嵌段共聚物囊泡的形成机理及其调控作用的Monte Carlo模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,合成形态、大小及结构可人为调控的无机材料成为现代材料科学的一个重要研究方向。大量的实验结果表明,嵌段共聚物对无机晶体的结晶、生长以及由纳米颗粒到各种特殊超结构的形成过程均有独特的影响。但是目前合成得到的材料主要还是形貌上的创新,对晶体生长机理及各种纳米超结构的形成机理的认识还不统一,计算机模拟和理论研究鲜有报导。
     本论文利用键长涨落Dynamic Monte Carlo方法对嵌段共聚物囊泡结构的形成机理进行了较详细的模拟研究,同时考察了嵌段共聚物与疏水纳米颗粒的共存体系。论文的研究内容主要包括三部分:(1)两亲嵌段共聚物囊泡的形成机理研究;(2)考察形成囊泡的影响因素;(3)考察嵌段共聚物对纳米颗粒聚集行为的影响。全文共分六章:
     第一章文献综述,主要介绍两嵌段共聚物“平头型”聚集体的形成及影响因素,以及嵌段共聚物在无机材料合成方面的应用。对计算机模拟方面已得到的研究成果也进行了简单介绍。
     第二章介绍Monte Carlo模拟方法的基本原理及在高分子科学中的应用,并对本论文中所用的模型及方法进行了说明。
     第三章详细讨论两亲嵌段共聚物囊泡的形成机理。两亲嵌段共聚物分子用A_mB_n表示,其中A链段疏水、B链段亲水。在只考虑A-A链段之间的相互吸引作用时(ε_(AA) = -1.0),模拟结果发现对于(m + n)≤6的两嵌段共聚物链,只有n = 1的链结构才能形成囊泡。对于A_3B_1型嵌段共聚物,在2%~15%的链节浓度范围内都可以得到单一的囊泡结构。A链段组成囊泡壁,B链段分布在囊泡的内、外表面。通过考察囊泡的动力学形成过程,我们发现囊泡由板状的胶束经过卷曲闭合而成。该卷曲机理曾在分子动力学(MD)、耗散粒子动力学(DPD)、布朗动力学(BD)等模拟研究中观察到,但对于格点模型,属首次发现。
     第四章考察A_mB_1型嵌段共聚物囊泡的影响因素。发现在m≥3时,A_mB_1链都可以自组装成囊泡结构。浓度是影响A_2B_1共聚物能否形成囊泡比较关键的因素。对于A_3B_1型囊泡,随着链节浓度的增加,囊泡体积逐渐变大,空腔中包含的溶剂量也随之增加。最后考察了溶剂效应,在考虑A-A之间的相互吸引条件下,同时考虑A链段与溶剂的排斥作用ε_(AS)。结果发现:当ε_(AS)较小时,A_3B_1链通过板卷曲机理形成囊泡;当ε_(AS)≥0.05时,A_3B_1链通过扩散机理形成囊泡。而且囊泡尺寸随着ε_(AS)的增加而减小,表明我们可以通过调节溶剂性质,来调控囊泡尺寸。通过对链段结构、浓度因素和溶剂效应的考察发现,三者对囊泡的形成都具有明显的影响,这与实验方面得到的结论基本符合。
     第五章考察A_3B_1嵌段共聚物对疏水纳米颗粒聚集行为的调控作用。当疏水纳米颗粒单独存在于溶剂中时,它们会聚集成一个致密的团簇。当嵌段共聚物与纳米颗粒共同存在于溶剂中时,由于纳米颗粒的疏水性、A_3B_1链的两亲性及纳米颗粒与A链段的相互吸引作用,最终纳米颗粒均分布在A_3B_1的囊泡壁中。对于性能不同的两种混合纳米颗粒,通过与A、B链段的选择性相互作用,实现一种纳米颗粒位于囊泡核,另一种纳米颗粒位于囊泡壁。在除去A_3B_1嵌段共聚物后,我们就可以得到单一纳米颗粒的空心球结构和核-壳结构的复合材料。
     第六章为全文总结及展望。
Recently, various efforts have been made to synthesize inorganic materials with controlled size or morphology, because of their potential applications in various fields such as catalysis, medicine, dye, and cosmetic. A large amount of experiments have found that block copolymers exert strong effect on the nucleation, the growth of crystal, and subsequently affect the morphology of crystal. However, the mechanism of the block copolymer controlled or directed crystal growth is still not clear. Computer simulations can provide fundamental insight into crystallization process directed by polymer and knowledge on important parameters governing the fabrication of inorganic particles with complex structures. So far, however, rare such computer simulation efforts have been reported.
     In this thesis, the formation mechanism of diblock copolymer vesicle was investigated using bond-fluctuation dynamic Monte Carlo method based on simple cubic lattice. The influence of the chain concentration, chain structure and the solvent property on the vesicle size was discussed. The solvent property was found to affect the vesicle formation process. At last, the directed loading of nanoparticles and mixed nanoparticles in vesicle was studied in detail.
     Chapter 1 introduced the experimental reports and computer simulation results on the self-assembly of block copolymers in solution.
     Chapter 2 introduced the principle of Monte Carlo method and its application in polymer science. The model used in this thesis was also elucidated.
     In chapter 3, the formation mechanism of amphiphilic diblock copolymer vecisle was investigated in detail. AmBn represents the amphiphilic diblock copolymer chain with hydrophobic A segments and hydrophilic B segments. Pairwise nearest-neighbor (NN) interactions and next nearest-neighbor (NNN) interactions are considered among chain segments A, B and solvent segment S. The amphiphilic property of A3B1 chain is represented by the attractionεAA = -1 between NN or NNN A-A beads. While the interaction parameterεBB andεABwere assumed to be zero for A-A and A-B interactions. For A3B1 chains, a single vesicle was obtained when the segment concentration of polymer chain Cp = 7%. A segments were found to locate in the wall of vesicle, while B segments concentrated at its interior and exterior surfaces. The formation process of vesicle was investigated in detail, a bilayer disk was aggregated in a randomly dispersed system, it then bended and encapsulated solvents, and finally closed up to form a vesicle. The formation mechanism of vesicle agreed with the previous reports of MD, BD, DPD, and density functional simulations. However, the bending of the bilayer disk was observed for the first time by using a lattice chain model.
     The influence of the chain concentration, chain structure and the solvent property on the vesicle size was investigated in chapter 4. Vesicular structure could be formed when m≥3 with n = 1. The vesicle size increased with the segment concentration when the segment concentration of A3B1 chains was in the range of 2% and 15%. The solvent property, which was represented by the repulsive interactionεBS between bead B and solvent, was found to affect the vesicle formation process. For a smallεBS < 0.05, the vesicle formation pathway was the same as that discovered in chapter 3. While forεBS≥0.05, the vesicle was formed through another mechanism: The randomly distributed chains quickly assembled into spherical aggregates, which further grew through the coalescence of aggregates or the evaporation-condensation-like process. When the spherical aggregate size reached an enough big value, A segments and solvents entered into the center of the sphere, resulting in the formation of vesicle. We also found that the vesicle size decreased with the increase ofεBS. That means we can control the vesicle size by adjusting the solvent property.
     Chapter 5 investigated the aggregation of nanoparticles in the presence of diblock copolymer. Due to the hydrophobic property, nanoparticles intended to form a big and compact aggregate in absence of block copolymer. The aggregate behavior of nanoparticles changed once upon addition of A3B1 diblock copolymers, where an additional attractive interaction between nanoparticles and A segment was introduced. It was observed that nanoparticles dispersed in the wall of vesicle. It is easy to image that a hollow sphere will be fabricated by nanoparticles after the calcination of copolymers. The loading of mixed nanoparticles in vesicle was also studied. We introduced an attraction between nanoparticle I and A segment, and a smaller attraction between nanoparticle II and B segment. After a long time movement, we found that nanoparticle I located in the vesicle wall, and nanoparticle II was loaded into the core of vesicle. Therefore, we will obtain the core-shell structure of mixed nanoparticles after the calcination of copolymer. The simulation demonstrates that addition of block copolymer can effectively control the aggregation of inorganic particles and lead to formation of a variety of nanostructures.
引文
[1] Liying Li, Jingui Wang, Pingchuan Sun, Xiaohang Liu, DatongDing, Tiehong Chen. Microporous Silica Hollow Nanospheres Templated by Anionic Polypeptide. Acta Phys. -Chim. Sin.. 24(3), 2008, 359-363.
    [2] Saikat Mandal, Axel H.E. Muller. Facile route to the synthesis of porous-Fe2O3 nanorods. Materials Chemistry and Physics. 111, 2008, 438-443.
    [3] Limin Wang, Bozhi Tian, Jie Fan, Xiaoying Liu, Haifeng Yang, Chengzhong Yu, Bo Tu, Dongyuan Zhao. Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an“acid–base pair”route. Microporous and Mesoporous Materials. 67, 2004, 123-133.
    [4] R.E. Cohen. Block copolymers as templates for functional materials. Current Opinion in Solid State and Materials Science. 4, 1999, 587-590.
    [5] F. Bouyer , C. Ge′rardin, F. Fajula, J.-L. Putaux , T. Chopin. Role of double-hydrophilic block copolymers in the synthesis of lanthanum-based nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects. 217, 2003, 179-184.
    [6] Yan-Bo Zhang, Hua-Feng Shao, Xue-Feng Qian, Jie Yin, and Zi-Kang Zhu. A new technique for preparing macroporous inorganic composite material. Journal of Solid State Chemistry. 177, 2004, 3675-3681.
    [7] Xiaodan Sun, Xiangdong Kong, Yude Wang, Chunlai Ma, Fuzhai Cui, Hengde Li. Formation of manganite fibers under the directing of cationic surfactant. Materials Science and Engineering C. 26, 2006, 653-656.
    [8] David M. Antonelli. Hollow ordered zirconia microcage formation by spherical micelle templating with chelating triol surfactants. Microporous and Mesoporous Materials. 28, 1999, 505-510.
    [9] Congxue Tian, Zhao Zhang, Jun Hou, Ni Luo. Surfactant/co-polymer template hydrothermal synthesis of thermally stable, mesoporous TiO2 from TiOSO4. Materials Letters. 62, 2008, 77-80.
    [10] Krister Holmberg. Surfactant-templated nanomaterials synthesis. Journal of Colloid and Interface Science. 274, 2004, 355-364.
    [11] Helmut Colfen. Precipitation of carbonates: recent progress in controlled production of complex shapes. Current Opinion in Colloid and Interface Science. 8, 2003, 23-31.
    [12] L. Huang, H. Yuan, D. B. Zhang, Z. Zhang, J. Guo, J. M. Ma. Controlled microphase separated morphology of block polymer thin film and an approach to prepare inorganic nanoparticles. Applied Surface Science. 225, 2004, 39-46.
    [13]袁建军,程时远,封麟先.嵌段共聚物自组装及其在纳米材料制备中的应用(上).高分子通报. 1, 2002, 6-14.
    [14] Chen Guo, Hao Wen and Huizhou Liu. Adcances in microemulsion phase on self-assembly and micelle extraction with block copolymers. China Particuology. 3, 2005, 310-316.
    [15]Zhisheng Gao, Sunil E Varshney, Stanislaus Wong, and Adi Eisenberg. Block Copolymer“Crew-Cut”Micelles in Water. Macromolecules. 27, 1994, 7923-7927.
    [16] Andrew Guo, Guojun Liu, and Jian Tao. Star Polymers and Nanospheres from Cross-Linkable Diblock Copolymers. Macromolecules. 29, 1996, 2487-2493.
    [17] Jintao Zhu, Ying Jiang, Haojun Liang, and Wei Jiang. Self-Assembly of ABA Amphiphilic Triblock Copolymers into Vesicles in Dilute Solution. J. Phys. Chem. B 109, 2005, 8619-8625.
    [18] Lifeng Zhang and Adi Eisenberg. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions. Macromolecules. 29, 1996, 8805-8815.
    [19] Yisong Yu, Lifeng Zhang, and Adi Eisenberg. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers. Macromolecules. 31, 1998, 1144-1154.
    [20] Kui Yu, Adi Eisenberg. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution. Macromolecules. 31, 1998, 3509-3518.
    [21] Hongwei Shen and Adi Eisenberg. Control of Architecture in Block-Copolymer Vesicles. Angew. Chem. Int. Ed. 39, 2000, 3310-3312.
    [22] Lifeng Zhang and Adi Eisenberg. Multiple Morphologies and Characteristics of“Crew-Cut”Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem. Soc. 118, 1996, 3168-3181.
    [23] Lifeng Zhang and Adi Eisenberg. Formation of Crew-cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution. Polym. Adv. Technol. 9, 1998, 677-699.
    [24] Lifeng Zhang and Adi Eisenberg. Multiple Morphologies of“Crew-Cut”Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science. 268(5218), 1995, 1728-1731.
    [25] Amira Choucair, Christine Lavigueur, and Adi Eisenberg. Polystyrene-b-poly (acrylic acid) Vesicle Size Control Using Solution Properties and Hydrophilic Block Length. Langmuir. 20, 2004, 3894-3900.
    [26] Alexander I. Norman, Derek L. Ho, Jae-Ho Lee, and Alamgir Karim. Spontaneous Formation of Vesicles of Diblock Copolymer EO6BO11 in Water: A SANS Study. J. Phys. Chem. B. 110, 2006, 62-67.
    [27] Hongwei Shen and Adi Eisenberg. Morphological Phase Diagram for a Ternary System of Block Copolymer PS310-b-PAA52/Dioxane/H2O. J. Phys. Chem. B. 103, 1999, 9473-9487
    [28] Yisong Yu, Lifeng Zhang, and Adi Eisenberg. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers. Macromolecules. 31, 1998, 1144-1154
    [29] Luc Desbaumes and Adi Eisenberg. Single-Solvent Preparation of Crew-Cut Aggregates of Various Morphologies from an Amphiphilic Diblock Copolymer. Langmuir. 15, 1999, 36-38
    [30]Laibin Luo and Adi Eisenberg. Thermodynamic Size Control of Block Copolymer Vesicles in Solution. Langmuir. 17, 2001, 6804-6811
    [31] Lifeng Zhang and Adi Eisenberg. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions. Macromolecules. 29, 1996, 8805-8815
    [32] Lifeng Zhang, Kui Yu, Adi Eisenberg. Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers. Science. 72 (5269), 1996,1777-1779
    [33] Lei Chen, Hongwei Shen, and Adi Eisenberg. Kinetics and Mechanism of the Rod-to-Vesicle Transition of Block Copolymer Aggregates in Dilute Solution. J. Phys. Chem. B. 103, 1999, 9488-9497.
    [34] Michael Gradzielski. Kinetics of morphological changes in surfactant systems. Current Opinion in Colloid and Interface Science. 8, 2003, 337-345.
    [35]金达莱.两亲嵌段共聚物及溶剂效应对溶剂合成无机材料的形貌调控研究.浙江大学博士学位论文. 2005(6)
    [36] M. Lei, W.H. Tang, J.G. Yu. Effect of a new functional double-hydrophilic block copolymer PAAL on the morphology of calcium carbonate particles. Materials Research Bulletin. 40, 2005, 656-664.
    [37] Chin-Cheng Weng, Kuo-Feng Hsu, and Kung-Hwa Wei. Synthesis of Arrayed, TiO2 Needlelike Nanostructures via a Polystyrene-block-poly(4-vinylpyridine) Diblock Copolymer Template. Chem. Mater. 16, 2004, 4080-4086.
    [38] Yurong Ma, Limin Qi, Jiming Ma, and Humin Cheng. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions. Langmuir. 19, 2003, 4040-4042.
    [39] Yurong Ma, Limin Qi, Jiming Ma, Humin Cheng, and Wei Shen. Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer. Langmuir. 19, 2003, 9079-9085.
    [40] Michael S. Wong, Jennifer N. Cha, Kyoung-Shin Choi, Timothy J. Deming, and Galen D. Stucky. Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides. Nano Lett., 2(6), 2002, 583-587.
    [41] Byeong-Su Kim and T. Andrew Taton. Multicomponent Nanoparticles via Self-Assembly with Cross-Linked Block Copolymer Surfactants. Langmuir. 23, 2007, 2198-2202.
    [42] Hiroshi Noguchi and Masako Takasu. Fusion pathways of vesicles: A Brownian dynamics simulation. J. Chem. Phys.. 115(20), 2001, 9547-9551.
    [43] Hiroshi Noguchi and Masako Takasu. Adhesion of Nanoparticles to Vesicles: A Brownian Dynamics Simulation. Biophysical Journal. 83, 2002, 299-308.
    [44] Hiroshi Noguchi. Fusion and toroidal formation of vesicles by mechanical forces:A Brownian dynamics simulation. J. Chem. Phys.. 117(17), 2002, 8130-8137.
    [45] Hiroshi Noguchi and Masako Takasu. Self-assembly of amphiphiles into vesicles: A Brownian dynamics simulation. PHYSICAL REVIEW E. 64, 041913
    [46] Satoru Yamamoto and Shi-aki Hyodo. Budding and fission dynamics of two-component vesicles. J. Chem. Phys.. 118(17), 2003, 7937-794.
    [47] Satoru Yamamoto, Yutaka Maruyama, and Shi-aki Hyodo. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. J. Chem. Phys.. 116(13), 2002, 5842-5849.
    [48] Siewert J. Marrink and Alan E. Mark. Molecular Dynamics Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles. J. AM. CHEM. SOC. 125, 2003, 15233-15242.
    [49] Siewert J. Marrink and Alan E. Mark. The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations. J. AM. CHEM. SOC. 125, 2003, 11144-11145.
    [50] Hongbo Du, Jintao Zhu, and Wei Jiang. Study of Controllable Aggregation Morphology of ABA Amphiphilic Triblock Copolymer in Dilute Solution by Changing the Solvent Property. J. Phys. Chem. B. 111, 2007, 1938-1945.
    [51] Shichen Ji and Jiandong Ding. Spontaneous Formation of Vesicles from Mixed Amphiphiles with Dispersed Molecular Weight: Monte Carlo Simulation. Langmuir. 22, 2006, 553-559.
    [52] Jintao Zhu, Ying Jiang, Haojun Liang, and Wei Jiang. Self-Assembly of ABA Amphiphilic Triblock Copolymers into Vesicles in Dilute Solution. J. Phys. Chem. B. 109, 2005, 8619-8625.
    [53] Takashi Uneyama. Density functional simulation of spontaneous formation of vesicle in block copolymer solutions. THE JOURNAL OF CHEMICAL PHYSICS. 126, 2007, 114902.
    [1]杨玉良,张红东.高分子科学中的Monte Carlo方法.复旦大学出版社. 1993.
    [2]徐钟济.蒙特卡洛方法.上海科学技术出版社,上海, 1985.
    [3]汪凌云.高分子链构象统计的Monte Carlo研究.安徽师范大学硕士论文, 2003, 5.
    [4] F. T. Wall. J. Chem. Phys.. 21,1953. 1914
    [5] F. T. Wall, L. A. Hille, Jr., D. J. Wheeler. J. Chem. Phys.. 22,1954. 1036
    [6] F. T. Wall, L. A. Hiller, Jr., D. J. Wheeler, J. Chem. Phys.. 23,1955. 913; 23,1955. p:2314; 26,1957. 1742
    [7]韩媛媛.多分散性嵌段共聚物自组装行为的Monte Carlo模拟.东北师范大学硕士学位论文,2006,6.
    [8] Larson R. G... Monte Carlo lattice simulation of amphiphilic systems in two and three dimensions. J. Chem. Phys. 1988, 89, 1642-1650.
    [9] Larson R. G... Monte Carlo simulation of microstructural transitions in surfactant systems. J. Chem. Phys. 1992, 96, 7904-7918.
    [10]I. Carmesin, K. Kremer. The bond fluctuation method: A new effective algorithm for the dynamics of polymers in all spatial diemnsions. Macromolecules. 21, 1988. 2819-2823
    [11]I. Carmesin, K. Kremer. Static and dynamic Properties of 2-dimensional polymer melts. J. Phys.(Paris). 51, 1990. 915-932
    [12] F. T. Wall, F. Handel. Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition. J. Chem. Phys.. 63, 1975. 4592-4595
    [13] C. Stokely, C.C. Crabb, J. Kovac. Role of the Crankshaft motion in the dynamics of cubic lattice models of polymer-chains. Macromoolecules. 19, 1986. 860-863
    [14] M.T. Gurler, C.C. Crab, D.M. Dahlin, J. Kovac. Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants. Macromolecules. 16, 1983. 398-403
    [15] J.Ding, T.J.Carver, A.H.Windle. Self-assembled structures of block copolymers in selective solvents reproduced by lattice Monte Carlo simulation. Computational and Theoretical Polymer Science. 11, 2001. 483-490
    [16] W. B. Hu. Structural transformation in the collapse transition of the single flexible homopolymer model. J. Chem. Phys.. 109, 1998. 3686-3690
    [17] Haire, K. R.; Windle, A. H.. Monte Carlo simulation of polymer welding. Comput. Theor. Polym. Sci.. 11, 2001. 227-240
    [18] Haire, K. R., Carver, T. J., Windle, A. H.. A Monte Carlo lattice model for chain diffusion in dense polymer systems and its interlocking with molecular dynamics simulation. Comput. Theor. Polym. Sci.. 11, 2001. 17-28.
    [19] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller. Equation of state calculations by fast computing machines. E. J. Chem. Phys.. 1953, 21. 1087-1092
    [1] Congxue Tian, Zhao Zhang, Jun Hou, Ni Luo. Surfactant/co-polymer template hydrothermal synthesis of thermally stable, mesoporous TiO2 from TiOSO4. Materials Letters. 62, 2008, 77-80.
    [2] Krister Holmberg. Surfactant-templated nanomaterials synthesis. Journal of Colloid and Interface Science. 274, 2004, 355-364.
    [3] Helmut Colfen. Precipitation of carbonates: recent progress in controlled production of complex shapes. Current Opinion in Colloid and Interface Science. 8, 2003, 23-31.
    [4] R.E. Cohen. Block copolymers as templates for functional materials. Current Opinion in Solid State and Materials Science. 4, 1999, 587-590.
    [5] Jianjun Yuan, Yingshun Li, Xiaoqin Li, Shiyuan Cheng, Lei Jiang b, Linxian Feng, Zhiqiang Fan. The“crew-cut”aggregates of polystyrene-b-poly(ethylene oxide)-b- polystyrene triblock copolymers in aqueous media. European Polymer Journal. 39, 2003, 767-776.
    [6] Futian Liu and Adi Eisenberg. Preparation and pH Triggered Inversion of Vesicles from Poly(acrylic Acid)-block-Polystyrene-block-Poly(4-vinyl Pyridine). J. AM. CHEM. SOC. 125, 2003, 15059-15064.
    [7] Jintao Zhu, Ying Jiang, Haojun Liang, and Wei Jiang. Self-Assembly of ABA Amphiphilic Triblock Copolymers into Vesicles in Dilute Solution. J. Phys. Chem. B. 109, 2005, 8619-8625.
    [8] Hongbo Du, Jintao Zhu, and Wei Jiang. Study of Controllable Aggregation Morphology of ABA Amphiphilic Triblock Copolymer in Dilute Solution by Changing the Solvent Property. J. Phys. Chem. B. 111, 2007, 1938-1945.
    [9] Shichen Ji and Jiandong Ding. Spontaneous Formation of Vesicles from Mixed Amphiphiles with Dispersed Molecular Weight: Monte Carlo Simulation. Langmuir. 22, 2006, 553-559.
    [10] Luc Desbaumes and Adi Eisenberg. Single-Solvent Preparation of Crew-Cut Aggregates of Various Morphologies from an Amphiphilic Diblock Copolymer. Langmuir. 15, 1999, 36-38.
    [11] Yisong Yu, Lifeng Zhang, and Adi Eisenberg. Multiple Morphologies of Crew-Cut Aggregates of Polybutadiene-b-poly(acrylic acid) Diblocks with Low Tg Cores. Langmuir. 13, 1997, 2578-2581.
    [12] Lifeng Zhang and Adi Eisenberg. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science. 268(5218), 1995, 1728-1731.
    [13] Kui Yu, Adi Eisenberg. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution. Macromolecules. 31, 1998, 3509-3518.
    [14] Owen Terreau, Laibin Luo, and Adi Eisenberg. Effect of Poly(acrylic acid) Block Length Distribution on Polystyrene-b-Poly(acrylic acid) Aggregates in Solution. 1. Vesicles. Langmuir. 19, 2003, 5601-5607.
    [15] Owen Terreau, Carl Bartels, and Adi Eisenberg. Effect of Poly(acrylic acid) Block Length Distribution on Polystyrene-b-poly(acrylic acid) Block Copolymer Aggregates in Solution. 2. A Partial Phase Diagram. Langmuir. 20, 2004, 637-645.
    [16] Drouffe J. M., Maggs A. C., Leibler S. Computer-simulations of self-assembled membranes. Science. 254, 1991, 1353-1356.
    [17] Satoru Yamamoto and Shi-aki Hyodo. Budding and fission dynamics of two-component vesicles. J. Chem. Phys.. 118(17), 2003, 7937-794.
    [18] Hiroshi Noguchi and Masako Takasu. Fusion pathways of vesicles: A Brownian dynamics simulation. J. Chem. Phys.. 115(20), 2001, 9547-9551.
    [19] Siewert J. Marrink and Alan E. Mark. Molecular Dynamics Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles. J. AM. CHEM. SOC. 125, 2003, 15233-15242.
    [20] N.Metropolis, A.W.Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys.. 21, 1953, 1087-1092.
    [21] D.P. Landau, K. Binder. A guide to Monte Carlo Simulations in statistical physics. Cambridge, Cambridge University Press.. 2000.
    [22] Wugang Fan, Lian Gao. Synthesis of silica hollow spheres assisted by ultrasound.Journal of Colloid and Interface Science. 297, 2006, 157-160.
    [23] Yiqi Yeh, Bichang Chen, Hongping Lin, Chihyuan Tang. Synthesis of hollow silica spheres with mesostructured shell using cationic-anionic-neutral block copolymer ternary surfactants. Langmuir. 22, 2006, 6-9.
    [24] Xin Cheng, Shiquan Liu, Lingchao Lu, Xueye Sui, Vera Meynen, Pegie Cool, Etienne F. Vansant, Jianzhuang Jiang. Fast fabrication of hollow silica spheres with thermally stable nanoporous shells. Microporous and Mesoporous Materials. 98, 2007, 41-46.
    [25] Lei Chen, Hongwei Shen, and Adi Eisenberg. Kinetics and Mechanism of the Rod-to-Vesicle Transition of Block Copolymer Aggregates in Dilute Solution. J. Phys. Chem. B. 103, 1999, 9488-9497.
    [26] Siewert J. Marrink and Alan E. Mark. Molecular Dynamics Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles. J. AM. CHEM. SOC. 125, 2003, 15233-15242.
    [27] Hiroshi Noguchi and Masako Takasu. Fusion pathways of vesicles: A Brownian dynamics simulation. J. Chem. Phys.. 115(20), 2001, 9547-9551.
    [28] Takashi Uneyama. Density functional simulation of spontaneous formation of vesicle in block copolymer solutions. THE JOURNAL OF CHEMICAL PHYSICS. 126, 2007, 114902.
    [29] Hongbo Du, Jintao Zhu, and Wei Jiang. Study of Controllable Aggregation Morphology of ABA Amphiphilic Triblock Copolymer in Dilute Solution by Changing the Solvent Property. J. Phys. Chem. B. 111, 2007, 1938-1945.
    [30] T. Zehl, M. Wahab, H.-J. Mo¨gel, and P. Schiller. Monte Carlo Simulations of Self-Assembled Surfactant Aggregates. Langmuir. 22, 2006, 2523-2527.
    [1] Zhisheng Gao, Sunil E Varshney, Stanislaus Wong, and Adi Eisenberg. Block Copolymer“Crew-Cut”Micelles in Water. Macromolecules. 27, 1994, 7923-7927.
    [2] Andrew Guo, Guojun Liu, and Jian Tao. Star Polymers and Nanospheres from Cross-Linkable Diblock Copolymers. Macromolecules. 29, 1996, 2487-2493.
    [3] Yisong Yu, Lifeng Zhang, and Adi Eisenberg. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers. Macromolecules. 31, 1998, 1144-1154.
    [4] Lifeng Zhang and Adi Eisenberg. Multiple Morphologies and Characteristics of“Crew-Cut”Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem. Soc. 118, 1996, 3168-3181.
    [5] Lifeng Zhang and Adi Eisenberg. Formation of Crew-cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution. Polym. Adv. Technol. 9, 1998, 677-699.
    [6] Lifeng Zhang and Adi Eisenberg. Multiple Morphologies of“Crew-Cut”Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science. 268(5218), 1995, 1728-1731.
    [7] Amira Choucair, Christine Lavigueur, and Adi Eisenberg. Polystyrene-b-poly (acrylic acid) Vesicle Size Control Using Solution Properties and Hydrophilic Block Length. Langmuir. 20, 2004, 3894-3900.
    [8] Alexander I. Norman, Derek L. Ho, Jae-Ho Lee, and Alamgir Karim. Spontaneous Formation of Vesicles of Diblock Copolymer EO6BO11 in Water: A SANS Study. J. Phys. Chem. B. 110, 2006, 62-67.
    [9] Hongwei Shen and Adi Eisenberg. Morphological Phase Diagram for a Ternary System of Block Copolymer PS310-b-PAA52/Dioxane/H2O. J. Phys. Chem. B. 103, 1999, 9473-9487.
    [10] Laibin Luo and Adi Eisenberg. Thermodynamic Size Control of Block Copolymer Vesicles in Solution. Langmuir. 17, 2001, 6804-6811.
    [11] Lifeng Zhang and Adi Eisenberg. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers inSolutions. Macromolecules. 29, 1996, 8805-8815.
    [12] Lifeng Zhang, Kui Yu, Adi Eisenberg. Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers. Science. 272(5269), 1996, 1777-1779.
    [1] S. Mann, G. A.Ozin. Synthesis of inorganic materials with complex form. Nature. 382, 1996, 313-318.
    [2] Xiaodan Sun, Xiangdong Kong, Yude Wang, Chunlai Ma, Fuzhai Cui, Hengde Li. Formation of manganite fibers under the directing of cationic surfactant. Materials Science and Engineering C. 26, 2006, 653-656.
    [3] M. Antonietti. Surfactants for novel templating applications. Curr. Opin. Colloid Interface Sci.. 6, 2001, 244-248.
    [4] H. C?lfen, S. Mann. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed.. 42, 2003, 2350-2365.
    [5] A. Jain, U. Wiesner. Silica-type mesostructures from block copolymer phases: formation mechanism and generalization to the dense nanoparticle regime. Macromolecules. 37, 2004, 5665-5670.
    [6] C. Henrist, A. Rulmont, R. Cloots. Synthesis and characterization of inorganic, lamellar nanofillers with high aspect ratio. J. Eur. Ceram. Soc.. 27, 2007, 1023-1027.
    [7] L. Tao, C.G. Sun, M.L. Fan, C.J. Huang, H.L. Wu, Z.S. Chao, H.S. Zhai. A redox-assisted supramolecular assembly of manganese oxide nanotube. Mater. Res. Bull.. 41, 2006, 2035-2040.
    [8] L.Y. Zhu, Y. Xie, X.W. Zheng, X. Liu, G.E. Zhou. Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. J. Cryst. Growth. 260, 2004, 494-499.
    [9] A.E.C. Palmqvist. Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Curr. Opin. Colloid Interface Sci.. 8, 2003, 145-155.
    [10] M. Lei, W.H. Tang, J.G. Yu. Effect of a new functional double-hydrophilic block copolymer PAAL on the morphology of calcium carbonate particles. Materials Research Bulletin. 40, 2005, 656–664.
    [11] Chin-Cheng Weng, Kuo-Feng Hsu, and Kung-Hwa Wei. Synthesis of Arrayed, TiO2 Needlelike Nanostructures via a Polystyrene-block-poly(4-vinylpyridine) Diblock Copolymer Template. Chem. Mater. 16, 2004, 4080-4086.
    [12] Yurong Ma, Limin Qi, Jiming Ma, and Humin Cheng. Facile Synthesis of HollowZnS Nanospheres in Block Copolymer Solutions. Langmuir. 19, 2003, 4040-4042.
    [13] Yurong Ma, Limin Qi, Jiming Ma, Humin Cheng, and Wei Shen. Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer. Langmuir. 19, 2003, 9079-9085.
    [14] Byeong-Su Kim and T. Andrew Taton. Multicomponent Nanoparticles via Self-Assembly with Cross-Linked Block Copolymer Surfactants. Langmuir. 23, 2007, 2198-2202.
    [15] R.B. Thompson, V. V. Ginzburg, M. W. Matsen, A. C. Balazs. Predicting the mesophases of copolymer-nanoparticle composites. Science. 292, 2001, 2469-2472.
    [16] Q. Wang, P. F. Nealey, J. J. de Pablo. Behavior of single nanoparticle/ homopolymer chain in ordered structures of diblock copolymers. J. Chem. Phys.. 118, 2003, 11284-11285.
    [17] A.J. Schultz, C.K. Hall, J. Genzer. Computer simulation of block copolymer/ nanoparticle composites. Macromolecules. 38, 2005, 3007-3016.
    [18] V.V. Ginzburg, F. Qiu, A.C. Balazs. Three-dimensional simulations of diblock copolymer/particle composites. Polymer. 43, 2002, 461-466.
    [19] D.H. Liu,; C. L. Zhong. Cooperative self-assembly of nanoparticle mixtures in lamellar diblock copolymers: a dissipative particle dynamics study. Macromol. Rapid Commun.. 27, 2006, 458-462.
    [20] A.W. Xu, Y. Ma, H. C?lfen. Biomimetic mineralization. J. Mater. Chem.. 17, 2007, 415-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700