通风对室内外颗粒物浓度关系影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气悬浮颗粒物是我国目前主要的室外大气污染物,对人体健康具有很强的危害性。由于人的一生大部分时间在室内度过,可以通过建立室内外颗粒物浓度关系的方法来评价大气悬浮颗粒物污染对室内人员的危害程度。对室内外颗粒物浓度关系的研究主要通过建立颗粒物的室内外浓度比(I/O比)来进行。影响I/O比的因素包括建筑围护结构的穿透率、通风换气、颗粒物室内源强度、沉降速率及二次悬浮等,课题主要研究对通风换气对室内外颗粒物浓度关系的影响。
     采用模型实验舱研究了稳态送风和动态送风条件工况,不同气流组织方式方式下,颗粒物经通风进入室内过程中,引起的室内颗粒物浓度变化过程,发现颗粒物的室内浓度分布是影响I/O比的重要因素,并提出了颗粒物龄的概念;另外,采用数值模拟的方法研究了不同粒径的颗粒物的运动规律,推荐了适合通风实验舱气流模拟的标准k ?ε双方程模型和颗粒物浓度场模拟的滑移通量模型。对于欧拉模型和拉格朗日模型的适用性也给出建议。
     在不存在室内源的情况下,由于大颗粒的气流间存在滑移速度,会导致I/O比大于1,同时导致颗粒物龄大于同一位置的空气龄。在由通风引起的室内颗粒物浓度增长过程中,浓度增长曲线与假设室内浓度均匀的理论曲线有很大差别,课题通过实验对质平衡方程进行修正,得到更加符合实际的理论公式。动态送风与稳态送风对于工作区I/O比变化规律没有明显影响,动态送风下送风口附近颗粒物浓度接近室外浓度所需时间较长,可以缓冲室外颗粒物浓度变化对室内的冲击。
     数值模拟研究结果表明,用滑移通量模型研究室内颗粒物浓度分布时,对粒径大于5μm的颗粒物,重力作用和颗粒物与气流间滑移速度不可忽略,且重力作用会导致无室内源的条件下,房间下方颗粒物I/O比大于1;对粒径小于1μm的颗粒物,重力作用和颗粒物与气流间的滑移速度可以忽略,对浓度分布没有明显影响;粒径在1μm-5μm之间的颗粒物受到滑移速度和重力作用的影响较小,在一定情况下可以忽略。
     气流组织方式是影响室内外颗粒物浓度关系的重要因素。数值模拟结果表明,在同侧送风和回风的气流组织方式下,下送上回的方式更加利于减小室外大颗粒对室内的影响。
     通风对I/O比影响的研究,以及对不同粒径颗粒物运动规律的研究,可以指导空调系统设计,最大限度的降低室外颗粒物对室内造成的危害。
Airborne particles are the main atmospheric pollutant in China and have seriously harmful effect on human health. Since people spend most of their time in the rooms, the relationship between the indoor and outdoor particle concentration can be established to evaluate the harm of atmospheric particles on human health. The study on relationship between indoor and outdoor particle concentration is through establishment of indoor and outdoor particle concentration ratio (I/O Ratio). Factors affecting I/O Ratio include penetration ratio of building envelop, ventilation, indoor source, deposition rate and particle resuspension. This thesis focuses mainly on influence of ventilation on I/O Ratio.
     Under steady and unsteady ventilation conditions and different airflow organization, increasing of indoor particle concentration during entrance of particle from outdoor to indoor through ventilation is investigated. Indoor particle concentration distribution is found to have important influence on I/O Ratio, and a concept of particle age is brought forward herein; particle distribution characterization of different diameter is investigated through numerical simulation, standard k ?εmodel and drift flux model (DFM) are recommended for simulation of turbulence and particle concentration distribution, respectively. Applicability of Eulerian model and Lagrangian model is analyzed.
     The I/O Ratio can be greater than 1 with absence of indoor source, and particle age is greater than air age of the same position due to slip velocity between airflow and particle. In the process of particle concentration increase caused by ventilation, concentration increasing curve is different from theoretical curve, mass balance equation is thus revised to be more accordant with test value. Steady and unsteady ventilation have the same effect on increasing rate of I/O Ratio on occupant area. A longer time is needed for the particle concentration to reach the outdoor value around the air inlet under unsteady than steady ventilation, decreasing the influence of outdoor particle concentration variation on indoor.
     Gravity and slip velocity between airflow and particle can not be neglected for particles with diameter larger than 5μm through the result of numerical simulation by DFM, and I/O Ratio near floor of a room can be greater than 1 without indoor source due to gravity. Gravity and slip velocity between airflow and particles are negligible and have no effect on concentration distribution for particles with diameter smaller than 1μm. For particles with diameter 1μm-5μm, gravity and slip velocity between airflow and particles are only negligible under certain circumstance.
     Airflow organization has great effect on relationship between indoor and outdoor particle concentration. Airflow organization of downward supply and upward discharge is more effective in decreasing influence of outdoor larger particles on indoor.
     Research on the influence of ventilation on I/O Ratio and moving characterization of particles with different diameter can provide guideline for air conditioning system design to minimize the harmful effect of outdoor particle concentration on indoor.
引文
[1] William Glover, Chan Hak-Kim, Eberl Stefan, et al. Effect of particle size of dry powder mannitol on the lung deposition in healthy volunteers[J]. International Journal of Pharmaceutics, 2008, 349(1-2): 314-322.
    [2] Peggy L. Jenkins, Phillips Thomas J., Mulberg Elliot J., et al. Activity patterns of Californians: Use of and proximity to indoor pollutant sources[J]. Atmospheric Environment Part A General Topics, 1992, 26(12): 2141-2148.
    [3] J. Robinson, Nelson W.C. National Human Activity Pattern Survey Data Base.[J]. US EPA, Research Triangle Park, 1995.
    [4]姚忆江,秦旺,郭丽萍等.城市灰霾天每年夺命三十万.南方周末. 2008.
    [5] Sylvie Parat, Perdrix Alain, Mann Sylvie, et al. Contribution of particle counting in assessment of exposure to airborne microorganisms[J]. Atmospheric Environment, 1999, 33(6): 951-959.
    [6] C.M. Long, Suh H.H., Koutrakis P. Characterization of Indoor Particle Sources Using Continuous Mass and Size Monitors[J]. Journal of the Air and Waste Management Association, 2000, 50: 1236-1250.
    [7] Moolgavkar SH, EG Luebeck. A critical review of the evidence on particulate air pollution and mortality[J]. Epidemiology, 1996, 7(4): 420-428.
    [8]国家质量监督检验检疫局. GB/T 18883-2002室内空气质量标准[S].北京:中国标准出版社,2003.
    [9]国家环境保护局科技标准司. GB3095-1996环境空气质量标准[S].北京:中国环境科学出版社,1996.
    [10]中国电子工程设计院. GB50073-2001洁净厂房设计规范[S].北京:中国计划出版社,2001.
    [11] J. Schwartz, Norris G., Larson T., et al. Episodes of high coarse particle concentrations are not associated with increased mortality[J]. Environmental Health Perspectives, 1999, 107(5): 339-342.
    [12]蔡杰.空气过滤ABC[M].中国建筑工业出版社,2002.
    [13]熊志明,张国强,彭建国等.大气可吸入颗粒物对IAQ的影响研究进展[J].建筑热能通风空调, 2004, 24(02): 32-36.
    [14] Tareq Hussein, Glytsos Thodoros, Ondrá?ek Jakub, et al. Particle size characterization and emission rates during indoor activities in a house[J]. Atmospheric Environment, 2006, 40(23): 4285-4307.
    [15] Naoki Kagi, Fujii Shuji, Horiba Youhei, et al. Indoor air quality for chemical andultrafine particle contaminants from printers[J]. Building and Environment, 2007, 42(5): 1949-1954.
    [16] Koutrakis P., K Briggs S. L. Source apportionment of indoor aerosols in Suffolk and Onondaga Counties[J]. Environment Science and Technology, 1992, 26: 521-527.
    [17] Markku Kulmala, Asmi Ari, Pirjola Liisa. Indoor air aerosol model: the effect of outdoor air, filtration and ventilation on indoor concentrations[J]. Atmospheric Environment, 1999, 33(14): 2133-2144.
    [18] Lidia Morawska, He Congrong, Hitchins Jane, et al. The relationship between indoor and outdoor airborne particles in the residential environment[J]. Atmospheric Environment, 2001, 35(20): 3463-3473.
    [19] Kresimir Sega, Fugas Mirka, Kalinic Natasa, et al. Indoor-outdoor relationships for respirable particles, total suspended particulate matter and smoke concentrations in modern office buildings[J]. Environment International, 1986, 12(1-4): 71-74.
    [20] Chih-Shan Li. Relationships of indoor/outdoor inhalable and respirable particles in domestic environments[J]. The Science of The Total Environment, 1994, 151(3): 205-211.
    [21] 2006年中国环境状况公报[Z].大气环境.
    [22] V. Ross Highsmith, Zweidinger Roy B., Merrill Raymond G. Characterization of indoor and outdoor air associated with residences using woodstoves: A pilot study[J]. Environment International, 1988, 14(3): 213-219.
    [23] M. S. El-Shobokshy, Hussein F. M. Correlation between indoor-outdoor inhalable particulate concentrations and meteorological variables[J]. Atmospheric Environment (1967), 1988, 22(12): 2667-2675.
    [24] Ismo K. Koponen, Asmi Ari, Keronen Petri, et al. Indoor air measurement campaign in Helsinki, Finland 1999-the effect of outdoor air pollution on indoor air[J]. Atmospheric Environment, 2001, 35(8): 1465-1477.
    [25] Christopher Y. H. Chao, Tung Thomas C. An empirical model for outdoor contaminant transmission into residential buildings and experimental verification[J]. Atmospheric Environment, 2001, 35(9): 1585-1596.
    [26] D. H. Bennett, Koutrakis P. Determining the infiltration of outdoor particles in the indoor environment using a dynamic model[J]. Journal of Aerosol Science, 2006, 37(6): 766-785.
    [27] De-Ling Liu, Nazaroff William W. Modeling pollutant penetration across building envelopes[J]. Atmospheric Environment, 2001, 35(26): 4451-4462.
    [28] Christopher Y. H. Chao, Wan M. P., Cheng Eddie C. K. Penetration coefficient and deposition rate as a function of particle size in non-smoking naturallyventilated residences[J]. Atmospheric Environment, 2003, 37(30): 4233-4241.
    [29] Congrong He, Morawska Lidia, Gilbert Dale. Particle deposition rates in residential houses[J]. Atmospheric Environment, 2005, 39(21): 3891-3899.
    [30] Thomas Schneider, Alstrup Jensen Keld, Clausen Per A., et al. Prediction of indoor concentration of 0.5-4 [mu]m particles of outdoor origin in an uninhabited apartment[J]. Atmospheric Environment, 2004, 38(37): 6349-6359.
    [31]李俊,孙淑凤,狄洪发.动态条件下人体对个体送风的热反应研究[J].暖通空调, 2005, 35(10): 17-22.
    [32]孙淑凤,赵荣义,许为全.动态空调策略研究[J].制冷与空调, 2003, 3(6): 27-32.
    [33] N. C. Jones, Thornton C. A., Mark D., et al. Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations[J]. Atmospheric Environment, 2000, 34(16): 2603-2612.
    [34] Wen-Whai Li, Paschold Helmut, Morales Hugo, et al. Correlations between short-term indoor and outdoor PM concentrations at residences with evaporative coolers[J]. Atmospheric Environment, 2003, 37(19): 2691-2703.
    [35] Martin Branis, Rezacova Pavla, Domasova Marketa. The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom[J]. Environmental Research, 2005, 99(2): 143-149.
    [36]王萌.酶制剂生产车间室内空气中颗粒污染的数值与实验研究[D].天津大学,2007.
    [37] Andy T. Chan. Indoor-outdoor relationships of particulate matter and nitrogen oxides under different outdoor meteorological conditions[J]. Atmospheric Environment, 2002, 36(9): 1543-1551.
    [38] Christian Lange, Roed Jorn. Particle size specific indoor/outdoor measurements[J]. Journal of Aerosol Science, 1995, 26(Supplement 1): S519-S520.
    [39] P. H. Fischer, Hoek G., van Reeuwijk H., et al. Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam[J]. Atmospheric Environment, 2000, 34(22): 3713-3722.
    [40] K. Funasaka, Miyazaki T., Tsuruho K., et al. Relationship between indoor and outdoor carbonaceous particulates in roadside households[J]. Environmental Pollution, 2000, 110(1): 127-134.
    [41] Lighthouse Wordwide Solutions. HANDHELD 3016 IAQ Airborne Particle Counter Operating Manual. [EB/OL]: www.golighthouse.com
    [42]中华人民共和国铁道部. TB/T 2323-92铁路作业场所空气中粉尘相对质量浓度与质量浓度的转换方法[S]. 1992.
    [43]国家环境保护局. GB/T15432-1995环境空气总悬浮颗粒物的测定-重量法[S]. 70北京:中国标准出版社,1995.
    [44]李丰果,杨冠玲,何振江. PM10冲击采样器切割头设计参数对切割粒径的影响[J].环境污染治理技术与设备, 2003, 4(1): 26-29.
    [45]陈成新,李名兆.尘埃粒子计数器的原理和使用[J].工业计量, 2004:33-35.
    [46]徐斌.室内超细颗粒物的运动分布模型的研究[D].天津大学, 2007.
    [47] Zhao Zhang. A STUDY ON TRANSPORT AND DISTRIBUTION OF INDOOR PARTICULATE MATTER[D]. West Lafayette: Purdue University, 2005.
    [48] Yuguo Li, Chen Zhengdong. A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations[J]. Atmospheric Environment, 2003, 37(30): 4277-4285.
    [49] Thomas C. W. Tung, Chao Christopher Y. H., Burnett John. A methodology to investigate the particulate penetration coefficient through building shell[J]. Atmospheric Environment, 1999, 33(6): 881-893.
    [50] Christian L. Fogh, Byrne Miriam A., Roed Jorn, et al. Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios[J]. Atmospheric Environment, 1997, 31(15): 2193-2203.
    [51] Jerome Bouilly, Limam Karim, Beghein Claudine, et al. Effect of ventilation strategies on particle decay rates indoors: An experimental and modelling study[J]. Atmospheric Environment, 2005, 39(27): 4885-4892.
    [52] Bin Zhao, Yang Caiqing, Yang Xudong, et al. Particle dispersion and deposition in ventilated rooms: Testing and evaluation of different Eulerian and Lagrangian models[J]. Building and Environment, 2008, 43(4): 388-397.
    [53] Z. Zhang, Chen Q. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms[J]. Atmospheric Environment, 2006, 40(18): 3396-3408.
    [54] Michael D. Sohn, Apte Michael G., Sextro Richard G., et al. Predicting size-resolved particle behavior in multizone buildings[J]. Atmospheric Environment, 2007, 41(7): 1473-1482.
    [55] Alvin C. K. Lai, Wang K., Chen F. Z. Experimental and numerical study on particle distribution in a two-zone chamber[J]. Atmospheric Environment, In Press, Accepted Manuscript:
    [56] Joel H. Ferziger. Approaches to turbulent flow computation: Applications to flow over obstacles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 35: 1-19.
    [57]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [58]王福军.计算流体动力学分析-CFD软件的原理与应用[M].北京:清华大学出版社,2004.
    [59] S. V. Patankar. Numerical Heat Transfer and Fluid Flow[M]. Washington, D.C.: Hemisphere, 1980.
    [60] P. Spalart, Allmaras S. A one-equation turbulence model for aerodynamic flows[J]. American Institute of Aeronautics and Astronautics, 1992:
    [61] Fluent Inc. FLUENT 6.1 Documentation. 2005.
    [62] Qingyan Chen, Xu Weiran. A zero-equation turbulence model for indoor airflow simulation[J]. Energy and Buildings, 1998, 28(2): 137-144.
    [63] S. Elghobashi. On predicting particle-laden turbulent flows[J]. Applied Scientific Research, 1994, 52(4): 309-329.
    [64] C. J. Call, Kennedy I. M. Measurements and simulations of particle dispersion in a turbulent flow[J]. International Journal of Multiphase Flow, 1992, 18(6): 891-903.
    [65] Q. Q. Lu, Fontaine J. R., Aubertin G. A lagrangian model for solid particles in turbulent flows[J]. International Journal of Multiphase Flow, 1993, 19(2): 347-367.
    [66] F.H. Harlow. The Particle-in-cell Computing Method in Fluid Dynamics[J]. Methods in computational physics, 1964, 3: 319-343.
    [67] The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J]. International Journal of Multiphase Flow, 1997, 23(7): 101-101.
    [68] CROWE Clayton, Martin SOMMERFELD, Yutaka TSUJI. Multiphase Flows with Droplets and Particles[M]. Boca Raton, FL: CRC Press; 1998.
    [69]张引弟,幸福堂.通风房间可吸入颗粒物浓度场的数值模拟[J].建筑热能通风空调, 2007, 26(04): 90-93.
    [70] Sture Holmberg, Li Yuguo. Modeling of the indoor environment-particle dispersion and deposition[J]. Indoor Air, 1998, 8: 113-122.
    [71] Z. Zhang, Chen Q. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces[J]. Atmospheric Environment, 2007, 41(25): 5236-5248.
    [72] Hans-Joachim Schmid, Vogel Lutz. On the modelling of the particle dynamics in electro-hydrodynamic flow-fields: I. Comparison of Eulerian and Lagrangian modelling approach[J]. Powder Technology, 2003, 135-136: 118-135.
    [73] Alvin C. K. Lai, Chen F. Z. Comparison of a new Eulerian model with a modified Lagrangian approach for particle distribution and deposition indoors[J]. Atmospheric Environment, 2007, 41(25): 5249-5256.
    [74] H. Ounis, Ahmadi G., McLaughlin J. B. Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer[J]. Journal of Colloid and Interface Science, 1991, 143(1): 266-277.
    [75]国家食品药品监督管理局. YY0529-2005中华人民共和国医药行业标准-生物安全柜[S]. 2006.
    [76] M Sandberg. What is ventilation efficiency?[J]. Building and Environment, 1981, 16(2): 123-135.
    [77]陈晓春,朱颖心,王元.零方程模型用于空调通风房间气流组织数值模拟的研究[J].暖通空调, 2006: 19-24.
    [78] Christopher L. Rumsey. Apparent transition behavior of widely-used turbulence models[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1460-1471.
    [79] W. K. Chow, Li J. Numerical simulations on thermal plumes with k-[epsilon] types of turbulence models[J]. Building and Environment, 2007, 42(8): 2819-2828.
    [80] B. E. Launder, Reece G. J., Rodi W. Progress in the Development of a Reynolds-Stress Turbulence Closure[J]. Journal of Fluid Mechanics, 1975, 68(3): 537-566.
    [81] Q Chen. Comparison of different k-εmodels for indoor air flow computations - Part A[J]. Numerical Heat Transfer, 1995, 28: 353-369.
    [82] Yigang Sun, Tan Zhongchao, Zhang Yuanhui, et al. Comparison of Six CFD Models for Room Airflow Study with PIV measurement Data. An ASAE/CSAE Meeting Presentation: American Society of Agricultural and Biological Engineers 2004.
    [83] L.Schilelr, Z.Naumann, A.Ver. A Drag Coefficient Correlation[M]. 1935.
    [84]保罗A.巴伦,维勒克.克劳斯.气溶胶测量-原理、技术及应用(原著第二版)[M].北京:化学工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700