at Acidic Polydiacetylene Films Cooperativity at the Organic-Inorganic Interface[J]. Science, 1995, 269, 515.
    [111]. A. Wierzbicki, C. S. Sikes, J. D. Madura, B. Drake, Atomic force microscopy and molecular modeling of protin and peptide binding to calcire [J]. Calcif Tissue Int, 1994, 54, 133-141.
    [112]. Y. Levi, S. Albeck, A. Brack, S. Weiner, L. Addadi, Control Over Aragonite Crystal Nucleation and Growth: An In Vitro Study of Biomineralization [J]. Chem. Eur. J., 1998, 4, 389-396.
    [113]. Wu, T. M., J. P. Rodriguez, D. J. Finck, D. A. Carrino, J. Blackwell,A. I. Caplan, and A. H. Heuer, Crystallization studies on avian eggshell membranes: Implication for the molecular factors controlling eggshell formation.[J]. Matrix Biol., 1994, 14, 507-513.
    [114].邢其毅,徐瑞秋,周郑,裴伟伟,基础有机化学(第二版)[M].北京:高等教育出版社,1994,1007-1012.
    [1].马毅璇,纳米碳酸钙及其应用[J].涂料工业,2000,10,392-421.
    [2].潘鹤林,活性CaCO3粉末表面性能研究[J].无机盐工业,1997,1,112-121.
    [3].胡庆福,胡晓波,刘宝树,纳米碳酸钙制造及其应用[J].非金属矿,2000,23,24-26.
    [4].樊蕾,王治刚,张松国,内外超细碳酸钙生产技术[J].云南化工,2000,27,33-34.
    [5]. F. Erika, B. Pukánszky, A. Tóth, I. Bertóti, Surface modification and characterization of particulate mineral fillers[J]. J Colloid Interface Sci., 1990, 135, 200.
    [6]. J. Josef, J. Ku era, Yield behavior of polypropylene filled with CaCO3 and Mg(OH)2[J]. Polymer Engineering of Science, 1990, 30, 707-713.
    [7].姚凌,孔翠英,王锦明,谢祖德,王荣海,PC/PET/弹性体合金的研制[J].中国塑料,1991,20,15.
    [8].李其正,塑料加工与应用[M].北京:北京科技出版社,1987,1,35.
    [9]. S. J. Moute, Additives for Plastics, 1978, 2, 63.
    [10].邵长生,沈钟,刘春林,孙载坚,陈华娟,碳酸钙的吸附和表面有机化改性[J].江苏工业学院学报,1993,5,6.
    [11]. K. Naka, Y. Tanaka, Y. Chujo, Effect of Anionic Starburst Dendrimers on the Crystallization of CaCO3 in Aqueous Solution Size Control of Spherical Vaterite Particles[J]. Langmuir, 2002, 18, 3655-3658.
    [12].林荣毅,张培新,王孝英,沉淀法超细碳酸钙的研究现状与发展趋势[J].材料导报,1998,12,50-53.
    [13]. P. Malkaj, E. Dalas, Calcium Carbonate Crystallization in the Presence of Aspartic Acid[J]. Crystal Growth & Design, 2004, 4, 721-723.
    [14]. Q. Shen, H. Wei, Y. Zhao, D. J. Wang, L. Q. Zhenga, D. F. Xu, Morphological control of calcium carbonate crystals by polyvinyl pyrrolidone and sodium dodecyl benzene sulfonate[J]. Colloids Surf. A Physicochem. Eng. Aspects, 2004, 251, 87-91.
    [15]. Y. Ota, S. Inui, T. Iwashita, T. Kasuga Y. Abe, Preparation of AragoniteWhiskers.[J]. J. Am. Ceram. Soc., 1995, 78, 1983-1984.
    [16]. M. M. Reddy, G. H. Nancollas, The crystallization of calcium carbonate I. Isotopic exchange and kinetics[J]. Colloid Interface Sci., 1971, 36, 166-172.
    [17].张士成,韩跃新,蒋军华,王洪宽,Ca(OH)2-H2O-CO2反应系统纳米碳酸钙的结晶过程[J].东北大学学报(自然科学版),2000,21,169-172.
    [18]. K. M. Kim, K. Naka, Y. Chujo, Preparation of hydrophobic CaCO3 compsodite particles by mineralization with sodium trisilanolate in a methanol solution[J]. J. Mater. Chem., 2002, 12, 2449-2452.
    [19]. V. A. Juvekar, M. M. Sharam, Absorption of CO2 in a suspension of lime[J]. Chem. Eng. Sci., 1973, 28, 825-837.
    [20]. W. Z. Wang, G. H. Wang, Y. K. Liu, C. L. Zheng, Y. J. Zhan, Synthesis and characterization of aragonite whiskers by a novel and simple route[J]. J. Mater. Chem., 2001, 11, 1752-1754.
    [21]. M.Vu?ak, M. N. Pons, J. Peric, H. Vivier, Effect of precipitation conditions on the morphology of calcium carbonate: quantification of crystal shapes using image analysis[J]. Powder Technology, 1998, 97, 1-5.
    [22]. K. Uebo, R. Yamazaki, K. Yoshida, Precipitation mechanism of calcium carbonate ne. particles in a three-phasereactor. [J]. Advanced Powder Technol., 1992, 3, 3.
    [23]. R. Agnihotri, S. K. Mahuli, S. S. Chauk, L. -S. Fan, Influence of Surface Modifiers on the Structure of Precipitated Calcium Carbonate[J]. Ind. Eng. Chem. Res., 1999, 38, 2283-2291.
    [24]. C. Domingo, J. G. Carmona, E. Loste, A. Fanovich, J. Fraile, J. G. Morales, Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media[J]. J. Crystal Growth, 2004, 271, 268-272.
    [25]. Y. Sheng, B. Zhou, J. Zhao, N. Tao, K. Yu, Y. Tian, Z. Wang, Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate[J]. J. Colloid Interface Sci., 2004, 272, 326-329.
    [26]. Hari Bala, X. Ding, Y. Guo, Y. Deng, C. Wang, M. Li, Z. Wang, Multigram scale synthesis and characterization of monodispersed cubic calcium carbonate nanoparticles[J]. Mater. Lett., 2006, 60, 1515–1518.
    [27]. T. Nakazato, Y. Liu, K.Sato, K. Kato, Production of Ultrafine Calcium Carbonate Powders by Multiphase Reaction in Powder Particle Spouted Bed. [J].J. Chem. Fng. Japan, 2002, 35, 409-414.
    [28]. J. F. Chen, Y. H. Wang, F. Guo, X. M. Wang, C. Zheng, Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation[J]. Ind. Eng. Chem. Res., 2000, 39, 948-954.
    [29].郑水林,粉体表面改性[M].北京:中国建材工业出版社,1995.
    [30].钱柏太,郑水林,非金属矿物表面改性技术的新进展[J].中国非金属矿工业导刊,1993,3,7-13.
    [31].翟庆洲,裘式纶,肖丰收,张宗涛,邵长路,纳米材料研究进展I一一纳米材料结构与化学性质[J].化学研究与应用,1998,10,226-235.
    [32].丁浩,韩玉淑,卢寿慈,湿法超细磨矿中硬醋酸钠改性重质碳酸钙研究[J].非金属矿,1997,4,32-35.
    [33]. C. Wang, Y. Sheng, Hari-Bala, X. Zhao, J. Zhao, X. Ma, Z. Wang, A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ[J]. Materials Science and Engineering C, 2007, 27, 42-45.
    [34]. D. K. Keum, K. M. Kim, K. Naka, Y. Chujo, Preparation of Hydrophobic CaCO3 Composite Particles by Mineralization with Sodium Trisilanolate in a Methanol Solution. [J]. J. Mater. Chem., 2002, 12, 2449-2452.
    [35].王跃林,伍青,杜荣昵,王勇,高小铃,傅强,纳米碳酸钙粒子在硅酮密封胶中的增强作用[J].高等学校化学学报,2002,23,2011-2033.
    [36].周兵,于闯,杨延华,吉祥波,姜振华,复合体系的力学行为和热学行为研究[J].高等学校化学学报,2004,25,1355-1358.
    [37].张勇,肖锐,珍珠质水溶性基质蛋白的分离纯化及其对碳酸钙结晶的影响[J].海洋科学,2004,28(1),33-37.
    [38]. Watabe N. Crystal growth of calcium carbonate in the inveterbrates[J]. Prog Crystal Growth Charact, 1981, 4:99-147.
    [39]. Zaremba C M, Belcher A M, Fritz M, Critical transition in the biofabrication of abalone shells and flat pearls[J]. Chem Mater, 1996, 8: 679- 690.
    [40]. Curry J D. M echanical p roperties of mo ther of pearl in tension[J]. Proc R Soc Lond B, 1977, 196, 443-463.
    [41]. Berman A, A ddadiL, Weiner S. Interaction of seaurch in skeleton macromolecules with growing crystals2a study of intracrystalline proteins[J].Nature, 1988, 311(11), 546-548.
    [42]. Frech D W. Crystallography, Micro structure, and Implications for the Formation of the Biomineralized System, N acre in Red Abalone[D]. Seattle. University of Washington, 1998.
    [43]. Smith B L, Schaffer T E, Viani M, Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites[J]. Nature, 1999, 399(6738), 761-763.
    [44]. Marxen J. C. Carbohydrates of the organic shell matrix and the shell2forming tissueof the snail Biomphalaria glabrata[J]. The Biological Bulletin, 1998, 194, 231-240.
    [45]. Mann S. Mo lecu1ar recognition in biomineralization[J]. Nature, 1988, 332(6213), 119-124.
    [46]. Mann S, Heywood B R, Rajam S, Controlled crystallisation of CaCO3 under stearicacid monolayers [J]. Nature, 1988, 334(6205), 692-698.
    [47].毛传斌,李垣德,崔福斋,无机材料的仿生合成[J].化学进展,1988,10(3),246-254.
    [48]. Aksay I A, Trau M, Manne S, Biominetic pathways for assembling inorganic thin films[J]. Science, 1996, 273(16), 2-898.
    [49]. Stupp S I, Braun P V. Molecular manipulation of micro structures: biomaterials, ceramics and emiconductors[J]. Science, 1997, 277(29), 1242-1248.
    [50]. Weiner S, A ddadi L. Design strategies in mineralized biological materials[J]. J Mater Chem, 1997, 7(5), 689-702.
    [51].章思规,精细有机化学品技术手册[M].北京:北京科学出版社,1991,174-175.
    [52]. Weiner S., Addadi L. ,Control and desing principles in biological mineralization . [J]. J. Mater. Chem, 1977, 17, 25.
    [53].何艮、麦康森,贝类生物矿化生物大分子与分子识别[J].生物化学与生物物理展,1999,4,310-312.
    [54].唐敏,石安静,贝类钙代谢研究概况[J].水产学报,2000,24(1),86-91.
    [1]. S. Mann, Molecular recognition in biomin erallization[J]. Nature, 1998, 332, 119-124.
    [2]. S. Mann,B. R. Heywood,S. Rajam, J. D. Birchall, Controlled crystallization of CaCO3 under stearic acid monolayers[J]. Nature, 1988, 334, 692-695.
    [3]. T. Jesionowski, A. Krysztafkiewicz, Comparison of the techniques used to modify amorphous hydrated silicas[J]. J. Non-Crystalline Solids, 2000, 277, 45-57.
    [4].雷东升,我国碳酸钙的加工现状及发展方[J].矿产保护与利用,1997,4,14-16.
    [5].韩秀山,纳米级超细碳酸钙升和应用前景广泛[J].天然气化工,2001,26,59-60.
    [6].宋长友,功能性填充材料一超细碳酸钙的制备[J].河北理工学院学报,2000,3,10-15.
    [7].张士成,韩跃新,诸葛兰剑,蒋军华,纳米碳酸钙的制备及应用[J].非金属矿,1997,4,22-25.
    [8]. D. Kralj, L. Brecevic, A. E. Nielsen, Vaterite growth and dissolution in aqueous solution I. Kinetics of crystal growth[J]. J. Cryst. Growth, 1990, 104, 793-800.
    [9]. H. A. Lowenstam, Minerals formed by organisms[J]. Science, 1981, 211, 1126-1131.
    [10]. Q.S. Wu, D.M. Sun, H.J. Liu, Y.P. Ding, J. Abnormal Polymorph Conversion of Calcium Carbonate and Nano-Self-Assembly of Vaterite by a Supported Liquid Membrane System[J]. Cryst. Growth & Design, 2004, 4, 717-720.
    [11].天津化工研究院,无机盐工业[M].北京:化学工业出版社,1992.
    [12]. Huang W, Meng H, Yu WL, Gao J, Heeger AJ, A new blue light-emitting polymer containing substituted thiophene and an arylene-1,3,4-oxadiazole moiety[J]. Advanced Materials 1998, 10(8): 593-596.
    [13]. J. J. Yuan, Q. Fan, Z. Liu, Materials Science and Engineering, 1996, 56, 1-7.
    [14]. W. Y. Shang, D. Xie, Q. F. Liu, S. T. Magnetostriction of CexTb1-xFe2 compounds[J]. Chen, China Plastics, 2000, 14, 24-27.
    [15]. Q. H. Chen, J. S. Zhang, Q. R. Qian, Distribution of constitutive nitric oxide synthase in the jejunum of adult rat[J]. Acta Scientiae Circumstantia, 2001, 21, 774-776.
    [16]. S. Mann, The Chemistry of Form[J]. Angew. Chem. Int. Ed., 2000, 39, 3392-3406.
    [17]. L. Qi, H. C?lfen, M. Antonietti, Crystal Design of Barium Sulfate using Double-Hydrophilic Block Copolymers[J]. Angew. Chem. Int. Ed., 2000, 39, 604-607.
    [18]. L. Qi, J. Li, J. Ma, Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers[J]. Adv. Mater., 2002, 14, 300-303.
    [19]. K. Naka, Y. Chujo, Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates[J]. Chem. Mater., 2001, 13, 3245-3259.
    [20]. T. Kato, A. Sugawara, N. Hosoda, Calcium Carbonate-Organic Hybrid Materials[J]. Adv. Mater., 2002, 14, 869-877.
    [21].郭玉明,张秀英,蒋凯,周建国,胡志国,杨小丽,杨林,β-环糊精与碳酸钙结晶的相互作用[J].化学学报,2003,61,69-73.
    [22]. I. Sondi, E. Matijevic, Homogeneous Precipitation of Calcium Carbonates by Enzyme Catalyzed Reaction[J]. J. Colloid Interface Sci., 2001, 238, 208-214.
    [23]. R. H. Brigid, M. Stephen, Template-directed nucleation and growth of inorganic materials[J]. Adv. Mater., 1994, 6, 9-20.
    [24]. S. Mann, Webb J. Biomineralization Chemical and Biochemical PersμPectives[M],. VCH Publishers, 1989, 124.
    [25]. G. Falini, S. Albeck. L. Addadi, A Method for Observing Artificial Transits[J]. Science, 1996, 27, 67-69.
    [26]. Sedlak. M., Antonietti. M., Co¨lfen, H., Crystal design of calcium carbonate microparticles using[J]. Macromol. Chem. Phys. 1998, 199, 247.
    [27]. Falini. G., Albeck. S., Weiner. S., Addadi, L., Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules[J]. Science, 1996, 27, 67-69.
    [28]. Belcher. A. M., Wu, X. H., Christensen. R. J., Hansma. P. K., Stucky. G. D., Morse, D. E. Interrogation and interpretation[J]. Nature, 1996, 381, 36.
    [29]. Litvin, A. L., Valiyaveettil, S., Kaplan, D. L., Mann, S. Template-directed synthesis of aragonite under supramolecular hydrogen-bonded langmuirmonolayers[J]. Adv. Mater, 1997, 9(2), 124-127.
    [30]. Chen, B. D., Cilliers, J. J., Davey, R. J., Garside, J., Woodburn, E. T. Templated Nucleation in a Dynamic Environment: Crystallization in Foam Lamellae[J]. J. Am. Chem. Soc, 1998, 120, 1625-1626.
    [31]. Dalas E., Klepetsanis P. G., Koutsoukos P. G., CaCO3 deposition on cellulose[J]. Colloid Interface Sci, 2000, 224, 56-62.
    [32]. D’Souza, S. M., Alexander, C., Carr, S. W., Waller, A. M., Whitcombe, M. J., Vulfson, E. N., Directed nucleation of calcite at a crystal-imprinted polymer surface[J]. Nature, 1999, 398, 312-316.
    [33]. Y. Pan, X. Zhao, Y. Sheng, C. Wang, Y. Deng, X. Ma, Y. Liu, Z. Wang,Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid[J]. Colloids and Surfaces A Physicochem. Eng. Aspects, 2007, 297, 198-202.
    [34]. Y. Pan, X. Zhao, Y. Guo, X. Lv, S. Ren, M. Yuan, Z. Wang, Controlled synthesis of hollow calcite microspheres modulated by polyacrylic acid and sodium dodecyl sulfonate[J]. Materials Letters, 2007, 61, 2810-2813.
    [35]. A.J. Xie, Y.H. Shen, C.Y. Zhang, Z.W. Yuan, X.M.Zhu, Y.M. Yang, Crystal growth of calcium carbonate with various morphologies in different amino acid systems[J]. J. Crystal Growth, 2005, 285, 436–443.
    [36]. F. Manoli, E. Dalas, Calcium carbonate crystallization in the presence of glutamic acid[J]. J. Crystal Growth, 2001, 222, 293-297.
    [37]. F. Manoli, J. Kanakis, P. Malkaj, E. Dalas, The effect of aminoacids on the crystal growth of calcium carbonate[J]. J. Crystal Growth, 2002, 236, 363-370.
    [38]. A. Kai, K. Fujikawa, T. Miki, Vaterite Stabilization in CaCO3 Crystal Growth by Amino Acid[J]. Jpn. J. Appl. Phys, 2002, 41,439.
    [39]. H. Tong, W.T. Ma, L.L. Wang, P. Wan, J.M. Hu, L.X. Cao, Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process[J]. Biomaterials, 2004, 25(17), 3923-3929.
    [1]. M. Shui, Polymer surface modification and characterization of particulate calcium carbonate fillers[J]. Applied Surface Science, 2003, 220, 359–366.
    [2].张华,陈建峰,赵红英,王国全,纳米碳酸钙表面改性及其对聚丙烯复合材料增韧的研究[J].北京化工大学学报,2002,29,8-11.
    [3].周扬波,古菊,贾德民,纳米碳酸钙的表面改性及其在橡胶中的应用[J].特种橡胶制品,2004,25,54-57.
    [4]. R. Agnihotri, S. K. Mahuli, S. S. Chauk, L. -S. Fan, Influence of Surface Modifiers on the Structure of Precipitated Calcium Carbonate[J]. Ind. Eng. Chem. Res., 1999, 38, 2283-2291.
    [5].宋长友,功能性填充材料一超细碳酸钙的制备[J].河北理工学院学报,2000,3,10-15.
    [6].张士成,韩跃新,诸葛兰剑,蒋军华,纳米碳酸钙的制备及应用[J].非金属矿,1997,4,22-25.
    [7].郑水林,粉体表面改性[M].北京:中国建材工业出版社,1995.
    [8].钱柏太,郑水林,非金属矿物表面改性技术的新进展[J].中国非金属矿工业导刊,1993,3,7-13.
    [9].张立德,纳米材料[M].北京:化学工业出版社,2000,4.
    [10]. T. Lee, N. Yao, H. Imai, I. A. Aksay. Barium Titanate Nanoparticles in Block Copolymer[J]. Langmuir,2001, 17, 7656-7663.
    [11]. J. Pyun, K. Matyjaszewski, T.Kowalewski, D.Savin, G. Patterson, G. Kickelbick, N. Huesing. Synthesis of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their Nanoscale Morphology on Surfaces[J]. J. Am. Chem. Soc., 2001, 123, 9445-9446.
    [12]. T.Ogoshi, H. Itoh, K. M. Kim, Y.Chujo. Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex[J]. Macromolecules, 2002, 35, 334-338.
    [13]. B.Zhao, W. J.Brittain. Synthesis of Polystyrene Brushes on Silicate Substrates via Carbocationic Polymerization from Self-Assembled Monolayers[J].Macromolecules, 2000, 33, 342-348.
    [14]. J. J. M. D. Jack, J. M. N. Roeland, A. J. M. S. Nico. A Shape-Persistent Polymeric Crystallization Template for CaCO3[J]. J. Am. Chem. Soc., 2002, 124, 9700-9701.
    [15]. R. G. Compton, P. J. Daly.The dissolution/precipitation kinetics of calcium carbonate: An assessment of various kinetic equations using a rotating disk method[J]. J. Colloid Interface Sci., 1987, 115, 493-498.
    [16]. J. Guo, S. J. Severtson. Application of Classical Nucleation Theory To Characterize the Influence of Carboxylate-Containing Additives on CaCO3 Nucleation at High Temperature, pH, and Ionic Strength[J]. Ind. Eng. Chem. Res., 2003, 42, 3480-3486.
    [17]. K. Naka, Y. Chujo. Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates[J]. Chem. Mater., 2001, 13, 3245-3259.
    [18]. Y. Ueno, H. Futagawa, Y. Takagi, A. Ueno, Y. Mizushima. Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates[J]. J. Controlled Release., 2005, 103, 93-98.
    [19]. K. Naka, Y. Tanaka, Y. Chujo. Effect of Anionic Starburst Dendrimers on the Crystallization of CaCO3 in Aqueous Solution: Size Control of Spherical Vaterite Particles[J]. Langmuir, 2002, 18, 3655-3658.
    [20]. M. Vu?ak, M. N. Pons, J. Peri?, H.Vivier. Effect of precipitation conditions on the morphology of calcium carbonate: quantification of crystal shapes using image analysis[J]. Powder Technology, 1998, 97, 1-5.
    [21]. L. Xiang, Y. Xiang, Y. Wen, F. Wei. Formation of CaCO3 nanoparticles in the presence of terpineol[J]. Materials Letters, 2004, 58, 959-965.
    [22]. P. Kjellin, M. Andersson, A. E. C. Palmqvist. Formation of Calcium Carbonate in Liquid Crystalline Phases[J]. Langmuir, 2003, 19, 9196-9200.
    [23]. K.Fujiharaa, M.Kotakib, S.Ramakrishna. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers[J]. Biomaterials, 2005, 26, 4139-4147.
    [24]. H. P. Schroiber, J. M. Viau, A. Fetoui, Z. Deng. Some properties of polyethylene compounds with surface-modified fillers[J]. Polym. Eng. Sci., 1990, 30, 263-268.
    [25]. D. S. Kim, C. K. Lee. Surface modification of precipitated calcium carbonateusing aqueous fluosilicic acid[J]. App. Surf. Sci., 2002, 202, 15-23.
    [26]. M. Bob, H. W. Walker. Enhanced adsorption of natural organic matter on calcium carbonate particles through surface charge modification[J]. Colloi. Surf. A Physicochemical Eng. Aspects, 2001, 191, 17–25.
    [27]. W. Wu, S. Lu. Mechano-chemical surface modification of calcium carbonate particles by polymer grafting[J]. Powder Technology, 2003, 137, 41-48.
    [28]. C. J. Ridgway, P. A. C. Gane, J. Schoelkopf. Modified calcium carbonate coatings with rapid absorption and extensive liquid uptake capacity[J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 236, 91-102.
    [29].杜振霞,贾志谦,饶国瑛,陈建峰,纳米碳酸钙表面改性及在涂料中的应用研究[J].北京化工大学学报,1999,26,83-85.
    [30].姜国良,陈丽,刘云,贝壳有机基质与生物矿化[J].海洋科学,2002,26,16-18.
    [31]. S. Mann,B. R. Heywood,S. Rajam, J. D. Birchall, Controlled crystallization of CaCO3 under stearic acid monolayers[J]. Nature, 1988, 334, 692-695.
    [32].戴永定,沈继英,生物矿化作用机理[J].动物学杂志,1995, 30(5),55-58.
    [33]. S. Mann., Synthesis of inorganic materials with complex form[J]. J. Mater. Chem., 1995, 5, 935-946.
    [34]. A. H. Heuer,D. J. Fink,V. J. Laraia, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackwell, P. C. Rieke, D. H. Thompson[J]. Science, 1992, 255, 1098-1105.
    [35].毛传斌,李恒德,崔福斋,冯庆玲,王浩,无机材料的仿生合成[J].化学进展,1998,10,246-254.
    [36]. S. Mann, Biomimetic Materials Chemistry[M]. New York: VCH, 1996.
    [37]. S. Mann, D. D. Archibald, J. M. Didymus, T. Douglas, B. R. Heywood, F. C. Meldrum, N. J. Reeves, Crystallization at Inorganic-organic Interfaces Biominerals and Biomimetic Synthesis[J]. Science, 1993, 261, 1286-1292.
    [38]. S. Mann, Molecular recognition in biomineralization[J]. Nature, 1988, 332, 119-124.
    [39]. J. L. Arias,M. S. Fernández, Biomimetic processes through the study of mineralized shells[J]. Materials characterization, 2003, 50, 189-195.
    [40]. J. J. J. M. Donners,R. H. Brigid,E. W. Meijer, R. J. M. Nolte, C. Roman, A. P.H. J. Schenning, N. A. J. M. Sommerdijk, Amorphous calcium carbonate stabilized by poly dendrimesers[J]. Chem. Commun., 2000, 19, 1937-1938.
    [41]. J. Yu, Z. X. Guo, Y. F. Gao, Preparation of CaCO3/Polystyrene Inorganic/Organic Composite Nanoparticles[J]. Macromol Rapid Commun., 2001, 22, 1261-1264.
    [42]. N. Kensuke,C. Yoshiki, Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates[J]. Chem. Mater., 2001, 13, 3245-3259.
    [43]. K. Naka,D. K. Keum,Y. Tanaka, Y. Chujo, Control of crystal polymorphs by a‘latent inductor’crystallization of calcium carbonate in conjunction with in situ radical polymerization of sodium acrylate in aqueous solution[J]. Chem. Commun., 2000, 16, 1537-1538.
    [44]. S. Weiner, L. Addadi, Acidic macromolecules of mineralized tissues: the controllers of crystal formation[J]. TIBS, 1991, 16, 252.
    [45]. L.Addadi, S.Weiner. Interaction between acidic proteins ancrystals: stereochemical requirements in biomineralization[J]. Proc Natl Acad Sci, USA, 1985, 82, 4110.
    [1]. C. M. Agrawl, K. A. Athanasiou, Technique to control pH in vicinity of biodegrading PLA-PGA implants[J]. J. Biomed. Mater. Res. B, 1999, 38, 105-114.
    [2].姜鲁华,杜芳林,张志焜,崔作林,纳米碳酸钙的制备及应用进展[J].中国粉体技术,2002,8,28-32.
    [3].王其良,沈凤池,罗明志,李欣禾,沉淀碳酸钙(PCC)的发展及应用[J].材料科学与工程,2002,16,306-312.
    [4]. S. Suga, T. Sakai, H. Hata. Porous calcium carbonate carrying antimicrobial metal fine particles[J]. JP Patent, 1996, 833, 212-224.
    [5]. S. Mann. The Chemistry of Form[J]. Angew. Chem. Int. Ed., 2000, 39, 3392-3406.
    [6]. L. Qi, H. C?lfen, M. Antonietti. Crystal Design of Barium Sulfate using Double-Hydrophilic Block Copolymers[J]. Angew. Chem. Int. Ed., 2000, 39, 604-607.
    [7]. A. Krysztafkiewicz, T. Jesionowski, S. Binkowski, Precipitated silicas modified with 3-amino propyltrie thoxy silane[J]. Colloids Surf. A Physicochemical Eng. Aspects, 2000, 173, 73-84.
    [8]. K. Naka, Y. Chujo. Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates[J]. Chem. Mater., 2001, 13, 3245-3259.
    [9]. T. Kato, A. Sugawara, N. Hosoda. Calcium Carbonate-Organic Hybrid Materials[J]. Adv. Mater., 2002, 14, 869-877.
    [10].张秀英,廖照江,杨林,胡志国,蒋凯,郭玉明,β-环糊精与碳酸钙结晶的相互作用[J].化学学报,2003,1(61),69-73.
    [11]. I. Sondi, E. Matijevic. Homogeneous Precipitation of Calcium Carbonates by Enzyme Catalyzed Reaction[J]. J. Colloid Interface Sci., 2001, 238, 208-214.
    [12]. R. H. Brigid, M. Stephen. Template-directed nucleation and growth of inorganic materials[J]. Adv. Mater., 1994, 6, 9-20.
    [13]. S. Mann, Webb J. Biomineralization: Chemical and Biochemical PersμPectives[M]. New Yoke: VCH Publishers, 1989, 124.
    [14]. G. Falini, S. Albeck. L. Addadi, A Method for Observing Artificial Transits[J]. Science, 1996, 27, 67-69.
    [15].何艮,麦康森,贝类生物矿化生物大分子与分子识别[J].生物化学与生物物理进展,1999,4,310-312.
    [16]. S. Mann, D. D. Archibald, J. M. Didymus, T. Douglas, B. R. Heywood, F. C. Meldrum, N. J. Reeves. Crystallization at Inorganic-organic Interfaces Biominerals and Biomimetic Synthesis[J]. Science, 1993, 261, 1286-1292.
    [17]. Swift D. M., Large herbivore foraging and ecological hierarchies[J]. J. Phycol., 1992, 28, 202.
    [18]. Wang Jing-Mei, Yao Song-Nian, Wuli, Huaxue, Xuebao, Acta Physico-Chimica[J]. Sinica, 2001, 12(2), 202.
    [19]. H. C?lfen, L.Qi, A Systematic Examination of the Morphogenesis of Calcium Carbonate in the Presence of a Double-Hydrophilic Block Copolymer[J]. Chem. Eur. J., 2001, 7, 106.
    [20]. A. Sugawara, T. Ishii, T. Kato, Self-Organized Calcium Carbonate with Regular Surface-Relief Structures[J]. Angew. Chem. Int. Ed. 2003, 42(43), 5299-5303.
    [21]. X. Y. Liu, K. Tsukamoto, M. Sorai, New Kinetics of CaCO3 Nucleation and Microgravity Effect[J]. Langmuir, 2000, 16, 5499-5502.
    [22]. B. Cheng, M. Lei, J. Yu, X. Zhao, Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction[J]. Mater. Lett. 2004, 58(10), 1565-1570.
    [23]. M. Donnet, P. Bowen, N. Jongen, J. Lemaitre, H. Hofmann, Use of Seeds to Control Precipitation of Calcium Carbonate and Determination of Seed Nature[J]. Langmuir, 2005, 21, 100-108.
    [24]. H. C?lfen, M. Antonietti, Crystal Design of Calcium Carbonate Microparticles Using Double-Hydrophilic Block Copolymers[J]. Langmuir, 1998, 14, 582-589.
    [25]. L. Qi, J. Li, J. Ma, Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers[J]. Adv. Mater., 2002, 14, 300-303.
    [26]. D. Walsh, S. Mann, Fabrication of hollow porous shells of calcium carbonate from self-organizing media[J]. Nature, 1995, 377, 320-324.
    [27]. D. Walsh, B. Lebeau, S. Mann, Morphosynthesis of Calcium Carbonate Microsponges[J]. Adv. Mater. 1999, 11(4), 324-328.
    [28]. R. J. Park, F. C. Meldrum, Synthesis of Single Crystals of Calcite with Complex Morphologies[J]. Adv. Mater. 2002, 14(16), 1167-1169.
    [29]. S. Zhang, K. E. Gonsalves, Preparation and characterization of thermally stable nanohydroxyapatite[J]. Langmuir, 1998, 14, 676.
    [30]. N. Hosoda, T. Kato, Thin-Film Formation of Calcium Carbonate Crystals Effects of Functional Groups of Matrix Polymers[J]. Chem. Mater., 2001, 13, 688-693.
    [31]. G. Xu, N. Yao, I. A. Akasay, J. T. Groves, Biomimetic Synthesis of Macroscopic-Scale Calcium Carbonate Thin Films. Evidence for a Multistep Assembly Process[J]. J. Am. Chem. Soc., 1998, 120, 11977-11985.
    [32]. L. B. Gower, D. J. Odm, Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process[J]. J. Cryst. Growth, 2000, 210, 719-734.
    [33]. H. Wakayama, S. R. Hall, S. Mann, Fabrication of CaCO3–biopolymer thin films using supercritical carbon dioxide[J]. J. Mater. Chem., 2005, 15(11), 1134-1136.
    [34]. C. Lu, L. Qi, J. Ma, H. Cheng, M. Zhang, W. Cao, Controlled Growth of Micropatterned, Oriented Calcite Films on a Self-Assembled Multilayer Film[J]. Langmuir, 2004, 20, 7378-7380.
    [35]. R. J. Park, F. C. Meldrum, Shape-constraint as a route to calcite single crystals with complex morphologies[J]. J. Mater. Chem. 2004, 14(14), 2291-2296.
    [36]. D. Liu, M. Z. Yates, Formation of Rod-Shaped Calcite Crystals by Microemulsion-Based Synthesis[J]. Langmuir 2006, 22, 5566-5569.
    [37]. S. B. Mukkamala, A. K. Powell, Biomimetic assembly of calcite microtrumpets: crystal tectonics in action Electronic supplementary information (ESI) available[J]. Chem. Commun. 2004, 918-919.
    [38]. CI Yu-Xiang,ZHOU Tian-Ze. Multi-complex in Analysis Chemistry[M]. Beijing: Science Press, 1999, 258.
    [39]. Weiner S, Addadi L. Acidic macromolecules of m ineralized tissues: the controllers of crystal formation[J]. TIBS, 1991, 16, 252-256.
    [40]. Addadi L, Weiner S. Interaction between acidic pro teins and crystals stereochemical requirements in biom inerallization[J]. Proc Natl Acad Sci USA, 1985, 82(4), 110-4114.
    [41]. Berman A, Ahn D J, Lio A, Total alignment of calcite at acidic polydiacetylene films cooperativity at the organic-inorganic interface[J]. Science, 1995, 269(28), 515-518.
    [42]. Addadi L, Moradian J, Shay S, A chemical model for the cooperation of sulphates and carboxylates in calcite crystal nucleation: relevance to biominerallization[J]. Proc Natl Acad Sci USA, 1987, 84, 2732-2736.
    [43]. Guo Yu-Ming, Zhang Xiu-Ying, Jing Kai, Acta Chimica. Sinica [J]. 2001, 59(5), 755-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700