用户名: 密码: 验证码:
溶胶—凝胶法制备PLOT毛细管色谱柱
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气相色谱已经成为分析分离有机混合物样品最主要的仪器设备,色谱柱是色谱分离的核心,常常被生动的称为色谱仪器的心脏。气相色谱的分离是通过样品物质在两相(气体流动相和固定相)之间多次分配,由于样品组分具有不同的分配系数,在固定相内有不同的保留时间而得到分离。20世纪50年代,M.J.E.Goly提出毛细管开管柱用做色谱柱的设想,揭开了毛细管色谱柱迅速发展的序幕,毛细管色谱柱优越的分离性能有利地促进了色谱仪器的应用和发展。根据不同的分配机理,毛细管气相色谱柱分为两种类型,即气-液(含气-液-固)色谱柱和气-固色谱柱;根据固定相在柱内的形态结构,将气-液色谱柱通常简称为WCOT(wall-coated open-tubular column)柱,将气-固色谱柱称为PLOT (porous-layer open tubular column)柱,将柱内涂层为涂敷有固定液的担体层的毛细管柱称为SCOT (support coated open tubular)柱,这种柱型应用比较少。尽管气-固色谱的使用领域远远小于气-液色谱,但是气-固色谱技术在许多特定的应用领域有着不可替代的作用,例如同位素分析,烃类异构体分析等等。除此以外,气-固色谱柱和气-液色谱柱相比较有其明显的优点,如吸附稳定性好,基线稳定性好等。由于PLOT色谱柱的制备技术比较复杂,为个别厂家专利所有,导致其价格昂贵,限制了气-固色谱的应用。
     色谱柱的研制和开发是很多研究机构和专业公司一直关注的热点,主要有合成新型的固定相,探索新的制备技术,提高色谱柱的各项性能,以及开发色谱柱的应用等等。当前气相毛细管柱的制备技术已经逐渐发展为商业公司各自专有的工艺,其过程大致相同,对于气-液色谱柱来讲,一般包括合成固定相,配置涂敷溶液,对毛细管内壁进行处理,采用静态或者动态方式涂敷,最后进行化学交联和老化。对于气-固色谱柱来讲,包括的步骤有固体吸附材料的研磨和筛选,稳定悬浮液的配置,高压动态方式涂敷,化学改性和固化等。传统的色谱柱制备过程步骤多,程序复杂,制柱周期长,而且色谱柱的性能如耐温性等也有待于提高。由于这些原因的存在,人们一直致力于寻找能克服这些问题的方法。
     溶胶-凝胶法是一种新颖的色谱柱制备方法,最早由美国南佛罗里达大学Malik博士首先提出来的,1997年王东新等详细报道了溶胶-凝胶法制备毛细管色谱柱的步骤。该方法首先需要选择合适的溶胶-凝胶反应体系,体系组成包括,醇盐基的溶胶前驱物,含有端羟基的固定相,钝化试剂以及合适的催化剂;然后将反应溶液注入石英毛细管,在管内停留反应一定时间,再高温固化,最后清洗残余溶液。整个制备过程在1小时即可完成,缩短了色谱柱制备时间。本论文总结了各种色谱柱的制备技术,重点综述了当前研究者关注的溶胶-凝胶法色谱柱制备技术,在此基础上,将溶胶-凝胶法用于PLOT柱的制备,开展了如下具有原始创新性的工作。
     (1)采用溶胶-凝胶法,以乙醇为溶剂,选择正硅酸乙酯和稀盐酸同氧化铝微粒形成的溶胶体系,动态涂敷制备了Al2O3PLOT毛细管色谱柱,并对柱子的性能进行了考察。
     (2)采用溶胶-凝胶法,选择硅溶胶溶液和正硅酸乙酯,在稀盐酸的催化下形成溶胶体系,将SiO2微粒分散于该体系中,动态制备SiO2PLOT毛细管色谱柱。本论文共分为三个部分:
     第一章:对气相色谱柱的发展和制备方法进行了总结,对溶胶凝胶法在色谱领域的应用进行了综述,主要分为如下几部分。(1)气相色谱柱的发展该内容总结了传统毛细管色谱柱的分类,制备方法。(2)溶胶-凝胶法制备气相色谱柱该内容总结了溶胶-凝胶法制备毛细管色谱柱的应用,特点和展望;
     第二章:采用正硅酸乙酯、稀盐酸以及氧化铝的乙醇悬浮液组成的溶胶体系,成功制备了溶胶凝胶Al2O3PLOT毛细管色谱柱,并对制柱方法和色谱柱进行了评价。
     第三章:采用溶胶-凝胶法制备出SiO2PLOT毛细管色谱柱,考察了该色谱柱对挥发性氟氯烃、氯代烃、含硫化合物的分离特性。
Today, gas chromatography (GC) has become the primary technique for analysis and separation of organic compounds, especially for volatile compounds. The gas chromatographic column can be considered the heart of gas chromatography. Gas chromatography is a separation method in which the components of a sample have indifferent partition between gas phase and stationary phase. Capillary open tubular columns were introduced in 1957 by M.J.E.Golay. These columns have a dramatic increase in separation capacity over conventional packed columns and extremely promote the application and development of gas chromatography.
     According to the principle of partition, the capillary columns can be divided into two types, including gas-liquid chromatography column and gas-solid chromatography column. We can use the term "wall coated open tubular" (WCOT) to specify columns in which the liquid phase is deposited directly on the silica tubular surface. Columns in which the coating is deposited on a surface that has been considerably extended by macro elongated crystal deposits or finely granular of polymer are termed "porous layer open tubular" (PLOT) columns. And the term " support coated open tubular" (SCOT) should be used in which the column wall has been coated with a mixture of finely divided solid and liquid phase. Although gas-solid chromatography is less popular than gas-liquid chromatography, it is nevertheless used in such important fields as isotope separation and alkanes mixtures determination, where it exhibits certain advantages over its gas-liquid counterpart.
     The research and development on chromatographic columns is a hot topic. Some special companies and research groups research for novel stationary phase, new technology of making columns, improving the performance of columns, and enlarging the application of column. Currently, the technique of making GC column has become proprietary arts holding by commercial companies. The technology for the preparation of gas-liquid open tubular columns consists of some major, individually executed steps:capillary surface treatment, deactivation, static coating, and stationary phase immobilization. The technology for the preparation of gas-solid open tubular columns consists of such major steps:selecting adsorbent suspension, dynamic coating adsorption layer, chemistry modified and solidifying. In above conventional approach, these operations are carried out in separate steps that make column fabrication a time-consuming work, furthermore, the using temperature of columns is always a problem requested by user.
     Sol-gel capillary column is a new type of column for gas chromatography, which is made by sol-gel technology. The sol-gel column technology was introduced by doctor Malik at Florida University. The sol-gel chemistry-based column technology for GC is described that effectively combines surface treatment, deactivation, coating, and stationary phase immobilization into a single step. In this new approach, a sol solution of appropriate composition which involves alkoxide-based precursor, a hydroxy-terminated stationary phase, a surface derivatizing reagent, and a catalyst is filled into a fused silica capillary, and than sol-gel reactions are allowed to go on inside the capillary for a controlled period. The reaction only need 15 min, and the preparation time can be controlled in one hour.
     In this dissertation, we have carried out some original studies as following: (1) A novel method was developed to prepare Al2O3 porous-layer open-tubular(Al2O3-PLOT) column based on the sol-gel chemistry. (2) A new method is described to prepare silica porous layer columns by using in-situ sol-gel synthesis technology. By the interaction of ethyl acetate and water glass solution the silica was synthesized on the inner surface of fused silica capillary.
     Three parts are included in the dissertation
     ChapterⅠ:
     (1) The development of GC column. It summarized the conventional capillary column preparation, principle, classes.
     (2) The sol-gel technology for capillary columns. It summarized the sol-gel technology concept, principle, and application for GC column.
     ChapterⅡ:
     The preparation of Al2O3-PLOT column is finished through sol-gel column technology. The sol-gel solution comprised of tetraethyl orthosilicate(TEOS), hydrochloric acid(HCl)and suspension of aluminum oxide in ethanol. The column performance was evaluated by using C1-C5 hydrocarbons sample. ChapterⅢ:
     The preparation of SiO2-PLOT column is carried out through sol-gel column technology. The sol-gel solution comprised of ethyl acetate and water glass solution. The column performance was evaluated by using chlorofluorocarbons, sulfur compounds, and light hydrocarbons C1-C4.
引文
[1]James, Martin, Biochem J,1952,50:679-680.
    [2]M L Lee, F J Yang, K D Bartle, Open Tubular Gas Chromatography:Theory and Practice, Wiley, New York,1984.
    [3]M J E Golay, Gas Chromatography (Amsterdam Symposium),London,1958,36-55.
    [4]R R Freeman, High Resolution Gas Chromatography, Hewlett-Packard, Palo Alto, CA,1989.
    [5]R L Grob, M A Kaiser, M J O'Brien, Am Lab,1975.
    [6]G Sehomburg, H Husmann, H Borwitsky, Chromatogr,1979,12:651-660.
    [7]L Blomberg, K E Markides, T Wannman,HRC CC,1980,3:527.
    [8]M L Lee, R C Kong, C L Woolley, J Chromatogr Sci,1984,22:136-142.
    [9]何丽君,吕芳,伍艳,谢洪学,分析测试学报,2007,26(1):139-144.
    [10]李凯慧,陈志瑶,张少文,分析化学研究报告,2007,35:511-514.
    [11]A Berthod, M J Ruiz-Angelb, Journal of chromatography A,2008,1184:6-18.
    [12]A. Berthod, D W Armstrong, chromatogrphoa,2001,53:63-68.
    [13]Colin F Poole, Journal of Chromatography A,2004,1037:49-82.
    [14]Zygfryd Witkiewiczb, Jerzy Oszczudlowskia, Marta Repelewicza, Journal of Chromatography A,2005,1062:155-174.
    [15]L Blomberg, J High Resolut. Chromatogr,Chromatogr Commun,1982,5:520.
    [16]L. Blomberg, J High Resolut. Chromatogr,Chromatogr Commun,1984,7:232.
    [17]R C M DE Nijs, J de Zeeuw, Fused silica PLOT columns with porous polymer coatings, American Laboratory,1987,10:82-87.
    [18]赵国宏,曾庆梅,孔德玮等,高效PLOT碳分子筛石英毛细管柱的研制及其性能研究,分析测试学报,1999,18(2):60-61.
    [19]傅春晓,云希勒,寇登民等,超微粒分子筛多孔层毛细管气相色谱柱的初步研制,色谱,1995,11(3):447-449.
    [20]O L Hollis, Separation of gaseous mixtures using porous polyaromatic polymer beads, Anal chem,1966,38 (2):309-316.
    [21]V Schurig, H Nowotny, J Chromatogr,1988,441:155-157.
    [22]V Schurig, D Schmalzing, U Muhleck, J. High Resolut. Chromatogr,1990,13:713.
    [23]J Ding, T Welton, D W Armstrong, Anal. Chem,2004,76:6819.
    [24]丁子上,翁文剑,溶胶-凝胶技术制备材料的进展,硅酸盐学报,1993,20(5):443-450.
    [25]张庆合,冯玉镐,达世禄,溶胶-凝胶技术在分析化学中的应用进展,化学通报,1999,(6):8-13.
    [26]James D Hayes, Abdul Malik, Sol-Gel Monolithic Columns with reversed Electroosmotic Flow for Capillary Electrochromatography Anal Chem,2000,72 (17):4090-4099.
    [27]Danhua Wang, Jun Xing, Jiagang Peng, Caiying Wu N ovel benzo-15-crown-5 sol-gel coating for solid-phase microextraction Journal of Chromatography A,2003,1005:1-12.
    [28]L Wennrich, P Popp, M Moder, Anal Chem,2000,72:546.
    [29]Khalid Alhooshani, Tae-Young Kim, Abuzar Kabir, Abdul Malik Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME) Journal of Chromatography A,2005,1062:1-14.
    [30]Dongxin Wang, Sau L Chong, and Abdul Malik Sol-Gel Column Technology for Single-Step Deactivation, Coating, and Stationary-Phase Immobilization in High-Resolution Capillary Gas Chromatography Anal. Chem,1997,69 (22):4566-4576.
    [31]王东新,新一代气相色谱柱-溶胶-凝胶毛细管柱,化学世界,2003,266-267.
    [32]Chetan Shende, Abuzar Kabir, Eric Townsend, and Abdul Malik Sol-Gel Poly(ethylene-glycol) Stationary Phase for High-Resolution Capillary Gas Chromatography Anal. Chem, 2003,75 (14):3518-3530.
    [33]王东新,溶胶-凝胶毛细管气相色谱柱热稳定性的考察,分析化学,2003,31(4):467-471.
    [34]James D. Hayes, and Abdul Malik Sol-Gel Monolithic Columns with Reversed Electroosmotic Flow for Capillary Electrochromatography Anal. Chem,2000,72 (17): 4090-4099.
    [35]李良,史雪岩,戴荣继,邓玉林,傅若农,顾峻岭,溶胶凝胶法制备全丙基-B-环糊精毛细管气相色谱柱,北京理工大学学报,2005,25(10):936-939.
    [36]葛晓霞,美玲,李良,邵青龙,傅若农,溶胶凝胶法制备四种环糊精衍生物毛细管气相色谱柱,色谱,2005,5:305-307
    [37]江晶,张勇,刘虎威,溶胶-凝胶环糊精衍生物CEC开管柱分离TATB炸药副产品,北京理工大学学报,2004,25:96-99.
    [38]王东新,Abdul Malik,接枝聚硅氧烷环糊精固定相溶胶 凝胶毛细管气相色谱柱分离内酯对映体,分析化学研究报告,2007,3:360-364.
    [39]Xiao Xia GE, Ruo Nong FU, Rong Ji DAI, Li Wen LIU, Mei Ling QI Capillary Column Coated with Heptakis(2,3,6-tri-O-octyl)-pcyclodextrinUsing Sol-gel Technology, Chinese Chemical Letters,2004,15 (4):428-430.
    [40]J Pawliszyn, Solid Phase Microextraction. Theory and Practice,Wiley:New York,1997.
    [41]R P Belardi, J Pawliszyn,Water Pollut, Res. J. Can.1989,24:179-191.
    [42]L J Krutz, S A Senseman, A S Sciumbato, J Chromatogr,A 2003,999:103-121.
    [43]B Zygmunt, A Jastrzebska, J Namiesnik, Crit. Rev. Anal Chem,2001,31:1-18.
    [44]M F Alpendurada, J Chromatogr, A 2000,889:3-14.
    [45]S Ulrich, J Chromatogr, A 2000,902:67-194.
    [46]G A Mills, V Walker, J Chromatogr, A 2000,902:267-287.
    [47]F Augusto, A Valente, L P Trends, Anal Chem,2002,21:428-438.
    [48]R Eisert, Pawliszyn, J Anal Chem,1997,69:3140-3147.
    [49]H Hartmann, Burhenne, J Spiteller, M. Fresenius Environ. Bull.1998.
    [50]H Kataoka, Pawliszyn, J Chromatographia,1999,50:532-538.
    [1]C G Scott, J Inst. Petrol.1959,45:118-120.
    [2]I Halasz, E Heine, Nature,1962,194:971-973.
    [3]Kirkland, J. Anal Chem,1963,35:1295-97.
    [4]D L Petitjean, C J Leftault, J Gas Chromatogr,1963,1:18-23.
    [5]C G Scott, C Phillips, Gas Chromatography 1964, Institute of Petroleum, London,1965,266.
    [6]W R Moore, H R Ward, J Am Chem Soc,1968,28:2909-2012.
    [7]Snyder L R, Fett E R.A quantitative theory of the interrelationship between solute retention volumes in gas-solid and liquid-solid chromatography, J chromatogr,1965,18:46-52
    [8]Szepesy L, Combellas C, J chromatogr A,1982,237(1):65-78.
    [9]Moriguchi S, Natio K, Adsorption effects on retention behaviours of hydrocarbons in gas solid chromatography with the use of modified alumina coated with diphenyl phthalate as column packings. J chromatogr A,1994,686:101-112
    [10]Natio K,Kurita R Characterization of modified alumina as an adsorbent for gas solid chromatography. J chromatogr,1982,253:205-218
    [11]Natio K, Kurita R, Characterization of modified alumina as an adsorbent for gas solid chromatography, J chromatogr,1983,2268:359-368
    [12]Cadogan D, Sawyer D, Gas-solid chromatography using various thermally activated and modified silicas. Anal chem,1970,42:190-195
    [13]Prochazka M, Smolkova E. Silica gel modified with phthalocyanines as a stationary phase in gas solid chromatography. J chromatogr,1980,189:25-31.
    [14]Aue W, Wickram P, Gas and liquid chromatography on silica-supported chromia layers, J chromatogr,1980,197:21-29.
    [15]Hao yun, Karin Markides E, Preparation of silica porous layer open tubular column using fused silica capillaries, J microsep,1995,1:153-158.
    [16]de Zeeuw J, de Nijs R, Journal of Chromatographic Science,1987,25(2):71-83.
    [17]de Nijs R, de Zeeuw J. Journal of Chromatography,1983,279:41-48.
    [18]Ji Zhenghua, Majors Ronald E, Edward J. Journal of Chromatography A,1999,842:115-142.
    [19]王国俊,尤进茂,欧庆瑜,Chinese J Anal Chem(分析化学),1989,17(11):979-983.
    [20]赵国宏,陈立人,成伯春,刘天才,石油化工,2002,31(3):210-213.
    [21]王东新,Malik Abdul,分析化学,2003,31(4):467-471.
    [22]李良,史雪岩,戴荣继,邓玉林,傅若农,顾峻岭,分析化学,2004,32(3):289:294.
    [23]Hayes James D, Malik Abdul, Journal of Chromatography B,1997,695:3-13
    [24]Shende Chetan, Kabir Abuzar, Townsend Eric, Malik Abdul, Anal Chem,2003,75: 3518-3530.
    [25 R C M De Nijs, J High Resolut. Chromatogr, Chromatogr Commun,1981,4:612-615.
    [26]王东新, Malik Abdul,分析化学,2007,35(4):360-364.
    [27]Wang Dongxin, Chong L, Malik Abdul. Anal.Chem.1997,69:4566-4576.
    [28]Chetan Shende, Abuzar Kabir, Eric Townsend, Abdul Malik, Anal Chem,2003,75 (14): 3518-3530.
    [29]王东新,分析测试学报,2004,23:5-8.
    [30]梁敏敏,齐美玲,傅若农,邵青龙,高等学校化学学报,2004,11:2016-2018.
    [31]王东新,Abdul Malik,南京师大学报(自然科学版),2002,25:67-69.
    [32]赵国宏,王仲来,雷晓强,龚成科,汪汉卿,陈立仁,色谱,2004,22(3):158-161.
    [33]王东新,化学世界,5,2003,266-273.
    [1]R D Schwartz, D J Brasseaux,G R Shoemake,Anal Chem,1963,35(4):496-498.
    [2]Guiochon G, Guillemin C L Quantitative Gas Chromatography. Elsevier, Amsterdam,1988.
    [3]Kiselev A V, Yashin Ya, Gas Adsorption Chromatography, Plenum Press, New York,1969.
    [4]Unger K K, Porous Silica, Its Properties and Use as Support in Column Liquid Chromatography, Elsevier, Amsterdam,1979.
    [5]Engelhardt H, Dreyer B, Schmidt H, Chromatographia,1982,16:11.
    [6]Kiselev A V, Advances in Chromatography, New York,1967,4:113.
    [7]Giddings J C, AnaLChem,1962,34:458.
    [8]Berezkin V G, Gavrichev V S, Voloshina N V J Chromatogr,1990,520:91.
    [9]D Cadogan, D Sawyer, Anal Chem 1970,42:190.
    [10]S Cirendini, J Vermont, J C Gressin, C L Guillemin, J Chromatogr,1973,84:21.
    [11]W L Thornsberry W L, Anal Chem,1971,43:452.
    [12]M Mohnke, W Saffert, Preprint of the 4th International Symposium on Gas Chromatography, 1962,214.
    [13]Hao Yun, Karin E, Microcolumn Separation,1995,7,2:153-158.
    [14]Mathews R G, Torres, J Chromatogr,1980,199:97-99.
    [15]Lier R K, Colloidal components in solutions of sodium silicate. American Chemical Society, 1982,95-114.
    [16]Lier R K, The Chemistry of silica, New York, John Wiley&Sons,1979.
    [17]S J Doherty, Nickless, MBassford, M.pajot, P Simmonds, J Chromatogr A,1999,832: 253-258.
    [18]雷晓强,赵国宏,王仲来,龚成科,蒋生祥.色谱,2003,21(2):187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700