TA15钛合金多层结构LBW/SPF/DB工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近αTA15钛合金,具有中等的室温和高温强度,良好的热稳定性和焊接性能,较好的工艺塑性。与广泛使用的TC4合金比较,当工作温度提高到450~500℃时,其强度可高出100~150MPa,因此TA 15钛合金成为我国新型歼击机的关键结构用材。激光焊接高能量密度、高效率、高精度、适应性强、高焊接质量、很小的热影响区和变形区等优点,可有效提高多层结构制造的质量和效率。多层板结构具有承力层稳定性高、结构弯曲刚度大、外形和表面质量高、结构重量较小、良好的能量吸收和疲劳性能等优点,已被广泛用来制造航空航天用钛合金、铝合金等构件。
     本文以TA15钛合金多层结构的研制为背景,对新型的激光焊接/超塑成形/扩散连接(LBW/SPF/DB)工艺进行研究。文中分别研究了TA15钛合金多层结构超塑成形有限元模拟,TA15钛合金激光穿透焊接工艺、TA15钛合金高温拉伸性能,从而实现两层结构的LBW/SPF和四层结构的LBW/SPF/DB。
     首先采用MSC.MARC2005对十字单元、四层结构芯板和面板的超塑成形过程进行模拟,获得了构件各区域的厚度分布和成形过程中的危险区域及压力加载曲线。通过TA15钛合金CO2激光穿透焊接工艺试验研究,对焊前清理、焊接过程中的气体保护、离焦量、激光功率、焊接速度等工艺参数进行了优化,确定了最佳的焊接工艺参数。
     对TA15钛合金板材进行了高温拉伸试验,其在整个试验温度区间均表现出良好的超塑性,880℃下的延伸率最大为840%, 930℃为多层结构合适的超塑成形温度。进行了两层结构毛坯和四层结构芯板的激光穿透焊接,采用自主设计制造的模具和超塑成形系统,在930℃采用修正的压力加载曲线进行了两层结构和四层结构的超塑成形,获得了较好的成形件,其加强筋完全直立,加强筋交叉处两端附近区域因最后完成变形减薄严重,焊接接头附近由于应力集中,变形前期减薄也较为严重。分析了四层结构成形各区域的组织变化,芯板和面板间的贴合区域扩散连接基本全部完成,相互倚靠的直立加强筋之间的扩散连接焊合率也达到了90%以上。
Near-alpha TA15 titanium alloy has moderate room-temperature and high-temperature strength, outstanding thermal stability and welding performance, good abilitity of deformation. Contacted with the more widely used TC4 alloy, when the temperature increased to 450 ~ 500℃, its strength may be higher than TC4 to 100 ~ 150MPa, so TA 15 titanium has become the key structure material of China's new fighter. Laser welding with the advantages of high energy density, high efficiency, high precision, strong adaptability, high welding quality, narrow heat affected zone and deformation zone, can effectively improve the quality and efficiency for the manufacturing of multi-layer structure. Multi-layer structure which has the advantages of high load-bearing layer stability, good bending rigidity, and excellent shape precision, high surface quality as well as light structural weight, good energy absorption and fatigue resistance has been widely used in the manufacture of titanium alloys and aluminum alloys aerospace structures.
     In this paper, with the background of the manufacture of TA15 titanium alloy multi-layer structure, a new laser beam welding / superplastic forming / diffusion bonding (LBW/ SPF/DB) process were studied. The multi-sheet structure of the finite element simulation, the laser penetration welding, and the high tempreture tensile properties andof TA15 titanium alloy were investigated, in order to manufature two- sheet structure with the technology of LBW/SPF and four- sheet structure with the technology of LBW/SPF/DB.
     At the very beginning, FEM was studied with MSC.MARC2005 on the superplastic forming process of the cross unit, four-layer structure of plates and panels. In the end, the thickness distribution of the component, the dangerous zone in the forming process and the pressure load curve were received. The penetration welding technique of CO2 laser beam welding for TA15 titanium alloy was studied. The optimal welding parameters, such as the cleaning before LBW, gas shielded during the welding process, the position of focal point, the laser power and welding speed and so on, were confirmed.
     The high temperature tensile tests of A15 titanium alloy plate were carried out, in the whole test temperature range, the alloy showed excellent superplasticity, 880℃under an extension of the maximum rate of 840%, and 930℃as a suitable superplastic forming temperature for the multi-sheet structure. The rough of two-layer structure and the core board of four-layer structure were welded by the penetration welding technique. With the self-designed superplastic forming system and the correction pressure load curve, the superplastic forming of two-layer structure and four-layer structure were carried out at 930℃,finally good structures with completely vertical stiffeners were obtained. But the two Ends of the crossing vertical stiffeners was a little thin because of the last forming, at the same time, the vicinity of welded joints became thinner as the stress concentration. The microstructure of the four-layer structure was studied, the contacted regions between the core board and the face board had diffusion bonded completely, and the bonding percent between the back-to back vertical stiffeners was more than 90%.
引文
1 C. Leyens and M. Peters. Titanium and titanium alloys: fundamentals and applications. Weinheim: Wiley-VCH .2003
    2 Valentine M. Moiseev. Titanium alloys in Russia: aircraft and aerospace application. Taylor& Francis. 2005
    3 Rodney Boyer, Gerhard Welsch, E. W. Collings. Materials properties handbook: titanium alloys. Materials Park, OH: ASM International. 1994
    4 S. Abkowitz.the emergence of the titanium industry and the development of the Ti-6Al-4V alloy. TMS,Warrendale,PA,USA(2000)
    5 Li Zhiqiang, Guo Heping. Application of superplatic forming and diffusion bonding in the aerospace industry. Materials Science Forum, 2005, 475 ~479:3037~3042
    6 J. Bonet, A. Gil, R. D. Wood, R. Said, R. V. Curtis. Simulating Superplastic Forming. Comput. Methods Appl. Mech. Engrg. 2006, 195: 6580~6603
    7 R. Todd, Superplasticity in Advanced Materials ICSAM 2003, Materials Science Forum, 2004, 447~448: 3~7
    8 H. L. Xing, C. W. Wang, K. F. Zhang, Z. R. Wang. Recent Development in the Mechanics of Superplasticity and Its Applications. Journal of Materials Processing Technology. 2004, 151:196~202
    9丁桦,张凯锋.材料超塑性研究的现状与发展,中国有色金属学报, 2004,14(9): 1059~1067
    10程卫文,严红革,秦雁斌.超塑技术的领域扩展与纵深研究,飞航导弹, 2006, 9: 60~61
    11李志强,郭和平.超塑成形/扩散焊接技术的应用与发展现状.航空制造技术, 2004(11): 50~52
    12 Jens Klastrup Kristensen, Force Technology, Denmark. Trends and development within welding and allied processes. Welding in the World, 2002, 46:1~22
    13邹世坤,汤昱,巩水利.钛合金薄板激光焊接技术研究.焊接技术. 2003, 32(5): 16~18
    14 J. K. Hong, J. K. Park, N. K. Park, I. S. Eom, M. B. Kim, C. Y Kang. Microstructures and Mechanical Properties of Inconel718 Welds by CO2 Laser Welding. Journal of Materials Processing Technology. 2008, 201(1): 515~520
    15 O. A. Kaibyshev. Superplasticity of Alloys, Intermetallics and Ceramics, Springer-Verlag (1992)
    16 S. Hori, M, Tokizane, N. Furushiro (eds.): Superplasticity in Advanced Materials-Summery of conference, ICSAM91 (1991)
    17 C. Leyens, M. Peters. Titanium and Titanium Alloys. Wiley-CVH Verlag GmbH&Co. KGaA, Weinheim
    18 ASM Handbook: Materials Properties Handbook: Titanium Alloys, ASM International (1994)
    19赵林若.钛合金超塑性机理及氢的作用:学位论文.北京:北京航空材料研究所, 1988
    20李梁等.钛合金超塑性研究及应用现状.材料开发与应用, 2004, 19(6): 34
    21白秉哲,杨鲁义. Ti-6Al-4V和Ti-10V-2Fe-3Al合金超塑性变形中各向异性研究.塑性工程学报, 1996, 3(4): 7~13
    22 Kim J S, Kim J H, Lee Y T, et al. Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti-6Al-4V alloy. Materials Science and Engineering, 1999, A263: 272~280
    23 Salishchev G A, Galiyev R M, Valiakhmetov O R, etal. Development of Ti-6Al-4V sheet with low temperature superplastic properties. Journal of Material Processing Technology, 2001, 116(23): 265~268
    24 Frommeyer G, Czarnowskl P V. High strain rate superplasticity and strength properties of two-phase titanium-intermetallic Ti-12Co-5Al and Ti-12Ni-5Al alloy. Z Metal, 1990(10): 756
    25 Salishcheve G A, Valiakhmetov O R, Galiyev R M. Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties. Journal of Material Science, 1993, 28: 2898~2902
    26张津徐,葛红林,程晓英,等.一种可在低温高应变速率下超塑成形的钛合金研究及开发.稀有金属材料与工程, 2000, 29(2): 105~108
    27 Klenze. Titanium Industry overview: International Titanium Association. TITANIUM 2008. Las Vegas, USA, 2008.
    28吴为.气化剂作为加压介质的SPF/DB工艺研究及有限元模拟.哈尔滨工业大学博士论文, 1999: 1~20
    29张家顺.美国宇航工业超塑成形近况.航空工艺技术. 1989, 6: 29~33
    30 T. Masumoto. Resent Progress in Amorphous Metallic Materials in Japan. Materials and Engineering. 1994, 179: 8~16
    31宋飞灵.英国超塑成形技术应用现状.机械工程学报. 1994, 3: 20~22
    32 P. N. Comley. Superplastic Forming of Titanium-A Production Viewpoint Proceedings of Inter. Conf. Titannium, 1986: 1034~1059
    33 Coracides M. Next generation product family, Business overview: International Titanium Association. TITANIUM 2008. Las Vegas, USA, 2008
    34王桂生. Ti-6AI-2Zr-1Mo-1V合金组织与性能的研.稀有金属, 1995, 19(5): 352
    35张晶宇,杨延清,陈彦等.退火对TA15钛合金组织与性能的影响.金属热处理, 2003, 28(3) : 46
    36徐文臣,单德彬,李春峰,等. TA15钛合金的动态热压缩行为及其机理研究.航空材料学报, 2005, 25(4): 10~15
    37马济民等.中国航空材料手册,第4卷.北京:中国标准出版社, 2001: 74
    38李兴无,沙爱学,张旺峰等. TA15合金及其在飞机结构中的应用前景.钛工业进展, 2003, 20(4~5): 91~92
    39刘瑞民等.TA15合金板材的组织和性能研究.材料开发与应用,2005,20 (4):23~26
    40吴晨刚,王高潮,董洪波等. TA15钛合金的超塑性研究及组织变化.热加工工艺, 2009, 38(24): 5~7
    41卡扎科夫著,何康生,孙国俊译.材料的扩散焊接.国防工业出版社,1984:12~38
    42 Hidetoshi Somekawa Hiroyukei Hosokawa,Hiroyuki Watanabe,Kenji Higashi. Diffusion bonding in superplastic magnesium alloys,Materials Science and Engineering A,2003,339: 328~333
    43 Mcmillan R. Titanium usage for medical and instruments: International Titanium Association. TITANIUM 2008. Las Vegas, USA, 2008
    44 Abkowitz S M. The reinvention of the Ti-6Al-4V Alloy: International Titanium Association. TITANIUM 2008. Las Vegas, USA, 2008.
    45全亚杰,陈振华,黎梅,俞照辉,龚晓叁. AM60变形镁合金薄板激光焊接接头的组织与性能.中国有色金属学报. 2007, 17(4): 525
    46中国机械工程学会焊接学会.焊接手册之焊接方法及设备.机械工业出版社, 2001: 447~452
    47吴刚.材料结构表征及应用.化学工业出版社, 2001: 262~278
    48信钰,帅仁杰.镍和镍合金的织构与其物性的关系.上海金属有色分册1983, (4): 43~51
    49 Cam G, Kocak M,etc. Developments in laser welding of metallic materials and characterization of the joints.Welding in the World,1999, 43(2): 13~26
    50顾曾迪.有色金属焊接.北京:机械工业出版杜, 1995:175~198
    51 Sun Z, Pan D. Correlation Between welding parameters and microstructures in TIG, Plasma and laser welded Ti-6Al-4V Alloy. The 6th international trends in welding research conference proceedings.GA: ASMInternational, 2003:760~766
    52 Zhang Li. Laser welding techniques for titanium alloy sheet. Journal of Materials Processing Technology, 1997. 1(65): 203~208
    53巩水利,汤昱,杜翔,巴瑞璋. BT20钛合金CO2激光焊接工艺.焊接. 2002(10): 32~35
    54杨静,程东海,黄继华等. TC4合金激光焊接工艺参数与接头组织性能研究.热加工工艺. 2007, 36(17): 15~18
    55程东海,黄继华,郭和平. TC4钛合金激光焊缝超塑性行为研究.航空制造技术. 2009(10): 106~111
    56闫伟. Ti-55钦合金板材的CO2激光焊与电子束焊的实验研究.东北大学硕士学位论文. 2006
    57 C.H. Hamilton, in: R. T. Jaffee, H. M. Burke(Eds.), Superplastic Forming and Diffusion Bonding of Titanium Alloys, Titanium Science and Technology, Plenum Press, New York, 1973, pp. 621~647
    58 E. D. Weisert, G. W. Stacher, in: N. E. Paton , C. H. Hamilton(Eds.), Concurrent Superplastic Forming/Diffusion Bonding of Titanium, Superplastic Forming of Structural Alloys, TMS-AIME, Warrendale, PA, 1982, pp. 273~289
    59于卫新,李淼泉,胡一曲.材料超塑性和超塑成形/扩散连接技术及应用.材料导报. 2009, 23(6): 8~14
    60 Hefti L D. Advances in fabricating superplastically formed and diffusion bonded components for aero space structures .J Mater Eng Perform, 2004, 13: 678
    61 Y. W. Xun, M. J. Tan. Applications of superplastic forming and diffusion bonding to hollow engine blades. Journal of Materials Processing Technology 99(2000):80~85
    62 Rinat V. Safiullin, Werner Beck, Arthur R. Safiullin, etc. Processing properties of advanced Ti sheet materials. 6th EUROSPF Conference. Carcassonne, France from 3~5 September 2008
    63 Han W B, Zhang K F, Wang G F. Superplastic forming and diffusion bonding for honeycomb structure of Ti-6Al-4V alloy. Journal of Materials Processing Technology, 2007, 183: 450
    64 Alan, Jocelyn, Aravinda Kar. Use of laser(s) in the process of superplasticforming and diffusion bonding. Materials Science Forum, 2004, 447:533~539
    65曲凤盛,张凯锋,吕宏军. GH4169高温合金多层板结构的激光连接/超塑成形组合技术.航空材料学报. 2009, 29(4): 17~32
    66吴云. 5083铝合金激光连接+超塑成形组合技术.哈尔滨工业大学硕士学位论文. 2009
    67 William D. Brewer, R. Keith Bird, Terryl A. Wallace. Titanium alloys and processing for high speed aircraft. Materials Science and Engineering A243 (1998): 299~304
    68陈铮,周飞,王国凡.材料连接原理.黑龙江哈尔滨:哈尔滨工业大学出版社, 1998. 160, 147~148,242
    69 Boyer R R. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering, 1996, A213: 103~114
    70 Li Z Q, Li X H. The applications of SPF/DB combined with welding technologies. Materials Science Forum, 2007, 551~552: 49~54
    71 J. H. Cheng. The Determination of Material Pparameters from Superplastic Inflation Tests. Journal of Materials Processing Technology. 1996: 233~246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700