聚合物共混纺丝法制备纳米碳纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来纳米碳纤维以其独特的物理化学特性引起了人们对它的极大的兴趣。本文选用一种新颖的纳米碳纤维的制备方法——聚合物共混纺丝法,成功地制备出了直径小于200nm的纳米碳纤维,探讨了共混聚合物的相容性、纺丝工艺条件、碳化温度对产物形态、结构和性能的影响。并将本实验制备得到的纳米碳纤维添加到环氧树脂中制备环氧树脂/纳米碳纤维复合材料,对纳米碳纤维的加入对复合材料的结构与性能影响做了简单的探讨。本课题的实验内容主要包括以下三个方面:
     (一)以聚丙烯(PP)为热解高聚物、酚醛树脂(PF)为碳纤维前躯体进行共混,采用熔融纺丝法将共混体系纺丝,对得到的纤维拉伸,之后碳化纤维除去聚丙烯,得到酚醛基纳米碳纤维。采用扫描电镜等对PP/PF共混体系的相容性及微观结构进行分析,研究了纺丝牵伸比、降温母粒含量对纳米碳纤维形态的影响;用拉曼光谱、X-射线衍射技术对纳米碳纤维的微晶结构进行研究,揭示了其中的演变规律与形成特点。结果表明:随着降温母粒加入量的增加,酚醛树脂的分散尺寸增大;随着牵伸比的增加,纳米碳纤维的直径减小,综合考虑各种因素,认为制备纳米碳纤维的最佳共混比为60/20/20(PP/PF/降温母粒),最终制得了具有良好的电性能的直径小于200nm的纳米碳纤维。XRD和拉曼光谱测试分析发现PP/PF共混纤维600℃碳化处理后已经开始产生一些石墨微晶,在900℃的条件下进行碳化所得的纳米碳纤维石墨化程度还较低,仍属于无定形碳范围。
     (二)选用聚丙烯腈(PAN)为纤维前驱体,以聚甲基丙烯酸甲酯(PMMA),为热解聚合物,采用溶液共混法制备PAN/PMMA共混溶液,通过湿法成型将上述共混溶液制成共混纤维。采用红外光谱、扫描电镜等分析研究共混物的相容性,发现PAN/PMMA的相态结构为PAN以微纤形式分散在PMMA中,具有适用于制备纳米碳纤维的相态结构。将PAN/PMMA共混纤维经预氧化,高温碳化后,获得了纳米碳材料。当体系中PAN质量分数为30%时,碳化后获得了直径为200~500nm的纳米碳纤维,且原丝拉伸倍数的提高有利于纳米碳纤维直径的减小;而当PAN质量分数为70%时,则获得了多孔状活性碳纤维。本实验制得的纳米碳纤维具有良好的电性能并且也属于无定形碳范围。
     (三)选用本实验制备的纳米碳纤维,采用超声波分散的方法制备了纳米碳纤维/环氧树脂复合材料,对其力学性能、电学性能、热稳定性进行了测量,并借助SEM对其断口形貌进行了表征。实验结果表明,随着纳米碳纤维的加入量的增加,复合材料的拉伸强度呈现一个先增加后减小的趋势,由此可见,纳米碳纤维的加入起到了一定的增强效果。复合材料的电阻率随着CNF含量的增加而减小,当CNF%=5%时,电阻率达到了10~4Ω·cm。
Carbon nanofibers (CNFs) have been the focal point of numerousresearch programs in the past ten years because of their unique physicaland chemical properties. Recently polymer blend technique has beendeveloped as a novel method to prepare carbon nano materials, includingcarbon nanotubes and carbon nanofibers. In this paper, CNFs with thediameter less than 200nm were prepared by blend spinning process. Theinfluence of the compatibility, spinning condition, carbonizationtemperature on the morphology and structure of the CNFs was discussed.The CNFs were dispersed throughout epoxy resin matrices by sonicationto fabricate the composites. The effects of loading and dispersion ofcarbon nanofibers on the structures and properties of composites wereinvestigated. The whole research work contains three parts.
     Firstly, the phenol-formaldehyde (PF) and polypropylene (PP) blendfibers were prepared by melt-spinning technique and carbonized at high temperature under a nitrogen atmosphere. After carbonization of theblend fibers, the PP component was removed and the PF component leftin the form of thin carbon fibers. The compatibility of PP/PF blend andthe effects of experimental parameters, such as the content of chemicaldegradation agent and the draw ratio, on the morphology of the thincarbon fibers were investigated via FTIR and SEM. Craphite structures ofthe thin fibers under different carbonization conditions were investigatedvia XRD and Raman spectra. Results showed that the diameter of theproduced carbon fiber was decreased with the increasing of draw-ratioand increased with the increasing of chemical degradation agent content.PP/PF/chemical degradation agent =60/20/20 was selected as the optimalblend ratio and CNFs prepared at optimal condition were smaller thantwo hundred nanometers. XRD and Raman spectra showed that the PP/PFblend treated at 600℃produced some graphite crystallite. But thegraphitization degree of CNFs treated at 900℃was still lower, and itbelonged to the range of amorphous carbon.
     Secondly, polymethyl methacrylate (PMMA) was used as thermallydecomposable polymer(TDP); and Polyacrylonitrile (PAN) as carbonprecursor polymer (CPP). CPP and TDP polymer blends were preparedthrough solution mixing. The blend fibers were obtained afterwet-spinning. Oxidization and carbonization were made to remove TDP.Effectes of spinning condition, draw ratio and carbonization condition on properties and structure of the resulted carbon nanofibers were discussedby means of SEM, TGA, FTIR, electrical conductivity test, Ramanspectra, etc. The results showed that porous carbon fibers obtained whenthe blending ratio of PAN/PMMA was 7/3 and superfine carbon fibersobtained when the blending ratio of PAN/PMMA was 3/7. The carbonnanofibers obtained in this work had good conductivity and it alsobelonged to the range of amorphous carbon.
     Finally, CNFs /epoxy resin composites were fabricated by usingultra-sonication method. Electrical conductivity, tensile strength, andthermal stability of the composites were studyed. The electrical resistivitywas decreased as the increase of carbon content. The composite showedan electrical resistivity of 10~4Ω·cm when the CNFs loading was 5 wt%.The tensile strength of them first increased and then decreased with theincreasing of CNFs content, and the composite with 2 wt% CNFs contentshowed higher tensile strength than others.
引文
1.张子鹏,国内外聚丙烯腈基碳纤维市场分析,化工技术经济,2005/2.23(2):24-27
    2.全国合成纤维科技信息中心,聚丙烯腈(PAN)基碳纤维的发展和应用,行业论坛,2004,33(5):1-4
    3.罗丽珊,杨林杰,碳纤维发展状况,广东化纤,1998,5(2):28-33
    4.袭建人,庄光山,蔡华苏等,我国聚丙烯腈碳纤维工业的现状,新型碳材料,1997/9,12(3):22-25
    5. V. Z. Mordkovich, Carbon Nanofibers: A New Ultrahigh-Strengh Materials for Chemistry Technology, Theoretical Fondations of Chemical Engineering, 2003,37(5) :429-438
    6.张勇,唐元洪,裴立宅,纳米碳纤维的批量制备和应用.高科技纤维与应用,2005/4,30(2):20-25
    7.孙伟振,乙苯氧化脱氢纳米碳纤维催化剂的制备、结构及其性能研究,华东理工大学硕士学位论文
    8. L.MAX LAKE, Lecture presented at conference, Global Outlook for Carbon fiber 2002, Raleigh, NC.USA, 2002:21-23
    9. Endo M, Takeuchi K, Igarashi S, et al, The production and structure of pyrolytic carbon nanotubes, J of Phys and Chem of Solids, 1993, 54(12): 1841-1848.
    10. Collins S, Brydson R, Rand B, Structural analysis of carbon nanofibres grown by the floating catalyst method ,Carbon,40(2002): 1089-1100
    11. Lee CheolJin, Lee TaeJae, Park Jeunghee. Carbon nanofibers grown on sodalim glass at 500 using thermal vapor deposition. Chem Phys Lett, 2001,340(5-6): 178-180
    12. Merkulov V I, Melechko A V, Guillorn M A, et al, Controlled alignment of carbon nanofibers in a large-scale synthesis process, Appl Phys Lett, 2002, 80(25): 4816-4818
    13.朱静,纳米材料和器件,北京:清华大学出版社,2003
    14.李安邦,高瑞林,关于气相生长碳纤维,碳素技术,1996,12:35-40
    15. M.ISHIOKA, T.OKADA, K.MAYSUBARA, Formation of vapor-growth carbon fiber in Co-Co2-H2 mixtures, 1.Inflence of carrier gas composition, Carbon, 1992,30: 859.
    16.顾书英,吴琪琳,任杰,纳米碳纤维的制备及其表面结构分析,中国功能材料及其应用学术会议,2004,(1001-9731)
    17. Thandavamoorthy Subbiah, G. S. Bhat, R. W. Tock, et al, Electrospinning of Nanofibers, Journal of Applied Polymer Science, 96 (2005):557-569
    18. G.S. Chung, S. M. Jo, B. C. Kim, Propertied of Carbon Nanofibers Prepared from Electrospun Polyimide, Journal of Applied Polymer Science, 2005,97:165-170
    19. Yu-Qin Wan, Ji-Huan He, Yue Wu, et al., Vibrheological effect on electrospun polyacrylonitrile (PAN) nanofibers, Materials Letters, Article in press, accept in March 2006
    20.王德诚,纳米纤维及其制造方法,合成纤维工业,2004/2,27(1):29-31
    21. D. Hulicova, F. Sato, K. Pkabe, et al.,An attempt to prepare carbon nanofibers by the spinning of microcapsules, Carbon, 39(2001): 1438-1442
    22. J. OZAKI, N. ENDO, W. OHIZUMI, et al, Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon, 1997, 35(7):1031-1033,1997
    23. Nirav Patel, Keiji Okabe, Asao Oya, et al., Designing carbon materials with unique shapes using polymer blending and coating techniques, Carbon, 40 (2002):315-320
    24. Denisa Hulicova, Asao Oya, The polymer blend technique as a method for designing fine carbon materials, Carbon, 2003, 41:1443-1450
    25. Gray G. Tibbetts, Max L. Lake, Karla L. Strong, et al., A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Composites Science and Technology (2006), doi:10.1016/j.compscitech. 2006.06.015
    26.赵稼祥,世界碳纤维现状与进展,玻璃/复合材料,2003,2:40—43
    27.赵稼祥,纳米碳纤维及其应用,纤维复合材料,2003/12,4:48—50
    28.陈红燕,王继辉,纳米碳纤维及其在聚合物中的应用,玻璃/符合材料,2005/5,3:41-43
    29. V.Z. Mordkovich, Crbon Nanofiber: A New Ultrahigh-Strength Material for Chemical Technology, Theoretical Foundation of Chemical Engineering, 2003,37(5):429-438
    30.Y.Dzenis,Y.Wen,可用作纳米纤维复合材料的连续纳米碳纤维,国外纺织技术,2003,6:9-11
    31. Ramin Sadeghian, Sudhir Gangireddy, Bob Minaie, et al., Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-Ⅰ delamination resistance, Composites, Article in press, accepted 14 September 2005
    32. Bernadette A., Higgin, William J, et al., Polycarbonate carbon nanofiber composites, European Polymer Journal, 2005, 41 (5): 889-893
    33. Bin Zhang, Ruowen Fu, Mingqiu Zhang, et al., Gas sensitive vapor grown carbon nanofiber/polystyrene sensors, Materials Research Bulletin, 2006, 41: 553-562
    34.陈红燕,气相生长纳米碳纤维的制备及纳米碳纤维增强环氧树脂性能的研究,武汉理工大学学位论文,2005/6
    35.鹿海军,梁国正,张宝艳等,纳米碳管在聚合物中的应用及其复合材料研究进展,材料导报,2003/7,17(7):57-60
    36.李文春,沈烈,孙晋等,多壁碳纳米管/聚乙烯复合材料的制备及其导电行为,应用化学,2006/1,23(1):64-68
    37.信思树,项金钟,吴兴惠,纳米碳纤维的制备方法及其吸波特性,材料导报,2003/9,17:24-26
    38. B. O. LEE, W. J. WOO, H. S. PARK, et al., Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF, Journal of Materials Science, 2002, 37(5): 1839-1843
    39.黄宛真,张孝彬,涂江平,鱼骨状纳米碳纤维的制备及其吸氢性能,太阳能学报,2004,6:371-374
    40.白朔,一种新型储氢材料——纳米碳纤维的制备及储氢特性,材料研究学报,2001/2,15(1):77-82
    41.毛宗强,徐才录,碳纳米纤维储氢性能初步研究,新型碳材料,2000/3,15(1):64-67
    42.吴国涛,王淼,李振华等,竹节状纳米碳纤维的制备及嵌锂性能研究,化学 物理学报,2003/8,16(4):299-302
    43.郭明,王金才,吴连波等,纳米碳材料在锂离子蓄电池负极材料中的应用,电源技术,2004/6,28(6):385-387
    1.伍林,欧阳兆辉,曹淑超等,酚醛树脂耐热性的改性研究进展.中国胶粘剂,2005/6,14(6):45-49
    2.付大友,袁东,罗小芳,碳素材料专用酚醛树脂中游离酚的测定,理化试验,化工分册,2006.42(1):112-113
    3.中国科学院山西煤炭化学研究所,一种制备高度交联化酚醛纤维的固化方法,中国,03137024.1,2003
    4.刘春玲,郭全贵,史锦利等.酚醛纤维在热处理过程中微结构的变化,新型炭材料,2004/6,19(2):124-128
    5. Denisa Hulicova, Asao Oya. The polymer blend technique as a method for designing fine carbon materials, Carbon, 41 (2003): 1443-1450
    6. J. OZAKI, N. ENDO, W. OHIZUMI, et al., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon, 1997, 35(7): 1031-1033,1997
    7. Nirav Patel, Keiji Okabe, Asao Oya, et al., Designing carbon materials with unique shapes using polymer blending and coating techniques, Carbon, 40 (2002):315-320
    8.贺福,杨永岗,酚醛基活性碳纤维,高科技纤维与应用,2003/10,28(5):19-26
    9.刘义红,殷荣忠编译,酚醛树脂碳纤维高温石墨化机理,网络聚合物材料通讯,5(1):7-9
    10. K. Okabe, S. Shiraishi, A. Oya, Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000℃, Carbon, 2004,42(3):667-691
    11. C. van Gulijk, K.M. de Lathouder. R. Haswell, Characterizing herring bone structures in carbon nanofibers using selected area electron diffraction and dark field, Carbon, 44 (2006) 2950-2956
    12. Y.A. Zhu, Zh. J. Sui. T. J. Zhao.. et al., Modeling of fishbone-type carbon nanofibers: A theoretical study. Carbon. 43 (2005) 1694-1699
    13. Atsushi Tanaka, Seong-Ho Yoon. Isao Mochida, Preparation of highly crystalline nanofibers on Fe and Fe-Ni catalysts with a variety of graphene plane alignments, Carbon, 42 (2004) 591-597
    14. Yongzhen Yang, Xuguang Liu, Bingshe Xu, et al., Preparation of vapor-grown carbon fibers from deoiled asphalt. Carbon. 44 (2006) 1661-1664
    15. Marjolein L. Toebes. Hurgen M. P. Van Heeswijk, Johannes H. Bitter. et al.. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers, Carbon, 42 (2004) 307-315
    16. G.S. Chung, S. M. Jo, B. C. Kim, Properties of Carbon Nanofibers Prepared from Electrospun Polyimide, Published online in Wiley InterScience (www.interscience.wiley.com), Accepted 20 June 2004
    17. Soo-Jin Park, Min-Kang Seo, Young-Seak Lee, Surface characteristics of fluorine-modified PAN-based carbon fibers, Carbon, 41 (2003) 723-730
    18. S. Collins, R. Brydson, B. Rand, Structural analysis of carbon nanofibres grown by the floatingcatalyst method, Carbon, 40 (2002) 1089-1100
    19. Charanjeet Singh, Tom Quested, Chris B. Boothroyd, et al. Synthesis and Characterization of Carbon Nanofibers Produced by the Floating Catalyst Method. J. Phys. Chem, B. 2002, 106(42), 10915-10922
    20.贺福,用拉曼光谱研究碳纤维的结构,高科技纤维与应用,2005/12,30(6):20-25
    21. Seongyop Lim, Seong-Ho Yoon, Isao Mochida, Surface Modification of Carbon Nanofiber with High Degree of Graphitization, J. Phys. Chem. B, 2004, 108(5): 1533-1536
    1.张旺玺,聚丙烯腈基碳纤维的新进展,高科技纤维与应用,2001/10,26(5):12-15
    2.刘国昌,徐淑琼,聚丙烯腈基碳纤维及其应用,机械制造与自动化,2004/8,33(4):41-43
    3.张子鹏,国内外聚丙烯腈基碳纤维市场分析,化工技术经济,2005/2.23(2):24-27
    4.全国合成纤维科技信息中心,聚丙烯腈(PAN)基碳纤维的发展和应用, 行业论坛,2004,5:1-4
    5. Denisa Hulicova, Asao Oya, The polymer blend technique as a method for designing fine carbon materials, Carbon, 2003, 41: 1443-1450
    6. J. OZAKI, N. ENDO, W. OHIZUMI, et al., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon,1997, 35(7):1031-1033,1997
    7. Nirav Patel, Keiji Okabe, Asao Oya, et al., Designing carbon materials with unique shapes using polymer blending and coating techniques, Carbon, 40 (2002):315-320
    8. Myung Il Kim , Chang Hun Yun , Young Jeon Kim, et al., Changes in pore properties of phenol formaldehyde-based carbon with carbonization and oxidation conditions, Carbon, 40(2002):2003-2012
    9.敖玉辉,陈东生,李永贵,中孔活性碳纤维制备及发展,吉林工学院学报,2002/9,21(3):48-50
    10.乔志军,李家俊,赵乃勤,沥青基活性炭纤维复合活化工艺的研究,离子交换与吸附,2002/2,18(1):23-29
    11. W.M. Qiao, S. H. Yoon a, Y. Korai, et al., Preparation of activated carbon fibers from polyvinyl chloride, Carbon, 42(2004): 1327-1331
    12.张莉珍,吕春祥,吕永根,吴刚平,贺福,聚丙烯腈纤维在预氧化过程中的结构和热性能转变,新型碳材料,2005/6,20(2):144-150
    13.李丽娅,黄启忠,张红波,聚丙烯腈预氧丝的炭化结构和性能,粉末冶金材料学与工程,2000/12,5(4),301-305
    14. Bao-Ku Zhu, Shu-Hui Xie, Zhi-Kang, Xu, You-Yi Xu, Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites, Composites Science and Technology 66 (2006):548-554
    15.付正芳,聚丙烯腈基中空活性碳纤维的制备及储氢性能的研究,东华大学硕士学位研究生论文,2005/3
    16.贺福,用拉曼光谱研究碳纤维的结构,高科技纤维与应用,2005/12,30(6):20-25
    17. Seongyop Lim, Seong-Ho Yoon, Isao Mochida, Surface Modification of Carbon Nanofiber with High Degree of Graphitization, J. Phys. Chem. B, 2004, 108(5): 1533-1536
    18. S. Collins, R. Brydson, B. Rand, Structural analysis of carbon nanofibres grown by the floatingcatalyst method, Carbon, 40 (2002) 1089-1100
    19. Charanjeet Singh, Tom Quested, Chris B. Boothroyd, et al., Synthesis and Characterization of Carbon Nanofibers Produced by the Floating Catalyst Method, J. Phys. Chem. B, 2002, 106(42), 10915-10922
    20. C. van Guiijk, K.M. de Lathouder, R. Hasweii, Characterizing herring bone structures in carbon nanofibers using selected area electron diffraction and dark field, Carbon, 44 (2006) 2950-2956
    21. Y.A. Zhu, Zh. J. Sui, T. J. Zhao., et al. Modeling of fishbone-type carbon nanofibers: A theoretical study, Carbon, 43 (2005) 1694-1699
    22. Atsushi Tanaka. Seong-Ho Yoon. Isao Mochida., Preparation of highly crystalline nanofibers on Fe and Fe-Ni catalysts with a variety of graphene plane alignments, Carbon. 42 (2004) 591-597
    23. Yongzhen Yang, Xuguang Liu. Bingshe Xu, et al., Preparation of vapor-grown carbon fibers from deoiled asphalt, Carbon, 44 (2006) 1661-1664
    24. Marjolein L. Toebes, J. M. P. Van Heeswijk, Johannes H. Bitter. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon. 2004.42 (2) 307-315
    25. G.S.Chung,S.M.Jo,B.C.Kim,Properties of Carbon Nanofibers Prepared from Electrospun Polyimide,Published online in Wiley InterScience (www.interscience.wiley.com).Accepted 20 June 2004
    26. Soo-Jin Park,Min-Kang Seo,Young-Seak Lee,Surface characteristics of fluorine-modified PAN-based carbon fibers,Carbon,41 (2003) 723-730
    1. Endo M., Kim Y. A., Hayashi T., et al., Vapor-grown carbon fiber(VGCFs):Basic properties and their battery applications, Carbon, 2001,39(9):1287-1297
    2.张淮,纳米碳管与纳米碳纤维的制备及表征,浙江大学硕士论文,2006/5
    3.张勇,唐元洪,裴立宅,纳米碳纤维的批量制备和应用,高科技纤维与应用,2005/4,30(2):20-25
    4. V. Z. Mordkovich, Carbon Nanofiber: A New Ultrahigh-Strength Material for Chemical Technology, Theoretical Foundation of Chemical Engineering, 2003,37(5):429-438
    5. Gray G., Tibbetts, Max L. Lake, et al., A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Composites Science and Technology, Accepted 29 June 2006, Article in Press
    6. Ramin Sadeghian, Sudhir Gangireddy, Bob Minaie, et al., Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance, Composites, Part A: applied science and manufacturing, Accepted 14 September 2005, Article in Press
    7. B. O. LEE, W. J. WOO, H. S. PARK, et al., Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF, Journal of Materials Science,2002,37(5): 1839-1843
    8.白朔等, 一种新型储氢材料——纳米碳纤维的制备及储氢特性,材料研究学报,2001/2,15(1):77-82
    9.郭明,王金才等,纳米碳材料在锂离子蓄电池负极材料中的应用,电源技术,2004/6,28(61:385-387
    10.王安之,吕满庚,碳纳米管/高分子复合导电材料的研究进展,高分子通报,2006/5,5:65-70
    11. Zhifei Li, Guohua Luo. Fei Wei, et al., Microstructure of carbon nanotubes/PET conductive composites fibers and their properties, Composites Science and Technology, 2006.66(7-8): 1022-1029
    12. Bernadette A., Higgin, William J, el al., Polycarbonate carbon nanofiber composites, European Polymer Journal. 2005,41 (5):889-893
    13. Bin Zhang, Ruowen Fu, Mingqiu Zhang, et al., Gas sensitive vapor grown carbon nanofiber/polystyrene sensors, Materials Research Bulletin. 2006,41(3):553-5625
    14.鹿海军,梁国正,张宝艳等,纳米碳管在聚合物中的应用及其复合材料研究进展,材料导报,2003/7,17(7):57-60
    15.李文春,沈烈,孙晋等, 多壁碳纳米管/聚乙烯复合材料的制备及其导电行为,应用化学,2006/1,23(1):64-68
    16.陈红燕,气相生长纳米碳纤维的制备及纳米碳纤维增强环氧树脂性能的研究,武汉理工大学学位论文,2005/6
    17.李贞,段跃新,粱志勇, 纳米碳管/环氧树脂复合材料力学性能研究,宇航材料工艺,2006,3:29-31
    18.袁观明,李平和,用SEM和FESEM研究碳纳米管/环氧树脂复合材料的拉伸断面,物理测试,2006/03,24(2):1-5
    19. Jacob C., Kearns, Robert L., Shambaugh, Polypropylene Fibers Reinforced with Carbon Nanotubes, Journal of Applied Polymer Science,2002,86:2079-2084
    20.隋刚,杨小平,梁吉等,碳纳米管/天然橡胶复合材料的制备及性能,复合材料学报,2005/10,22(5):72-77
    21.丁美平,寇开昌,田普锋等,不同方法处理碳纤维增强PTFE复合材料性能的研究,工程塑料应用,2006,34(4):25-28
    22. Young Kuk Choi, Koh Ichi Sugimoto, Sung Song, et al., Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets, Material letters, 2005,59(4-5):3514-3520
    23.郑亚萍,宁荣昌,陈立新,纳米材料对环氧树脂耐热性的改性研究,热固性树脂,2006/1,21(1):18-20
    24.傅万里,刘竞超,陈小飞,环氧树对脂/粘土纳米复合材料的研究,热固性树脂,2002/3,17(2):19-24
    25.田勇,皮丕辉,文秀芳,SMA对聚苯醚/环氧树脂体系相容性和耐热性的 影响,塑料科技,2006,34(2) :5-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700