直流缝隙式燃烧器布置对W型火焰锅炉空气动力场的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于国民经济的快速发展,国家对电力需求迅速增长,而且从我国动力用煤结构而言,燃用贫煤、无烟煤等劣质煤电站容量剧增。W型火焰锅炉具有炉膛温度高、火焰行程长等特点,适于燃烧无烟煤等低挥发分燃料。从1984年引进该技术到现在,国内投产和在建的W型火焰锅炉一共有80多台,积累了不少关于W型火焰锅炉的运行经验,但国内对该锅炉的深入研究还不够,而对英巴技术的直流缝隙式W型火焰锅炉的研究则更少。
     针对某电厂英巴技术300MWe直流缝隙式W型火焰锅炉炉内燃烧不稳定、灭火事故频繁、下炉膛结渣严重、煤粉气流着火较晚等问题,按照1:15的比例搭建了冷态模化实验台,利用恒温热线风速仪系统对不同工况下炉内的流动状况进行了单相实验。实验研究发现:
     当二次风倾角为–10°和–5°时,炉膛内出现了前墙侧下行气流先于后墙侧下行气流转而向上的偏斜流场。随着二次风倾角增加到–5°,流场偏斜现象减轻。当二次风倾角为0°和5°时,炉膛内的无流场偏斜现象,前、后墙侧气流的无量纲穿透深度差异较小。当二次风倾角为–10°,–5°和0°时,近墙侧下行气流的横向速度分量严重冲刷前、后墙,这就可能造成前、后墙结渣。当二次风倾角为10°和20°时,下行气流向靠近炉膛中心移动而不再冲刷前、后墙,炉内流场出现了与–10°和–5°时所不同的偏斜现象。所以,综合考虑流场对称性,冷灰斗及前、后墙结渣和穿透深度等情况,二次风的最佳角度为5°。
     在“浓、淡、风”布置方式下,当三次风率为0%和4%时,前、后墙侧下行气流有较为严重的冲刷前、后墙的现象,容易造成前、后墙的结渣。随着三次风率的增加,前、后墙侧下行气流冲刷前、后墙的现象得到明显的改善。当三次风率为25%时,前、后墙侧下行气流的无量纲穿透深度大于0.65,气流以较高的速度冲刷冷灰斗,容易造成冷灰斗结渣。因此,综合考虑冷灰斗及前、后墙结渣和穿透深度等情况,三次风的最佳风率为20%。
With the rapid development of the national economy of China, the society demands of more electricity and the capacity of lean coal-fired and anthracite-fired power plants according to the power coal configuration increases quickly. The down-fired boilers could apply to large-scale low-grade coal fired (such as lean coal and anthracite) power plants with characteristics of long flame, air zoning and pulverized coal sectionalized combustion. Although more than eighty down-fired boilers have been on operation or bulding since the year of 1984,. When the technology was imported and abundant operational experience have been accumulated, the research of down-fired boilers is not deep enough especially on the research of the down-fired boiler adopting direct flow split burners.
     In this thesis, the aerodynamic fields in a 300MW down-fired boiler`s furnace, which is designed by MBEL company. To find why these furnaces are combustion instability, apt to fire extinguishing, slagging seriously in furnace, and later ignition, we studied on the single-phase cold model, which is built on the Similarity Theory in accordance with the ratio of 1:15 and an IFA300 constant-temperature anemometer system was used to measure the air velocity in the model.
     At angle settings of–10°and–5°, a deflected flow field appears in the lower furnace with the downward airflow near the front wall turns up earlier than that near the rear wall. With increasing the angle from–10°to–5°, the flow-field deflection weakens. At secondary-air angles of 0°and 5°, flow field deflection disappears in the furnace. The difference in the airflow reaches near the front and rear walls are small. At angle settings of–10°,–5°, and 0°, but not 5°, the transverse velocity components washing toward the wall in the region approaching the front and rear walls are large, which may cause slagging on the front and rear walls. For angles of 10°and 20°, the air flows to the center of the furnace, and avoids washing toward the wall, but a different deflected flow field forms. In considering a symmetric flow field and appropriate airflow reach, particularly if slagging is to be avoided on the front and rear walls and in the dry bottom hopper, an optimal angle setting of secondary air was found at 5°.
     At the arrangement of rich-lean-air, when the tertiary air rates of 0% and 4%, the transverse velocity components washing toward the wall in the region approaching the front and rear walls are large, which may cause slagging on the front and rear walls. With increasing of the tertiary air rate, the transverse velocity components washing toward the wall becomes decrease. When the tertiary air rates of 25%, the dimensionless depth that the downward flow reaches is more than 0.65, the fuel-rich flow penetrates the middle and lower parts of the dry bottom hopper and washes the hopper walls with high velocity particulate that may cause seious slagging. So in considering the appropriate airflow reach, particularly if slagging is to be avoided on the front and rear walls and in the dry bottom hopper, an optimal rate setting of the tertiary air was found at 5°.
引文
1中国科学院. 2006高技术发展报告.科学出版社, 2006
    2中国科学院能源战略研究组.中国能源可持续发展战略专题研究.科学出版社, 2006
    3赵仲琥,何佩鏊,秦裕琨.煤粉燃烧器设计与运行.机械工业出版社.1986
    4郭玉泉. W火焰锅炉燃烧及运行特性试验研究.山东大学硕士学位论文. 2006
    5 W. J. Peet, V. Kanan. Utility Boiler Design for Low Voltile Coals. Coal Combustio. Beijing ,1998
    6赵洁,王建军,范剑峰.中国能源现状及发展前景分析.科技经济市场. 2006, (8):13~14
    7 Joseph G. Singer. Combustion Fossil Power Systems (Third Edition). Combustion Engineering. INC.1981
    8任玉明.中国无烟煤资源与性质.洁净煤技术. 2004, 10(3): 8~10
    9张海,吕俊复等. W型火焰锅炉燃烧问题的分析和解决方法.动力工程. 2007, (3):1~9
    10许传凯.低挥发份煤的燃烧与“W”型火焰锅炉若干问题研究.中国电力. 2004, 37(7): 37~40
    11车刚,郝卫东,郭玉泉. W型火焰锅炉及其应用现状[J].电站系程,2004,20(1): 38~40
    12 John Reason. How Fuel Volatility Impacts Boiler Design, Operation. Power.1983, 127 (12): 51~53
    13何佩敖.无烟煤的U型、W型火焰燃烧技术.电站系统工程. 1989, (2): 44~60
    14王龙发.适应多煤种负荷调节的W型燃烧方式.华东电力. 1984, (10): 83~86
    15 John Reason. How Fuel Volatility Impacts Boiler Design and Operation. Power. 1983, (12):145~148
    16 S. C. Stultz, J. B. Kitto. Steam/Its Generation and Use. 40th edition B&W Barberton, Ohil, U.S.A, 1992
    17 J.R.Fan, X.D.Zha, K.F.Cen. Study on Coal Combustion Characteristics in aW-shaped Boiler Furnace. Fuel. 2001, 80:373~381
    18 Peet, W.J.Kanan. Utility Boiler Design for Low Voltile Coals. Coal Combustion, Beijing, 1998
    19 Liang X H, Xu Q S, Sun B M, Fan J R, Cen K F. Prediction of Flow, Combustion and Heat Transfer in a Three-Dimensional, W-Shaped Boiler Furnace. The Proceedings of the 22nd International Technical Conference on Coal Utilization&FuelSystems, 1997
    20 Marion Gross, Michel Soulard, Philippe Caullet, et al. Synthesis of Faujasite From Coal Fly Ashes Under Smooth Temperature and Pressure Conditions. Microporous and Mesoporous Materials. 2007, 6(1): 67~76
    21 Antonio Copado, Francisco Rodríguez. CESAR–SIRE: Advanced Software for Boiler Efficiency and NOx Optimization[J]. Feul, 2002, 81(5): 619~626
    22 David Tillman, Dao Duong. Managing slagging at Monroe Power Plant using on-line coal analysis and fuel blending[J]. Fuel Processing Technology, 2007,88(11~12):1094~1098
    23张杰,余战英,谭厚章等. W型火焰燃烧的实验研究[J].动力工程, 2003, 23(5): 2632~2634
    24余战英,谭厚章,徐通模,惠世恩. W型火焰燃烧的实验研究[J].工程热物理学报,2004, 25(Suppl.): 233~236
    25 Zhengqi Li, Feng Ren, Jie Zhang, et al. Influence of Vent Air Valve Opening on Combustion Characteristics of a Down-fired Pulverized-coal 300 MWe Utility Boiler[J]. Fuel. 2007, 86(15): 2457~2462
    26 Feng Ren, Zhengqi Li, Yubin Zhang, et al. Influence of the Secondary Air-Box Damper Opening on Airflow and Combustion Characteristics of a Down-Fired 300MWe Utility Boiler[J]. Energy & Fuels. 2007, 21(2):668~676
    27 Feng Ren, Zhengqi Li, Jianping Jing, et al. Influence of the adjustable vane position on the flow and combustion characteristics of a down-fired pulverized-coal 300 MWe utility boiler [J]. Fuel Processing Technology,2008,89(12): 1297~1305
    28张杰,李争起,靖剑平,等. W型火焰炉旋风分离器分离特性的实验研究[J].热能动力工程, 2007,22(1):65~68
    29张玉斌.不同二次风分配对W型火焰炉炉内流动特性的影响[D].哈尔滨工业大学硕士学位论文. 2007
    30陆肖马,徐旭常,糕玉群. W型火焰煤粉锅炉燃烧室中冷态二维流场测试及火焰三维传热数值计算[J]. 1995, 16(2): 193~198
    31孙保民,徐旭常. W型火焰煤粉锅炉炉内过程的综合数值模拟及流场的实验研究[J].中国电机工程学报[J]. 1996, 16(4): 230~235
    32 J. R. Fan, X. D. Zha, K. F. Cen. Study on Coal Combustion Characteristics in a W-shaped Boiler Furnace[J]. Fuel. 2001, 80(3):373~381
    33 X. H. Liang, W. C. Fan, J. R. Fan and K. F. Cen. Numerical Simulation of the Combustion in a W-shaped Boiler Furnace Under Different Operating Conditions[J]. International Journal of Energy Research. 1999, (23):707~717
    34 J. R. Fan, X. H. Liang, L. H. Chen, et al. Modeling of NOx Emissions From a W-shaped Boiler Furnace Under Diffent Operating Conditions[J]. Energy. 1998, 23(12):1051~1055.
    35 J. R. Fan, J. Jin, X. H. Liang, et al. Modeling of Coal and NOx Formation in a W-shaped Boiler Furnace[J]. Chemical Engineering Journal,1998,71 (3):233~242
    36 J. R. FAN, X. H. LIANG, Q. S. XU, et al. Numerical simulation of the flow and combustion processes in a three-dimensional, w-shaped boiler furnace[J]. Energy,1997,22(8):847~ 857
    37 J. R. Fan, X. D. Zha, K. F. Cen. Computerized Analysis of Low NOx W-Shaped Coal-Fired Furnaces[J]. Energy&Fuels,2001,15(4):776~782
    38车刚,何立明,惠世恩,徐通模.改造W型火焰锅炉结构的实验研究[J].锅炉技术报,2000, 31(5):6~17
    39车刚,何立明,徐通模等.燃烧器角度对W型火焰锅炉空气动力场的影响研究[J].动力工程,2001,21(1):1132~1136
    40车刚,孙新国,王涌等. W型火焰锅炉结构改造的实验研究[J].西安交通大学学报,2001,35(1):38~43
    41车刚,徐通模,许卫疆等. W型火焰锅炉冷态空气动力特性的测试研究[J].热能动力工程, 2001, 16(1): 19~22
    42何立明,车刚,徐通模等.炉膛喉口面积对W型火焰锅炉炉内空气动力场的影响[J].西安交通大学学报,2000,34(7):12~15
    43何立明,张建邦,李晓勇等.燃烧器配风对W型火焰锅炉炉内空气动力场影响的实验研究[J].应用力学学报, 2002,19(1):18~42
    44车刚,何立明,惠世恩等. W型火焰锅炉冷态模化的实验研究[J].西安交通大学学报,2000,34(9):38~43
    45何立明,车刚,徐通模.燃烧器喷射角度对W型火焰锅炉炉内空气动力场的影响[J].燃烧科学与技术,2001,7(3):294~297
    46苗长信,王建伟. 600 MW机组W火焰锅炉“偏烧”问题分析[J].热力发电, 2005,34(12): 48~51
    47苗长信,车刚,王建伟等. 600 MW“W”火焰锅炉优化调试[J].中国电力, 2003,36(8): 16~19
    48朱予东,秦占锋,张伟等.聊城电厂600 MW“W”火焰锅炉优化燃烧[J].中国电力, 2007,40(5): 51~54
    49苗长信,车刚,王建伟. 600MW“W”火焰锅炉降低NOX的调试分析[J].山东电力技术, 2004,(2): 6~9
    50李之光.相似与模化.国防工业出版社, 1982
    51汪健生,郑杰,舒玮.热线风速仪同时测量流场速度与温度.实验力学.1998, 13(3):393~398
    52张万路.热线风速仪在线测量的修正模型.北京100013:中国计量科学研究院. 2000, 24(4):46~49
    53 Min Kuang, Zhengqi Li, Yunfeng Han, Lianjie Yang, Qunyi Zhu, Jia Zhang and Shanping Shen. Influence of staged-air declination angle on flow field deflection in a down-fired pulverized-coal 300 MWe utility boiler with direct flow split burners. Energy & Fuels. 2010, 24, 1603–1610
    54 Feng Ren, Zhengqi Li, Zhichao Chen, Jingjie Wang, Zhao Chen. Influence of the down–draft secondary air on the furnace aerodynamic characteristics of a down–fired boiler. Energy & Fuels, 2009, 23, 2437–2443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700