2.25Cr-1Mo钢加氢反应器弯管堆焊工艺及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石化行业加氢反应器制造过程中,弯管的内壁堆焊是整个产品制作过程中的难点之一。目前的弯管制作方法,将90°弯管均分为三段,分别进行内壁堆焊后装配焊接为一整体,再进行对接环缝的补堆,其加工、成型、堆焊、装焊工序较多,生产效率低且堆焊质量不易保证。为此,已有专家提出了采用弯管内壁堆焊层先堆焊再一起进行弯制的思路,但该思路能否顺利实现,还取决于在弯管内壁堆焊层先堆焊后依次经高温热成型、调质处理、最终热处理后,其化学成分、力学性能、抗晶间腐蚀等性能是否能满足技术条件要求。本文正是从这种思路出发,采用在试板上模拟弯管先堆焊再进行弯制的方法,研究探讨采用一种新的弯管制造工艺的可行性。
     2.25Cr-1Mo钢加氢反应器弯管堆焊工艺及性能的初步研究结果表明:①2.25Cr-1Mo钢上E309L+E347双层不锈钢堆焊层依次经高温热成型、调质处理、最大热处理后存在裂纹敏感性,而这种弯曲裂纹敏感性是由焊缝结晶偏析引起的。②本文采用的堆焊方法和堆焊工艺使2.25Cr-1Mo钢上E309L+E347双层不锈钢堆焊层依次经高温热成型、调质处理、模拟最大热处理后仍能满足抗晶间腐蚀的性能,并获得满足技术条件要求的化学成分均匀的堆焊层组织。③性能热处理应采用水淬和高温回火的工艺,以确保能获得最佳冲击韧性的显微组织,并避开不锈层475~650℃敏化温度的最敏感区。
     截至目前为止,关于2.25Cr-1Mo钢加氢反应器弯管先堆焊内壁层再进行弯曲成型的制造工艺尚未见报道,本研究为这种新型的制造方法的实施和不断完善,打下坚实的理论和实践的基础。
For hydroprocessing reactors used in petrochemical industry, it is difficult to provide high quality cladding in the inboard wall of bended pipes. Traditional manufacture method make bended pipe to cut into three parts, before putting these parts into a whole, cladding layer must be cladded in the pipe. This method's working procedure are more, including processing, molding, cladding, assembly, welding and so on. In addition, its efficiency is low and welding quality is difficult to guarantee. For these reasons, there is a new method that is to cladding in pipe before the pipe is bended. But there is a question in this method, Wether does the cladding layer's capability can meet technology's require in chemical composition, mechanical properties, resistance to intergranular corrosion, and so on. So, we adopt the method that is cladding on the board before bending to simulate the making course of the bending pipe, try to find out the rule of this kind of manufacture method, in order to reduce too many returning working procedure.
     This thesis shows that:①The E309L+E347 caldding layer on 2.25Cr-1Mo steel has cold bending crack sensitivity after heat bending, quaching and tempering, Max PWHT. The crack sensitivity is from segregation of crystal.②Using this cladding method and technology can make the cladding layer have the resistance to intergranular corrosion and even chemical composition.③It should adopt water quenching and tempering with high temperature in the heat treatment of performance, in order to guarantee to obtain the micro-organization with the best impact toughness, and avoiding the section of 475- 650℃sensitization temperature to stainless steel.
     Up to now, there is no report on this new method of hydroprocessing reactors's bending pipe. The result of study has offered the scientific data for the method amelioration of hydroprocessing reactors's bending pipe and established the solid foundation.
引文
[1]洪学立,韩冰.热壁加氢反应器的制造和检验(一).压力容器.2003年第20卷第5期.
    [2]压力容器实用技术丛书编写委员会.压力容器制造和修理.化学工业出版社.2003年7月6日.
    [3]白勇,王文江.加氢反应器弯管制造.石油化工设备.2001年第30卷第5期.
    [4]白玉亭.2.25Cr_1Mo钢TIG堆焊Fe_3Al金属间化合物的研究.大连铁道学院.2001年6月29日.
    [5]李春旭,王希靖,魏继昆.加氢反应器氢剥离问题的研究.甘肃工业大学学报.1993年第19卷第4期.
    [6]日本神奈川县高压气体协会编.防止高温高压压力容器的破坏.齐树柏译.北京:中国石油化工总公司设备设计技术中心站.1988.
    [7]Watanabe J,Shindo Y,Ohnuma H,et al.Investigation in a Failure of a Direct Desulfurization Reactor During Its Field Repair Work,In:Porceedings of International Joint Pressure Vessel and Petroleum Mechanical Eengineering Conference,Elevated Temperature Design Symposium.[s1]:ASME,1976.7-13.
    [8]Enrietto J F.Underclad Crack~Their Nature.Detection and Consequences.Performance of Pressure Vessels with Clad and Overlayed Stainless Steel Lininge.M PC—16.ASM E.1981.p.23-31.
    [9]Task Group 3 of JPVRC S/C on HE,WRC Bullte 305,1985,7,22.
    [10]Journal of Shanghai Jiao tong University(Science),Vol.E211,No.1,2006,77~83<Prediction of Welding Residual Stress in 2.25Cr-1Mo Steel Pipe.
    [11]黄嗣罗.何祥.不锈钢带极堆焊工艺研究.焊接.1999年第2期.
    [12]成林.董安霞.王振雷.国产不锈钢带极堆焊材料的堆焊工艺.焊接.2002年1期.
    [13]Jianhong Lin,Zhengdong Wang,Cengdian Liu,et al,Process Analysis of Hydrogen Induced Disbonding in Stainless Steel Weld Overlay.In:Proceeding of the Seminar on Pressure Vessel and Piping Technology.Singapore:[s n],1993.479-488.
    [14]林建鸿,王正东,柳曾典,关东棣.不锈钢堆焊层抗剥离性能的定量评价.华东理工大学学报.1994年第20卷第8期.
    [15]Jianhong Lin,Zhengdong Wang,Cengdian Liu,et al.A New Method to Evaluate Hydrogen Induced Disbonding Susceptibility in Stainless Steel Weld Overlay.In:Transactions of the 12th International Conference in Structural Mechanics in Reactor Technology.Vol G.STUTTGART,Germany:[s n]1993.G14/6.
    [16]魏学安,陈进,林建鸿,吴东棣.不同堆焊工艺不锈钢堆焊层氢剥离性能的评价.压力容器.1996年第13卷第4期.
    [17]周振丰.焊接冶金学(基本原理).机械工业出版社.1995年10月.
    [18]张从平,黄岚,殷安康,薛锦.2.25Cr-1Mo奥氏体不锈钢堆焊接头熔合区碳的迁移及成分分析.东方电气评论.2004年第18卷第2期.
    [19]刘义祥,吴敬辛.堆焊熔合区成分和组织分析.理化检验-物理分册.1999年第35卷第1期
    [20]何康生,曹雄夫.异种金属焊接[M].北京:机械工业出版社.1986.
    [21]钱昌黔.耐热钢焊接[M].武汉:水利电力出版社.1988.
    [22]郭传江,刘晓书,赵艳春,高静.关于不锈钢堆焊层铁素体测算方法的研究.压力容器.2000年第17卷第3期.
    [23]Coach T C.The Welding Institure Res.Bull.1977.18(12):343.
    [24]PVRC Task Group on Laterals of the Subcommittee on ROEL.Comparison of Three-Dimensional Finite Element and Photoelastic Results for Lateral Connection.WC 12B2.Number 251.Welding Research Council Bulletin.1979.8.
    [25]Hay and Associates.Study of 45°Laterals.Final Report Submitted to the TG on Laterals.PVRC sPc on Reinforced Openings and External Loadings.London.U.K.1976.
    [26]赵林祥.影响不锈钢带极堆焊的工艺因素分析.训练技法.2002年3月号.
    [27]周振丰.焊接冶金学(金属焊接性).机械工业出版社.1995年10月.
    [28]Gitto M F.et al.Welding Journal.1922.71(12):461-S.
    [29]郭会民,李万万.16MnR低合金钢管板带极堆焊工艺研究及应用.火箭推进.2006年第32卷第3期.
    [30]铁道部科学研究院.药芯焊丝的研究与实践.中国金属加工网.2003年9月.
    [3l]李丽茹.热壁加氢精制反应器异种钢焊接金相组织及分析.沈阳工业大学学报.2003年第25卷第4期.
    [32]黄嗣罗.2.25Cr-1Mo不锈钢带极堆焊工艺研究及应用.压力容器.1996年第13卷第5期.
    [33]龙杰,王福明.抗氢2.25Cr-1Mo钢热处理工艺与性能研究.宽厚板.2006年第12卷第3期.
    [34]崔忠圻.金属学与热处理(铸造、焊接专业用).机械工业出版社.1989年11月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700