Tm,Ho:YAP激光器注入锁频技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2μm固体激光器作为发射机的相干多普勒测风雷达和差分吸收雷达成为近些年来激光雷达的研究重点。注入锁频2μm固体激光器,以其高能量、高光束质量、窄线宽、频率稳定的单频脉冲激光输出特性,成为激光雷达的首选光源。本文从理论和实验两个方面对注入锁频Tm,Ho:YAP固体激光器进行了研究。
     理论方面,首先根据Tm,Ho粒子的跃迁机制以及能量的传递过程,建立了低温下连续和调Q运转Tm,Ho双掺固体激光器的准四能级速率方程理论模型,得到激光跃迁初始反转粒子数密度的解析表达式,分析了各种参数对输出脉冲宽度的影响。其次根据注入锁频的经典理论模型分析了注入锁频理论,讨论了影响模式耦合的因素以及实现注入锁频所需的最小注入功率。
     实验方面,分析并设计了主、从激光器,通过注入锁频伺服系统控制,实现了Tm,Ho:YAP锁频激光输出。Tm,Ho:YAP主激光器采用微片结构,通过腔外加滤波片的方法,获得单纵模激光输出,讨论了激光器内多模振荡对输出功率和频率稳定性的影响,同时分析了输出激光光束质量较差的原因。从激光器采用四镜“8”字环形腔结构,通过对不同谐振腔长和输出镜透过率下激光器连续和调Q运行时输出特性的实验研究,选择了最佳的从激光器谐振腔参数。通过对注入耦合系统的设计,完成了种子光模式与环形腔模式的良好匹配,配合注入锁频伺服系统的控制,实现了Tm,Ho:YAP固体激光器的注入锁频激光输出,重频100Hz,单脉冲能量3mJ,脉冲宽度270ns。频率锁定时,激光脉冲建立时间缩短,单脉冲能量和脉宽的稳定性提高,通过拍频测量,验证从激光器输出为单频脉冲激光。最后,利用注入锁频Tm,Ho:YAP激光器,进行多普勒测速实验,实验处理结果与模拟目标的实际速度符合较好,为2μm波段激光光源在多普勒测风雷达方面的应用进行了初步探索研究。
     为了拓展国内注入锁频2μm固体激光器的工作物质范围,本论文对注入锁频Tm,Ho:YVO_4激光器进行了初步的实验研究,实现了Tm,Ho:YVO_4激光器的锁频激光输出,重频20Hz,单脉冲能量2mJ,脉冲宽度70ns。Tm,Ho:YVO_4晶体严重的热效应限制了其在获得高重复频率、高能量激光输出方面的应用,同时大的增益截面导致其输出脉冲宽度较窄,这些激光特性表明Tm,Ho:YVO_4晶体在作为多普勒测风雷达光源方面都不如Tm,Ho:YAP晶体。
2μm solid-state lasers used as transmitter for Doppler wind lidar and Differential absorption lidar have become the research point of the lidar. Injection-locked 2μm solid-state lasers meet the requirements of light source for lidar due to their high energy, high beam quality, narrow linewidth, stable frequency and single frequency pulse laser output. In this paper, injection-locked Tm,Ho:YAP solid-state laser has been investigated theoretically and experimentally.
     Theoretically, firstly, based on level translation and energy transfer of Tm, Ho co-doped laser, the quasi-four-level rate equations of CW and Q-switch Tm,Ho laser operated in 77K are established. The analytical formula of initial upper level population inversion density is obtained. The mainly factors infect the output pulse width are discussed. Secondly, the theory of injection-locked is analyzed according to the classical theory model. The influence factors of mode coupling between the master laser and slave laser are analyzed. The minimum injected power which is essential to the injection-locked is discussed.
     Experimentally, injection-locked Tm,Ho:YAP laser is realized. The Tm,Ho:YAP master laser is a single-longitudinal-mode (SLM) operation laser by combining use the microchip structure and placing a ray filter outside the microchip laser. The influent factor of multi-mode oscillation in the cavity to the stability of output power and frequency are discussed. The reasons of the bad beam quality are also discussed. The slave laser is designed to be a ring laser, which is convenient for injection-seeded. Experimental studies on CW and Q-switched laser are carried out under different cavity length and output coupler. Then the optimum parameters of the cavity are selected. Good mode macthing between the master and slave laser is achieved by intensive designed. With the control of injection-locked servo system, the injection-locked Tm,Ho:YAP laser is obtained firstly. At repetition frequency of 100Hz, pulse energy of 3mJ and pulse width of 270ns is achieved. Under injected locking, the pulse buildup time shortened obviously. And the stability of output pulse energy and width is improved. The injection-locked laser is single frequency pulse laser verified by beat frequency measurement. Finally, a coherent laser Doppler velocity measurement experiment is carried out by using injection-locked Tm,Ho:YAP solid-state laser. The results of the experimental treatment are in good agreement with the actual speed, which means that it is possible to use injection-locked 2μm solid-state lasers to be as the light source of lidar at home.
     In order to expand the scope of laser materials applied to the injection-locked 2μm solid-state laser, injection-locked Tm,Ho:YVO_4 laser is realized. At repetition frequency of 20Hz, the pulse energy is 2mJ and pulse width is 70ns. Due to its serious thermal effects, it is difficult to achieve higher repetition rate and high pulse energy output of Tm,Ho:YVO_4 laser. And because of its large gain cross-section, the pulse width of Tm,Ho:YVO_4 laser is quite narrow. Therefore, compared with Tm,Ho:YVO_4 crystal, Tm, Ho:YAP is more suitable to be the laser medium as the light of lidar.
引文
1张铭,张杰.激光二极管泵浦固体激光器技术-2μm固体激光器的发展概况.电光系统. 1995, 69(1): 33~41
    2张芳沛,薛海中,胡永钊,沈严.相干多普勒测风激光雷达.应用光学. 2007, 2 (3): 1045~1050
    3周小林,孙东松,钟志庆,王邦新,夏海云,董晶晶,沈发华,刘东.多普勒测风激光雷达研究进展.大气与环境光学学报. 2007, 2(3): 161~168
    4 R. Milton, R. M. Huffaker, and R. Michael. Remote sensing velocities using coherent laer of atmospheric wind solid-state and CO2 systems. Proceeding of the IEEE, 1996, 84(2): 181~204
    5 P. Rabinowitz, S. Jacobs, R. Targ, and G. Gould. Homodyne detection of phase modulated light. Proc. IRE 1962, 50: 2365
    6 Y. Yeh and H. Cummins. Localized Fluid Flow Measurements with a He-Ne Laser Spectrometer. IRE(Correspondence). 1964,176(4): 176~178
    7 R. M. Huffaker. Laser Doppler detection systems for gas velocity measurements. Appl. Opt, 1970, 9(5): 1026~1039
    8 R. M. Huffaker, A.V. Jelalian, and J. A. L. Thomson. Laser-Doppler system for detection of aircraft trailing vortices. Proc. of the IEEE, 1970, 58(3): 322~326
    9 M. R. Brashears, and J. N. Hallock. The measurement of wind shear and wake vortices by laser Doppler velocimetry. 7th Conf. on Aerospace and Aeronaut-lcal Meteorology, Melbourne: American Meteorological Society, 1976: 175~184
    10 M. J. Post, R. A. Richter, and R. M. Hardesty. NOAA’s pulsed, coherent IR Doppler lidar characteristic sand data. Proc. of SPIE. 1981, 300: 60~65
    11 Jeffry Rothermel, Lisa Olivier, Robert Banta, R. Michael Hardesty, James Howell, Dean Cutten, Steven Johnson, Robert Menzies, and David Michael Tratt. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar. Opt. Express, 1998, 2(2): 40~50
    12 T. J. Kane, W. J. Kozlorsky, and R. L. Byer. Coherent Laser Radar at 1.06μm Using Nd: YAG Lasers. Opt. Lett. 1987, 12(4): 239~242
    13 Michael J. Kavaya, Sammy W. Henderson, James R. Magee, Charley P. Hale, and R. Milton Huffaker. Remote wind profiling with a solid-state Nd:YAG coherent lidar system. Opt. Lett. 1989, 14(15): 776~778
    14 K. P. Chan, and D. K. Killinger. Short-pulse Coherent Doppler Nd:YAG lidar. Optical Engineering. 1991, 14(15): 776~785
    15 A. J. McGrath, J. Munch, G. Smith, and P. Veitch. Injection-Seeded, Single-Frequency, Q-Switched Erbium Glass Laser for Remote Sensing. Appl. Opt. 1998,37(24): 5706~5709
    16 T. Yanagisawa, K. Asaka, K. Hamazu, and Y. hirano. 11mJ, 15Hz Single-frequency Diobe-pumped Q-switched Er, Yb: Phosphate Glass. Laser. Opt. Lett. 2001, 26(16): 1262~1264
    17 K. Asaka, T. Yuki, T. Yanagisawa, and Y. Hirano. 1.5μm Coherent Lidar System for Wind Velocity Measurement. SPIE. 2001, 4153: 321~328
    18 T. Yanagisawa, K. Asaka, and Y. Hirano. 10.9mJ Single-frequency Diode-pumped Glass Laser for a Coherent Doppler Lidar. SPIE, 2001, 4153: 86~92
    19 V. Philippow, C. Codemard, and Y. Jeong. High-Energy In-fiber Pulse Amplification for Coherent Lidar Applications. Appl. Opt. 2004, 29(22): 2590~ 2592
    20 Sammy W. Henderson, Charley P. Hale, James R. Magee, Michael J. Kavaya, and A. Vincent Huffaker. Eye-safe coherent laser radar system at 2.1μm using Tm,Ho:YAG lasers. Opt. Lett. 1991, 16(10): 773~775
    21 Sammy W. Henderson, and Charley P. Hale. Coherent laser radar at 2μm using solid-state lasers. IEEE Transactions On Geoscience And Remote Sensing. 1993, 31(1): 4~15
    22 S. G. Anderson. Confocal Laser Microscopes See a Wider Field of Application. Laser focus World. 1994, 30(1): 83~86
    23 CLR Photonics, Inc. A division of coherent Technologies, Inc. WindTracer Product Guide for Airport Surveillance Applications
    24毕德仓,李荣忠.中国海洋大学研制的多普勒测风激光雷达为“神七”回收提供气象保障务. 2008-10-09 http://net.xinhuanet.com/market/school/2008-10/09/content_14596591.htm
    25张寅超,胡欢陵,皖平.我国第一台车载激光雷达. 2002-09-30 http://www.hfcas.ac.cn/kxd/138/2.1.htm
    26 R. M. Schotland. Some Observations of the Vertical Profile of Water Vapor by Means of a Laser Optical Radar. In Proceedings of the Fourth Symposium on Remote Sensing of Environment. 12-14 April 1966 (U. Michigan, Ann Arbor, 1966), pp. 273~283
    27 P. W. Baker. Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar. Appl. Opt. 1983, 22(15): 2257~2264
    28 R. Michael Hardesty. Coherent DIAL measurement of range-resolved water vapor concentration. Appl. Opt. 1984, 23(15): 2545~2553
    29 William B. Grant, Jack S. Margolis, Alan M. Brothers, and David M. Tratt. CO2 DIAL measurements of water vapor. Appl. Opt. 1987, 26(15): 3033~3042
    30 Sungdo Cha, Kin Pui Chan, and Dennis K. Killinger. Tunable 2.1-,μm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles. Appl. Opt. 1991, 30(27): 3938~3943
    31 G. Ehret, C. Kiemle, W. Renger, and G. Simmet. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. Appl. Opt. 1993, 32(24): 4534~4551
    32 Volker Wulfmeyer, and Jens B?senberg. Ground-Based Differential Absorption Lidar for Water-Vapor Profiling: Assessment of Accuracy, Resolution, and Meteorological Applications. Appl. Opt. 1998, 37(18): 3825~3844
    33 S. Amoruso, A. Amodeo, and M. Armenante. Development of a tunable IR lidar system. Optics and Lasers in Engineering. 2002, 37(5): 521~532
    34 Grady J. Koch, Bruce W. Barnes, Mulugeta Petros, Jeffrey Y. Beyon, Farzin Amzajerdian, Jirong Yu, Richard E. Davis, Syed Ismail, Stephanie Vay, Michael J. Kavaya, and Upendra N. Singh. Coherent Differential Absorption Lidar Measure- ments of CO2. Appl. Opt. 2004, 43(26): 5092~5099
    35 Fabien Gibert, Pierre H. Flamant, Didier Bruneau, and Claude Loth. Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Appl. Opt. 2006, 45(18): 4448~ 4458
    36 Grady J. Koch, Jeffrey Y. Beyon, Fabien Gibert, Bruce W. Barnes, Syed Ismail, Mulugeta Petros, Paul J. Petzar, Jirong Yu, Edward A. Modlin, Kenneth J. Davis, and Upendra N. Singh. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements. Appl. Opt. 2008, 47(7): 944~956
    37 Shumpei Kameyama, Masaharu Imaki, Yoshihito Hirano, Shinichi Ueno, Shuji Kawakami, Daisuke Sakaizawa, and Masakatsu Nakajima. Development of 1.6μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing. Opt. Lett. 2009, 34(10): 1513~1515
    38洪光烈,张寅超,谭锟,胡顺星,曹开法,邵石生,刘小勤.基于参量振荡探测对流层CO2的差分吸收雷达.光电工程. 2005, 32(3): 9~12
    39 R.Adler. A study of Locking phenomena in oscillators. IRE. 1946, 34: 351~356
    40 R H. Pantell. The Laser Oscillator with an External Signal. IEEE J. Quantum Electronics. 1965, 53(5): 474~477
    41 A. L. Tang, and H. Statz. Phase-Locking of Laser Oscillators by Injected Signal. Appl. J. Phys. 1967, 38(1): 323~324
    42 H. L. Stover, and W. H. Steier. Locking of Laser Oscillators by Light Injection. Appl. Phys. Lett. 1966, 8(4): 91~96
    43 A. J. Bruzek, and R. J. Freiberg. Hybrid Injection Locking of Higher Power CO2 Lasers. IEEE J. Quantum Electronics. 1972, 8(7): 641~650
    44 L. E. Erickson, and A. Szabo. Spectral Narrowing of Dye Laser Output by Injection of Monochromatic Radiation into the Laser Cavity. Appl. Phys. Lett. 1971, 18(10):433
    45 Q. H. F. Vrehen, and A. J. Breimer. Spectral Properties of a Pulsed Dye Laser with Monochromatic Injection. Opt. Comm. 1972, 4(6): 416~420
    46 A. I. Moses, J. J. Turner, and C. L. Tang. Mode Locking of Laser Oscillators by Injection Locking. Appl. Phys. Lett. 1976, 28(5): 258~260
    47 S. Blit, U. Ganiel, and D. Treves. A tunable, single mode, injection-locked flashlamp pumped dye laser. Appl. Phys A. 1977, 12(1): 69~74
    48 U. Rebhan, and J. Hildebrandt. Injection of a N2-laser excited oscillator into a flashlamp pumped dye ring laser. Opt. Comm. 1979, 31(1): 69~72
    49 T. Okada, M. Maeda, and Y. Miyazoe. Spectral Narrowing of a Flashlamp-pumped High-energy Dye Laser by Two-Stage Injection Locking. IEEE J. Quantum Electronics. 1979, 15(17): 616~623
    50 P. Brockman, C. H. Bair, and J. C. Barnes. Pulsed injection control of a titanium-doped sapphire laser. Opt. Lett. 1986, 11(11):712~714
    51 T. D. Raymond, and A. V. Smith. Injection-seeded titanium-doped-sapphire laser. Opt. Lett. 1991, 16(1): 33~35
    52 C. E. Hamilton. Single-frequency, Injection-seeded Ti:sapphire Ring Laser with High Temporal Precision. Opt. Lett. 1992, 17(10): 728~730
    53 J. Yu, U. N. Singh, N. P. Barnes, and M. Petros. 125mJ Diode-pumped Injection- seeded Ho:Tm:YLF Laser. Opt. Lett. 1998, 23(10): 780~782
    54 U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, and E.A. modlin. Injection-seeded, Room-temperature,Diode-pumped Ho,Tm: YLF Laser with Output Energy of 600mJ at 10Hz. OSA Trends in Optics And Photonics Series. 1998, 19: 194~196
    55 H. Fukuoka, M. Kadoya, K. Asaba, K. Asai, K. Mizutani, and T. Itabe. Injection Seeded Tm,Ho:YLF Laser. SPIE. 2001, 4153: 455~462.
    56 Takayuki Yanagisawa, Kimio Asaka, and Yoshihito Hirano. 10.9-mJ single- frequency diode-pumped Q-switched Er,Yb: glass laser for a coherent Doppler lidar. SPIE. 2001, 4153: 86~92
    57 T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano. 11-mJ, 15-Hz single- frequency diode-pumped Q-switched Er, Yb: phosphate glass laser. Opt. Lett. 2001, 26(16): 1262~1264
    58 Songsheng Chen, Jirong Yu, Mulugeta Petros, and Yingxin Bai. Diode-pumped Double-pulsed Ho:Tm:LuLF Laser at 2.05μm for CO2 Differential Absorption Lidar (DIAL). SPIE , 2004, 5575: 44~49
    59 S. Chen, J. Yu, M. Petros, U. N. Singh, Y. Bai, N. P. Barnes, and B. C. Trieu. Diode-pumped Ho:Tm:LuLF laser oscillator and laser amplifier at 2μm. In Advanced Solid-State Photonics, OSA Technical Digest (Optical Society ofAmerica), 2004, paper WB20
    60 S. S. Chen, J. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya. Joule Level Double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for Potential Spaceborne Lidar Applications. SPIE. 2005, 5653: 175~185
    61 M. Frede, R. Wilhelm, D. Kracht, C. Fallnich. F. Seifert, and B. Willke. 195W Injection-locked Single-frequency Laser System. CLEO, OSA. 2005, paper CMA1
    62 Yingxin Bai, Jirong Yu, Paul Petzar, and M. Petros. Single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser for remote sensing. CLEO/IQEC, OSA. 2009, paper CWH5
    63王振国,鞠有伦,李玉峰,吴春婷,王月珠. 2μm固体激光器的注入锁定.中国激光. 2008, 35: 17~20
    64 Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang. Diode-pumped injection-seeded Tm,Ho:GdVO4 laser. Laser Phys. Lett, 2009, 6(2): 98~101
    65 Chunqing Gao, Zhifeng Lin, Mingwei Gao, Yunshan Zhang, Lingni Zhu, Ran Wang, and Yan Zheng. Single-frequency operation of diode-pumped 2μm Q- switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser. Appl. Opt. 2010, 49(15): 2841~2844
    66王振国.注入锁频2μm固体激光器研究.哈尔滨工业大学博士论文. 2009
    67 J. Koch, J. P. Deyst, and M. E. Storm. Single-frequency Lasing of Monolithic Ho,Tm:YLF. Opt. Lett. 1993, 18(15): 1235~1237
    68 J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto. A tunable and Longitudinal Mode Oscillation of a Tm,Ho:YLF Microchip Laser Using an External Etalon. Opt. Comm. 2000, 180(1): 137~140
    69 A. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy. Frequency Stabilization of a Ho: Tm: YLF Laser to Absorption Lines of Carbon Dioxide. Appl. Opt. 2000, 39(21): 3664~3669
    70 A. Galzerano, E. Sani, A. Toncelli, G.. Della Valle, S. Taccheo, M. Tonelli, and P. Laporta. Widely Tunable Continuous-wave Diode-pumped 2μm Tm-Ho:KYF4 Laser. Opt. Lett. 2004, 29(7): 715~717
    71 N. Coluccelli, G. Galzerano, D.Parisi, M. Tonelli, and P. Laporta. Diode-pumped Single-frequency Tm:LiLuF4 Ring Laser. Opt. Lett. 2008, 33 (17): 1951~1953
    72王涛.种子注入电光调Q激光器系统机理与技术研究.中国科学院西安光学精密机械研究所硕士学位论文. 2001: 5~10
    73 U. Ganiel, A. Hardy, and D. Treves. Analysis of Injection Locking in Pulsed Dye Laser Systems. IEEE J. Quantum Electronics. 1976, 12(11): 704~716

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700