含分布式发电的配电网电能质量综合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新兴的大电网与分布式发电(DG, Distributed Generation)相结合的模式被认为是节省投资,降低能耗,提高供电可靠性和灵活性,实现科学用能的重要形式。对于含有分布式电源(一般包括中压等级的大功率分布式电源组成的集中式电站以及低压等级的配套储能装置、负荷以及电力电子转换装置的可控的,高度自治运行的微网)的配电网来说,分布式发电可以综合利用本地优势资源,向用户提供清洁和可靠的能源,但也带来许多消极影响。配电网作为电力系统的最末端直接与用户(尤其是居民用户)相连,本身的电能质量指标就比较落后,分布式发电引入配电系统后其电能质量水平直接影响到用户的日常生活和经济活动,各种电能质量问题如电压跌落、闪变、短时供电中断、三相不平衡以及谐波等问题使得更易发生供电阻塞以及次生故障的发生。在分布式发电高渗透率情况下的配电网中,如何发挥分布式发电的长处,规避其短处,在不增加原有配电网电能质量治理装置硬件开销的前提下,构建高效、节能、高电能质量水平的配电网是很值得研究的问题。
     在低压等级的配电网中,由于光伏发电逆变器与有源电力滤波器具备相同的主电路结构,本文提出一种带有滤波功能的光伏发电系统及统一控制方法,系统可发出满足负载需要的有功,同时可发出补偿谐波电流以抵消非线性负载的影响,达到了即供能又改善含分布式电源配网电能质量的目的,节省了硬件开销,使得新能源发电更加绿色环保。同时为使微网更易被配电网接纳并担当更多职责,本文提出了一种由静止同步补偿器(DSTATCOM)和微网构成的无功电压协同控制系统。系统由较小容量的DSTATCOM作为连续子系统,进行快速连续无功调节;由微网作为离散子系统,提供较大容量的分级无功功率,二者协同工作实现无功电压的迅速调整。这种联合运行模式有利于降低微网并入配电网的门槛,实现高品质可靠供电,同时也降低了原有用户电力装置的容量,使分布式发电在供能的同时发挥了电能质量调节的作用。
     在中压等级配电网中,在分布式发电系统中配置静止无功补偿器(SVC, static var compensator)以稳定电压、提高供电质量是目前广泛采取的有效措施,由于SVC本身也是谐波源,本文通过添加谐波检测和滤波环节,使得并网逆变器同时具备供能和滤波的双重功能,来抑制由本地负载和SVC产生的谐波。考虑到现有SVC控制方法难以适应分布式发电间歇性、波动性大的特点,进行了优化递推积分PI的SVC电压控制研究;对添加滤波环节的系统的控制稳定性进行了分析并提出了改进措施,构建的配置SVC的高品质逆变型分布式系统在供能的同时可快速补偿电压波动和消除本地负载和SVC本身产生的谐波,使得分布式发电系统更容易被配网接纳。
     针对分布式电源、微网的并入对配网带来的消极影响以及其功率可控调度方便的积极作用,本文提出了一种含分布式电源、微网以及电能质量控制装置的配电网电能质量多代理控制系统结构,建立了以电能质量国家标准为控制目标,综合考虑分布式电源及微网极限出力、电能质量校正装置容量为约束条件的配电网电能质量综合控制模型。构建的含分布式发电与电能质量治理装备的经济高效的电能质量控制平台对目前分布式发电的供电质量治理有较好的借鉴意义。
New emerging composite system of large grid and distributed generation is considered as an effective mode of saving investment, reducing energy consumption and increasing the reliability. For the distribution network, the distributed generation could utilize the local superior resource, providing clean and reliable energy to users, but also brought many negative effects. Distribution network is mainly connected near the user at the terminal of the power system and the power quality is not good. Various kinds of power quality problems, such as voltage sag, voltage flicker, supply disruptions, short term three phase unbalanced and harmonics etc, in some degree make the occurrence of the power supply blocking and secondary fault more easier happen. In the distribution network with high penetration of DGs and micro-grids, the problem of how to take advantage of the strongpoint of DGs, to avoid its shortcoming and to construct effective, energy-saving as well as high level power energy distribution network, on the premise of not increasing hardware cost of the power quality correction devices in distribution network, is worthwhile to research.
     Due to the same circuit configuration of gird-connected inverter of PV and active power filter, the micro-grid PV power system with filtering function which can work as the grid-connected inverter and active power filter simultaneously and its corresponding unified control method are presented. A feasibility study for unified control and the system design parameters are put forward. Theoretic analysis and experiments proved the feasibility of this scheme which increases the advantage of distributed generation by supplying enough active power to the load and improves the power quality by suppressing the harmonics caused by the nonlinear load. In order to let micro-grid be more easily accepted by distribution network and undertook much responsibility, in this paper, reactive voltage collaborative control system consisted of DSTATCOM and micro-grid is proposed. It use small-capacity DSTATCOM as continuous subsystem for rapid continuous reactive power regulation and micro-grid as discrete subsystem to provide large-capacity graded reactive power. Their collaborative working could realize rapid adjustment of reactive power.
     Configuration of static var compensator (SVC)in the distributed power supply system is a widely adopted and effective measure to improve the quality of power supply. As SVC itself is harmonic source, the paper proposed to add harmonic compensation order in the current regulation loop of grid-connected inverter on the premise of not increasing hardware cost, in order to suppress the harmonic generated by local load and SVC. For the existing SVC control method is difficult to adapt the distributed generation's characteristics of intermittent and fluctuation, the SVC voltage control strategy based on optimal recursive integral PI is put forward in the paper. The paper analyses the control stability of the adding filtering system and proposes improved measurement. The intelligent and high quality power supply system of inverter-based distributed generation with SVC could not only provide power, but also compensate for voltage fluctuation quickly along with eliminating harmonic produced by local load and SVC.
     Aiming at the negative impact and the advantage of improving the power quality brought by DGs, the paper puts forward a kind of power quality multi-agent control system. According to the united analysis of example under various kind of conditions, the correction and effectiveness of power quality multi-agent control method in distribution system which contains distributed power supply is verified in the paper.
引文
[1]Piagi P, Lasseter R H. Autonomous control of Microgrids//Proceedings o f IEEE Power Engineering Society Meeting, June 18-22,2006, Montreal, Canada.
    [2]Lasseter R H, Akhil A, Marnay C, et al, White paper on integration of distributed energy resources:the CERTS Microgrid concept [R/OL]. [2008-06-12]. http://certs.lbl.gov/pdf/LBNL_50829.pdf.
    [3]Lasseter R H, Piagi P. Microgird:a conceptual solution//Proceedings of I EEE 35th Annual Power Electronics Specialists Conference, June 20-25,2 004, Aachen, Germany.
    [4]Piagi P, Lasseter R H. Control and design of Microgrid componentsm Fin al project report[R/OL], [2008-06-12], http://www.pserc.org/cgi-pserc/g etbig/publication/reports/2006report/lasseter_Microgrid control_final_project_r eport.pdf.
    [5]Blaabjerg F, Chen Z, Kjaeer S. Power electronics as efficient interface i n dispersed power generation systems[J]. IEEE trans on Power Electronics, 2004,19(5):1184-1194.
    [6]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001,25(12):53-56.
    [7]陈哲照,薛媛,王涛,王云鹏.分布式电源并网系统控制策略的研究[J].电力电子技术,2008,42(4):41-44.
    [8]许世森,程健.燃料电池发电系统[M].北京:中国电力出版社,2005.
    [9]周德佳,赵争鸣,吴理博,等.基于仿真模型的太阳能光伏电池阵列特性分析[J].清华大学学报(自然科学版),2007,47(7):1109-1112.
    [10]沈海权,李庚银,周明.联网燃气轮机动态特性分析[J].电网技术,2004,28(16):27-31.
    [11]韩晓平.分布式能源设计若干问题探讨[J].工厂动力,2004,(16):6-16.
    [12]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [13]王志群,朱守真,周双喜.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
    [14]章杜锡,徐祥海,杨莉,甘德强.分布式电源对配电网过电压的影响[J].电力系统自动化,2007,31(12):50-54.
    [15]陈海焱,段献忠,陈金富.分布式发电对配网静态电压稳定性的影响[J].电 网技术,2006,30(19):27-30.
    [16]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算研究[J].电力系统自动化,2006,30(1):35-40.
    [17]刘杨华,吴政球,涂有庆,黄庆云,罗华伟.分布式发电及其并网技术综述[J].电网技术,2008,32(15):71-75.
    [18]陈海焱,陈金富,杨雄平.配电网中计及短路电流约束的分布式发电规划[J].电力系统自动化,2006,30(21):16-31.
    [19]江南,龚建荣,甘德强.考虑谐波影响的分布式电源准入功率计算[J].电力系统自动化,2007,31(3):19-23.
    [20]肖鑫鑫,刘东.分布式功能系统接入电网模型研究综述[J].华东电力,2008,36(2):76-80.
    [21]李峰,李兴源,郝巍.不问断电力变电站中分布式电源接入系统的研究[J].继电器,2007,35(10):13-22.
    [22]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44.
    [23]理真,江文,解大,等.风电并网系统稳态运行的研究[J].华东电力,2007,35(3):36-40.
    [24]王守相,江兴月,王成山.含风力发电机的配电网潮流计算[A].中国国际供电会议,2006.
    [25]吴晓朝,吴捷,杨金明,黄飞龙,周丹莹.风电场电能质量监测系统的研究与应用[J].计算机工程与设计,2006,27(19):3525-3527.
    [26]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用[J].中国电机工程学报,2000,20(3):26-29.
    [27]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(31):77-81.
    [28]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-103.
    [29]杨占刚,王成山,车延博.可实现运行模式灵活切换的小型微网实验系统[J].电力系统自动化,2009,33(14):89-92.
    [30]郭力,王成山.含多种分布式电源的微网动态仿真[J].电力系统自动化,2009,33(2):82-86.
    [31]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):101-102.
    [32]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75.
    [33]丁明,王敏.分布式发电技术[J],电力自动化设备,2004.24(7):31-32.
    [34]刘正谊,谈顺涛,曾祥君.分布式发电及其对电力系统分析的影响[J].华北电力技术,2004,(10):18-20.
    [35]Achermann T, Garner K, Gardiner A. Embedded wind generation in weak grids-economic optimization and power quality simulation[J]. Renewable Energy,1999,18(2):205-221.
    [36]Weiss G, Zhong Q Ch, Green T C, Liang J. Repetitive control of DC-AC converters in micro-grids[J]. IEEE Trans on Power Electronics,2004, 19 (1):219-230.
    [37]Zhong Q Ch, Weiss G. Static Synchronous Generators for Distributed Gen eration and Renewable Energy[C],2009 IEEE PES Power Systems Confere nce & Exhibition. Seattle,2009.
    [38]Lv Zhipeng, Luo An, Wu Chuanping, et al. A Research of Micro-grid E nergy Supply and Filtering System Based on Inverter Multiplexing[C]. SUP ERGEN 2009:1st International Conference on Sustainable Power Generat ion and Supply, Nanjing,2009.
    [39]Gueon N, Lee D J, Kim B T, et al. Novel concept of PV power genera tion system adding the function of shunt active filter[C]. Proc. of IEEE P ower Engineering Society Transmission and Distribution Conference. Asia Pacific,2002,1658-1663.
    [40]Tsai-Fu Wu, Hung-Shou Nien, Chi-Lung Shen. A Single-Phase Inverter S ystem for PV Power Injection and Active Power Filtering With Nonlinear Inductor Consideration[J]. IEEE Transactions on industry applications.200 5,41(4):1075-1081.
    [41]汪海宁,苏建徽,丁明,张国荣.光伏并网功率调节系统[J].中国电机工程学报,2007,27(2):76-79.
    [42]Li Y W, Vilathgamuwa D M, Loh P C. A grid interfacing power quality compensator for three phase three wire micro-grid applications[C], IEEE A nnual Power Electronics Specialists Conference. Aachen, Germany,2004.
    [43]Yunwei Li, Vilathgamuwa DM, Poh Chiang Loh. Micro-grid power qua lity enhancement using a three-phase four-wire grid-interfacing compensato r industry applications[J], IEEE Transactions on,2005,41(6).1707-1719.
    [44]Prodanovic M, Green TC. Control of power quality in inverter-based distr ibuted generation. IECON 02 Industrial Electronics Society[C]. IEEE 2002 28th Annual Conference,2002,5-8,1185-1189.
    [45]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计[J].电力系统自动化,2004,28(24):61-64.
    [46]姜桂宾,裴云庆,杨旭,等.SPWM逆变电源的无互联信号线并联控制技术[J].中国电机工程学报,2003,23(12):94-98.
    [47]谢孟,蔡昆,胜晓松, 等.400Hz中频单相电压源逆变器的输出控制及其并联运行控制[J].中国电机工程学报,2006,26(6):78-82.
    [48]Lasseter R. Dynamic models for micro—turbines and fuel cells[C]. Powe r Engineering Society Summer Meeting, Canada,2001.
    [49]Naka S, Genji T, Fukuyama Y. Practical equipment models for fast distri bution power flow considering interconnection of distributed generators [C]. IEEE Power Engineering Society Summer Meeting, Vancouver, Cana da,2001.
    [50]Murakamia A, Yokoyama A, Tada Y. Basic study on battery capacity ev aluation for load frequency control(LFC) in power system with a large pe netration of wind power generation[J]. IEEJ Trans on. Power and Energy, 2006,126(2):236-241
    [51]IEC 61400-21, Measurement and assessment of power quality characteristic s of grid connected wind turbines[S],2001.
    [52]Spera A D. Wind turbine technology[M]. New York. ASME Press.1995.
    [53]Thiringer T, Dahlberg J. Periodic pulsations from a three-bladed wind tu rbine[J]. IEEE Transactions on Energy Conversion.2001,16(2):128-133.
    [54]Thiringer T. Power quality measurements performed on a low-voltage grid equipped with two wind turbines[J]. IEEE Transactions on. Energy Conver sion.1996.11(3).601-606.
    [55]Gredes G, Santjer F. Power quality of wind turbines and their interaction with the grid[C]. Proceedings of 1994 European Wind Energy Conference, Thessaloniki, Greece,1994,1112-1115.
    [56]Georgakis D, Papathanassiou S, Hatziargyriod N, et al. Operation of a prototype micro-grid system based on micro-sources equipped with fast a cting power electronics interfaces[C],2004 Annual IEEE Power Electronics Specialists Conference,35th. Aachen, Germany,2004.
    [57]Katiraei F, Iravani M R, Lehn P W. Microgrid autonomous operation dur ing and subsequent to islanding process[J]. IEEE Trans On Power Deliver y,2005,20(1):248-257.
    [58]PecasLopes J A, Moreira C L, Madureira A G, et al. Control strategie s for micro-grids emergency operation[C].2005 International Conference o n Future Power Systems,30th, Amsterdam, Netherlands,2005.
    [59]Zoka Y, Sasaki H, YoMo N, et al. An interaction problem of distrib uted generators installed in a micro-grid[A].2004 IEEE International Conf erence on Electric Utility Deregulation, Rest rupturing and Power Technol ogies, HongKong, China,2004.
    [60]Askari S A, Ranade S J, Mitra J. Optimal allocation of shunt capacitors placed in a micro-grid operating in the islanded mode[A]. Proceedings of the 37th Annual North American power symposium[C], Ames, USA,2005.
    [61]Laaksonen H, Saari P, Komulainen R. Voltage and Frequency Control of Inverter Based Weak LV Network Micro-grid[J]. Future Power Systems.2 005.16-18.
    [62]Ackermann T, Knyazkin V. Interaction between distributed generation and the distribution network[C]. Proc of IEEE Power Engineering Society Tran smission and Distribution Conference, Asia Pacific,2002,1357-1362.
    [63]Dolezal J, Santarius P, Thesry J, et al. The effect of distributed genera tion on power quality in distributed system[C]. Quality and Security of El ectric Power Delivery Systems, SIGRE/IEEE PES International Symposium, 2003,204-207.
    [64]Zhang Z R, Yin Z D, Hu F X. Research of multi-farms transmission of distributed generation based on HVDC light[C].2006 International Confere nce on Power System Technology, Chongqing, China,2006.
    [65]Prodanovic M, Green TC. High-Quality Power Generation Through Distrib uted Control of a Power Park Microgrid. Industrial Electronics[J]. IEEE T ransactions on,2006,53(5):1471-1482.
    [66]Muller H, Rudolf A, Aumayr G. Studies of Distributed Energy Supply Systems Using an Innovanve Energy Management System[C]. Proceeding s of 2001 IEEE Power Engineering Society Meeting. Sydney,2001.
    [67]Dimeas A, Hatziargyriou N. A multi-Agent system for microgrid operation [C]. Power Engineering Society General Meeting. Denver, USA,2004.
    [68]Dimeas A, Hatziargyriou N. Operation of a multiagent system for Microgr id control. IEEE trans on Power Systems,2005,20(3):1447-1455.
    [69]Hiyama T, Dunding Z, Funabashi T. Multi-agent based automatic generati on control of isolated stand alone power system[C]. Proceedings od Intern ational Conference on Power System Tecnology, October 13-17,2002, Ku nming, China.
    [70]Wu Tsaifu, Nie Hungshou, Shen Chilung. A Single-Phase Inverter System for PV Power Injection and Active Power Filtering With Nonlinear Induct or Consideration[J]. IEEE Transactions on, Industry applications,2005,4 1(4):1075-1081.
    [71]PRODANOVIC M, GREEN TC. High-Quality Power Generation Through Distributed Control of a Power Park Micro-grid. Industrial Electronics[J], IEEE Transactions on,2006,53(5):1471-1482.
    [72]范瑞祥,罗安,李欣然.并联混合型有源电力滤波器的系统参数设计及应用研究[J].中国电机工程学报,2006,23(2):106-111.
    [73]范瑞祥,罗安,章兢,等.谐振注入式有源滤波器的输出滤波器研究[J].中国电机工程学报,2006,26(5):95-100.
    [74]刘文华,宋强,张东江,等.50MVA静止同步补偿器链节的等价试验[J].中国电机工程学报,2006,26(12):73-78.
    [75]张彦魁,张焰,卢国良.基于PWM控制及相角控制的静止同步补偿器潮流模型及应用[J].中国电机工程学报,2005,25(17):42-47.
    [76]袁佳歆,陈柏超,万黎,等.利用配电网静止无功补偿器改善配电网电能质量的方法[J].电网技术,2004,28(19):81-84.
    [77]梁旭,刘文华,姜齐荣,等.电力系统故障时静止无功发生器的运行分析[J].清华大学学报(自然科学版),2000,40(1):1-3.
    [78]张力,陈建业,王仲鸿,等.系统电压不对称条件下ASVG的仿真分析[J].清华大学学报(自然科学版),1997,37(7):55-58.
    [79]鲁宗相,刘文华,王仲鸿.基于k/n(G)模型的STATCOM装置可靠性分析[J].中国电机工程学报,2007,27(13):12-17.
    [80]Blaabjerg F, Chen Z, Kjaeer S. Power electronics as efficient interface i n dispersed power generation systems[J]. IEEE trans on Power Electronics, 2004,19(5):1184-1194.
    [81]Dimeas A, Hatziargyriou N. Operation of a multiagent system for Micro grid control[J]. IEEE trans on Power Systems,2005,20(3):1447-1455.
    [82]Hiyama T, Dunding Z, Funabashi T. Multi-agent based automatic generati on control of isolated stand alone power system[C]. Proceedings od Intern ational Conference on Power System Tecnology, October 13-17,2002, Ku nming, China.
    [83]Piagi P, Lasseter R H. Autonomous control of Microgrids//Proceedings o f IEEE Power Engineering Society Meeting, June 18-22,2006, Montreal, Canada.
    [84]Piagi P, Lasseter R H. Control and design of Microgrid componentsm Fin al project report[R/OL], [2008-06-12], http://www.pserc.org/cgi-pserc/g etbig/publication/reports/2006report/lasseter_Microgrid control_final_project_r eport.pdf.
    [85]Dolezal J, Santarius P, Thesry J, et al. The effect of distributed genera tion on power quality in distributed system[C]. Quality and Security of El ectric Power Delivery Systems, SIGRE/IEEE PES International Symposium, 2003,204-207.
    [86]Thiringer T, Dahlberg J. Periodic pulsations from a three-bladed wind tu rbine[J]. IEEE Transactions on Energy Conversion.2001,16(2):128-133
    [87]Gredes G, Santjer F. Power quality of wind turbines and their interaction with the grid[C]. Proceedings of 1994 European Wind Energy Conference, Thessalonica, Greece,1994,1112-1115.
    [88]Prodanovic M, Green TC. Control of power quality in inverter-based distr ibuted generation[C]. IECON 02 Industrial Electronics Society. IEEE 2002 28th Annual Conference,2002,5-8,1185-1189.
    [89]Georgakis D, Papathanassiou S, Hatziargyriod N, et al. Operation of a prototype micro-grid system based on micro-sources equipped with fast a cting power electronics interfaces[C],2004 Annual IEEE Power Electronics Specialists Conference,35th. Aachen, Germany,2004.
    [90]Zoka Y, Sasaki H, YoMo N, et al. An interaction problem of distributed generators installed in a micro-grid[A].2004 IEEE International Conferen ce on Electric Utility Deregulation, Rest rupturing and Power Technologie s, Hong Kong, China,2004.
    [9]]祝淑萍.TCR控制及数学模型的研究[J].北华大学学报(自然科学版),2001,1(1):89-92.
    [92]王兆安,杨军,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.
    [93]刘其辉,蔚芳,康长路.基于电网电压定向矢量变换的SVC平衡化补偿策略[J].电工技术学报,2009,24(8):147-156.
    [94]李鹏,石新春,梁志瑞.对电弧炉平衡化补偿实用公式推导及验证[J].电工技术学报,2001,16(1):77-80.
    [95]唐杰,罗安,范瑞祥,等.无功补偿和混合滤波综合补偿系统及其应用[J].中国电机工程学报,2007,27(1):88-92.
    [96]唐欣,罗安,涂春鸣.基于递推积分PI的混合型有源电力滤波器电流控制[J].中国电机工程学报,2003,23(10):38-41.
    [97]黄胜利,张国伟,孔力.并网发电和电力有源滤波的统一控制方法[J].电力电子技术,2007,41(12):72-73.
    [98]王正仕,陈辉明.具有无功和谐波补偿功能的并网逆变器设计[J].电力系统自动化,2007,31(13):67-70.
    [99]邓礼宽,姜新建,朱东起,等.APF和SVC联合运行的稳定控制[J].电力系统自动化,2005,29(18):29-34.
    [100]罗安.电网谐波治理和无功补偿技术及装备[M].北京:中国电力出版社,2006.
    [101]涂春鸣,罗安.基于广义积分迭代算法的有源滤波器三重变结构控制[J].电工电能新技术,2004,23(1):34-38.
    [102]Yuan X, Merk W, Stemmler H, et al. Stationary frame generalized int egrators for current control of active power filters with zero steady state error for current harmonics of concern under unbalanced and distorted ope rating conditions[J]. IEEE Transon. Industry Applications,2002,38(2):5 23-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700