WSAC居住建筑热响应特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,在进行采暖热负荷计算时,大多不考虑建筑物的热响应特性,室外计算温度采用当地采暖期不保证5天的日平均温度,常常使设备系统容量与实际需求存在较大误差;此外,对于太阳能空气采暖建筑或自然运行建筑,建筑物热响应特性对于全天能量平衡、抑制室温波动起着至关重要的作用。因此,对于太阳能空气采暖建筑热响应特性的研究显得十分重要。
     对于太阳能空气采暖建筑,影响其热响应特性的因素除内扰、外扰、建筑本身热物性外,还应考虑太阳能空气采暖系统的影响。首先,通过实验分析了太阳能空气采暖建筑冬季热响应特性,并着重研究了太阳能空气采暖系统、直接受益窗、夜间移动式保温等因素对于太阳能空气采暖建筑冬季热响应特性的影响,得到相对连续运行工况,间歇运行工况总供热量提高14.9%,室温达到峰值的时间提前40min;对于建筑面积为9m2SAHS(Solar Air Heating System)作用下的住宅建筑,SAHS供热质量流率在一定范围内增加对于夜间室温衰减速度影响不大;适当加大窗墙比能有效提高室温;采取夜间移动式保温后,室温提高了5℃左右。并且对于室外温度、建筑物壁面温度、建筑物整体得热量等影响建筑热性能的因素进行权重分析,得到了建筑内部动态室温预测公式。
     其次,建立了太阳能空气采暖建筑动态室温预测模型,通过Simulink编写了相应的模拟程序,并且通过实验验证了该模型的准确性。在该模型的基础上,论述了建筑热容量、屋顶蓄热层、内墙等因素对太阳能空气采暖建筑冬季热响应特性的影响,得出在室外温度在-6~0℃范围,日照时间约10h,总太阳辐照度约为16300kJ的气侯条件下,单位热质面积热容量每增加100kJ/m2.K,室内日较差降低0.71℃;实验房有无蓄热模块的工况下,室温相差1.1~2.5℃;屋顶保温对于室温的贡献更大。在该模型基础上,通过对建筑内部室温控制,建立了调控附加供热的PID程序。同时,选取了12个典型城市,比较分析了太阳能采暖建筑的区域适应性,得出在太阳热保证率较大的城市,如拉萨、银川、北京、大连、乌鲁木齐,太阳能空气采暖建筑具有一定的工程通用性。
     最后,针对夏季建筑过热和降温问题进行了实验研究,比较分析闷晒和日间单侧交叉通风等减少日间过热的措施,及自然单侧通风、强制单侧通风、单侧交叉通风、自然双侧交叉通风、强制双侧交叉通风等夜间通风措施,得出在风向允许时,日间室内单侧通风,夜间单侧交叉通风或自然双侧交叉通风有利于太阳能空气采暖系统夏季降温。
For a long time, when calculating building thermal load, building thermal responsive characteristic always is ignored, and outdoor calculating temperature adopted the mean temperature not guaranteeing five days in location, resulting in big error between equipment capacity with real demand. In addition, for free-running building and solar air heating building, building thermal responsive characteristic plays an important role on energy balance and rejecting indoor temperature fluctuation. So, solar air heating building thermal responsive characteristic research is very important.
     For solar air heating building, its thermal responsive characteristic is effect by internal disturbance, external disturbance, building thermophysical property, and solar air heating system. Firstly, this study experimentally analyzed thermal performance of solar air heating building in winter. It emphasized on analyzing effects of solar air heating system, direct-gain window and movable insulation on thermal responsive characteristic of solar air heating building, getting:compared to continuous heating, under the intermittent heating, the time of the indoor temperature amounting to peak advance 40min, and indoor temperature is fluctuated with heat supply, and the range is±3℃; for the building integrated SAHS, whose area is 9m2, the increase of air flow rate plays a little role on indoor temperature decay within a limit range; The unit area total heat supply adds 1000kJ, and the indoor temperature adds 0.2~0.6℃; enlarging area ratio of window to wall properly under the well insulation can increase indoor temperature; when adopting movable thermal insulation, the indoor temperature can increase about 5℃. And then analyzed weight of influence factors, such as outdoor temperature, wall temperature, and building heat gain, getting predictor formula of dynamic indoor temperature.
     Secondly, dynamic indoor temperature prediction model suited for solar air building was built. It compiled related simulation procedure, and verified it by experimental result. Based on numerical model, it discussed effects of building thermal capacitance, roof heat storage module, and internal walls on building thermal responsive characteristic, getting that the greater thermal capacitance, the more steady the indoor temperature. When the ambient temperature between-6℃and 0℃, sunshine duration is 10h, and the total solar irradiance is 16300kJ, the unit thermal mass area capacitance adds 100kJ/m2.K, the indoor daily range drops 0.71℃; indoor temperature of the building with heat storage module is higher 1.1-2.5℃than the building without; compared to internal wall, reinforcing the insulation of roof is more effective for increasing indoor temperature. For further improving building thermal comfort, it built PID control program based on presented model by controlling indoor temperature and regulating addition supply heating. At the same time, it selected 12 cities in china, and comparability analyzed regional adaptabilities of solar air heating building, getting this type of building has engineering universality in cities with high solar reliability, such as Lasa, Yinchuan, Beijing, Dalian, Urumqi.
     Finally, This study also aimed at problems of the building overheating and cooling, and comparatively analyzed two measures reducing overheating (stuffy sun and one-sided cross-ventilation), and five night ventilation measures (natural one-sided ventilation, forced one-sided ventilation, one-sided cross-ventilation, natural two-sided cross-ventilation, forced two-sided cross-ventilation), obtaining one-sided cross ventilation in daytime, one-sided cross ventilation or two-sided natural cross ventilation in nighttime were suitable for solar air heating building.
引文
[1]清华大学建筑节能研究中心.中国建筑节能度发展研究报告2007年.北京:中国建筑工业出版社,2007.
    [2]Van Der Maas J, Maldonado E. A new thermal inertia model based on effusivity. International Journal of Sustainable Energy,1997,19(1):131-160.
    [3]McFarland R D. PASOLE, A General Simulation Program for Passive Solar Energy. Los Alamos Report LA-7433-MS,1978.
    [4]Klein S A, etc.. TRNSYS, A Transient System Simulation Program. University of Wisconsion-Madison,1981.
    [5]王德芳,午锁平,喜文华.被动式太阳能采暖房数学模型及模拟计算程序---直接受益型和集热墙型PSHDC_上篇.甘肃科学学报,1989,1(1):2-8.
    [6]王德芳,午锁平,喜文华.被动式太阳能采暖房数学模型及模拟计算程序---直接受益型和集热墙型PSHDC_下篇.甘肃科学学报,1990,2(1):19-27
    [7]李元哲,秋洪发,王德芳.被动式太阳房冬季平均室温的预测及特朗勃墙的集热效率.甘肃科学学报,1992,4(1):6-12.
    [8]刘加平.被动式太阳房动态模拟研究.西安冶金建筑学院学报.1994,26(4):343-348.
    [9]张立志,王玲.被动式太阳房动态模型的研究.能源研究与利用.1997,(3):12-14.
    [10]Clarke J.A. Energy simulation in building design. MA:Adam Hilger Ltd,1985.
    [11]Soteris Kalogirou A, Milorad Bojic. Artificial neural networks for the prediction of the energy consumption of a passive solar building. Energy,2000,25(5): 479-491.
    [12]Coussirat M, Guardo A, Jou E, Egusquiza E, Cuerva E, Alavedr P. Performance and influence of numerical sub-models on the CFD simulation of free and forced convection in double-glazed ventilated facades. Energy and Building,2008,40(10): 1781-1789.
    [13]Zhiqiang Zhai, Qingyan Chen, Philip Haves, Joseph H. Klemsb. On approaches to couple energy simulation and computational fluid dynamics programs. Building and Environment,2002,37(4):857-864.
    [14]Jennifer Gosselin R, Qingyan (Yan) Chen. A computational method for calculating heat transfer and airflow through a dual-airflow window. Energy and Buildings, 2008,40(4):452-458.
    [15]刘静君.被动式太阳能建筑室温预测及能耗分析(D).大连:大连理工大学,2007
    [16]Tsilingiris P. T. Wall heat loss from intermittently.conditioned spaces—The dynamic influence of structural and operational parameters. Energy and Buildings, 2006,38(8):1022-1031.
    [17]Tsilingiris P. T. The influence of heat capacity and its spatial distribution on the transient wall thermal behavior under the effect of harmonically time-varying driving forces. Building and Environment,2006,41(5):590-601.
    [18]Mikael Lundin, Staffan Andersson, Ronny Ostin. Further validation of a method aimed to estimate building performance parameters. Energy and Building,2005,37(8): 867-871.
    [19]Antonopoulos K. A, Tzivanidis C. Finite-difference prediction of transient indoor temperature and related correlation based on the building time constant. International Journal Energy Research,1996,20(6):507-520.
    [20]Antonopoulos K. A, Tzivanidis C. A correlation for the thermal delay of buildings. Renew Energy,1995,6(7):687-699.
    [21]Antonopoulos K. A, Tzivanidis C. Numerical solution of unsteady three dimensional heat transfer during space cooling using ceiling-embedded piping. Energy,1997, 22(1); 59-67.
    [22]Antonopoulos K. A, Tzivanidis C. Vrachopoulos M. Experimental and theoretical studies of space cooling using ceiling-embedded piping. Applied Thermal Engineering,.1997,17(4):351-67.
    [23]Antonopoulos K. A, Koronaki E. P. On the heat capacity of Greek buildings. In: Proceedings of the 1st international conference on energy and the environment, Limassol, Cyprus,1997,2:463-470.
    [24]Antonopoulos K. A, Koronaki E. P. Apparent and effective thermal capacitance of buildings. Energy,1998,23(3):183-192.
    [25]Antonopoulos K. A, Koronaki E. P. Envelope and indoor thermal capacitance of buildings. Applied Thermal Engineering,1995,19(7):743-756.
    [26]Antonopoulos K.A, Koronaki E. P. Effect of indoor mass on the time constant and thermal delay of buildings. International Journal Energy Research,2000, 24(5):391-402.
    [27]Antonopoulos K. A, Koronaki E. P. Thermal parameter components of building envelope. Applied Thermal Engineering,2000,20(13):1193-1211.
    [28]Antonopoulos KA, Koronaki E. P. On the dynamic thermal behaviour of indoor spaces. Applied Thermal Engineering,2001,21(9):929-940.
    [29]Antonopoulos K. A, Gioti F, Tzivanidis C. A transient model for the energy analysis of indoor spaces. Applied Energy,2010,87(10):3084-3091.
    [30]Tsilingiris P. T. On the transient thermal behaviour of structural walls—the combined effect of time varying solar radiation and ambient temperature. Renewable Energy,2002,27(2):319-336.
    [31]Tsilingiris P. T. On the thermal time constant of structural walls. Applied Thermal Engineering,2004,24(5-6):743-757.
    [32]Tsilingiris P. T. Parametric space distribution effects of wall heat capacity and thermal resistance on the dynamic thermal behavior of walls and structures. Energy and Buildings,2006,38(10):1200-1211.
    [33]陈滨,孙媛媛,刘静君,庄智.蓄热对地板供暖住宅实际供热量的影响研究.暖通空调,2008,38(3):102-106.
    [34]Ozel M, Pihtili K. Optimum location and distribution of insulation layers on building walls with various orientations. Building and Environment,2007,42(8): 3051-3059.
    [35]David Mwale Ogoli. Predicting indoor temperatures in closed buildings with high thermal mass. Energy and Buildings,2003,35(9):851-862.
    [36]Asan H, Sancaktar Y. S. Effect of wall's thermophysical properties on time lag and decrement factor. Energy and Building,1998,28(2):159-166.
    [37]Asan H. Effects of wall's insulation thickness and position on time lag and decrement factor. Energy and Building,1998,28(3):299-305.
    [38]Shengwei Wang, Xinhua Xu. Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm. Energy Conversion and Management,2006, 47(13-14):1927-1941.
    [39]Asan H. Investigation of wall's optimum insulation position from maximum time lag and minimum decrement factor point of view. Energy and Building,2000,32(2): 197-203.
    [40]Asan H, Numerical computation of time lags and decrement factors for different building materials. Building and Environment,2006,41(5):615-620.
    [41]Cheng V, Ng E, Givoni B. Effect of envelope colour and thermal mass on indoor temperatures in hot humid climate. Solar Energy,2005,78(4):528-534.
    [42]Zhenyu Du,. Sun X. B. The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region. Environment Materials and Environment Management,2010,113(6):161-164.
    [43]Kontoleon K. J, Bikas D. K. The effect of south wall's outdoor absorption coefficient on time lag, decrement factor and temperature variations. Energy and Buildings,2007,39(9):1011-1018.
    [44]Enedir Ghisi, Ricardo Felipe Massignani. Thermal performance of bedrooms in a multi-storey residential building in southern Brazil. Building and Environment, 2007,42(2):730-742.
    [45]Chen B, Chen X, Ding Y. H, Jia X. Shading effects on the winter thermal performance of the Trombe wall air gap:An experimental study in Dalian. Renewable Energy, 2006,31(12):1961-1971.
    [46]Artmann N, Manz H, Heiselberg. Climatic potential for passive cooling of buildings by night-time ventilation in Europe. Applied Energy,2007,84(2):187-201.
    [47]Geros V, Santamouris M, Karatasou S, Tsangrassoulis A. On the cooling potential of night ventilation techniques in the urban environment. Energy and Buildings, 2005,37(3):243-257.
    [48]Guohui Gan. A parametric study of Trombe walls for passive cooling of buildings. Energy and Buildings,1998,27(1):37-43.
    [49]Santamouris M, Sfakianaki A, Paviou K. On the efficiency of night ventilation techniques applied to residential buildings. Energy and Buildings,2010,42(8): 1309-1313.
    [50]Yuguo Li, Angelo Delsante. Natural ventilation induced by combined wind and thermal forces. Building and Envrionment,2001,36(1):59-71.
    [51]Jimmy Yam, Yuguo Li, Zuohuan Zheng. Nonlinear coupling between thermal mass and natural ventilation in buildings. International Journal and Mass Transfer,2003, 46(7):1251-1264.
    [52]Yuguo Li. Buoyancy-driven natural ventilation in a thermally stratified one-zone building. Building and Environment,2000,35,(3):207-314.
    [53]Lina Yang, Yuguo Li. Cooling load reduction by using thermal mass and night ventilation. Energy and Building,2008,40(11):2052-2058.
    [54]Arce J, Jimenez M. J, Guzman J.D, Heras M. R. Experimental study for natural ventilation on a solar chimney. Renewable Energy,2009,34(12):2928-2934.
    [55]Kolokotroni M, Perera M. D. A. E.S, Azzi D, Virk G. S. An investigation of passive ventilation cooling and control strategies for an educational building. Applied Thermal Engineering,2001,21 (2):183-199.
    [56]Baruch Givoni. Effectiveness of mass and night ventilation in lowering the indoor daytime temperatures. Part Ⅰ:1993 experimental periods. Energy and Buildings, 1998,28(1):25-32.
    [57]Edna Shaviv, Abraham Yeziora, Capeluto G. Thermal mass and night ventilation as passive cooling design strategy. Renewable and Energy,2001,24(3-4):445-452.
    [58]Junli Zhou, Guoqiang Zhang, Yaolin Lin, Yuguo Li. Coupling of thermal mass and natural ventilation in buildings. Energy and Buildings,2008,40(6):979-986.
    [59]Artmann N, Manz H, Heiselberg P. Parameter study on performance of building cooling by night-time ventilation. Renewable Energy,2008,33(12):2589-2598.
    [60]Tahir Ayata, Ertugrul Cam, Osman Yildiz. Adaptive neuro-fuzzy inference systems (ANFIS) application to investigate potential use of natural ventilation in new building designs in Turkey. Energy Conversion and Management,2007,48(5): 1472-1479.
    [61]AboulNaga M. M, Abdrabboh S. N. Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall-roof solar chimney. Renewable Energy,2000,19(1-2):47-54.
    [62]Jongjit Hirunlabh, Sopin Wachirapuwadon, Naris Pratinthong. New configurations of a roof solar collector maximizing natural ventilation. Building and Environment, 2001,36(3):383-391.
    [63]Breesch H, Janssens A. Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis. Solar Energy,2010,84(8): 1453-1467.
    [64]Jens Pfafferott, Sebastian Herkel, Martina Jaschke. Design of passive cooling by night ventilation:evaluation of a parametric model and building simulation with measurements. Energy and Buildings,2003,35(11):1129-1143.
    [65]Jens Pfafferott, Sebastian Herkel, Matthial Wambsganb. Design, monitoring and evaluation of a low energy office building with passive cooling by night ventilation. Energy and Buildings,2004,36(5):455-465.
    [66]Short C. A, Cook M. J, Woods A. Low energy ventilation and cooling within an urban heat island. Renewable Energy,2009,34(9):2022-2029.
    [67]Brittany Hanam. Development of an open source hourly building modeling software tool(D). Canada:University of Waterloo,2010.
    [68]Michael Deru, Ron Judkoff, Paul Torcellini. SUNREL Technical Reference Manual. Golden:National Renewable Energy Laboratory,2002.
    [69]ASHRAE. Standard 90:Energy Standard for Buildings. Atlanta:American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc,2007.
    [70]McQuiston, F. C., Parker, J. D.,& Spitler, J. D.Heating, Ventilating and Air Conditioning:Analysis and Design,6th Edition. Hoboken:John Wiley & Sons, Inc, 2005.
    [71]江亿.建筑环境系统模拟分析设计方法:DeST.北京:建筑工业出版社,2006.
    [72]Shengwei Wang, Youming Chen. A novel and simple building load calculation model for building and system dynamic simulation. Applied Thermal Engineering,2001, 21(6):683-702.
    [73]孙媛媛.混凝土建筑结构蓄热对室内热环境的影响研究[D].大连:大连理工大学,2007.
    [74]Athienitis A. K, Chandrashekar M, Sullivan H. F. Modelling and analysis of thermal networks through subnetworks for multizone Passive solar buildings. Applied Mathematical Modelling,1985,9(2):109-116.
    [75]伯恩斯坦.统计学原理.北京:科学出版社,2002.
    [76]张文彤.SPSS11统计分析教程.北京:北京希望电子出版社,2002.
    [77]江亿,洪天真.建筑热过程的随机分析.清华大学学报(自然科学版),1994,35(4):93-98.
    [78]Xing Su, Xu Zhang, Jun Gao. Evaluation method of natural ventilation system based on thermal comfort in China. Energy and Building,2009,41(1):67-70.
    [79]Nicol F, Pagliano L. Allowing for Thermal Comfort in Free-running Buildings in the New European Standard EN15251. Greece:2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 21st Century,2007.
    [80]Artmann N, Jensen R. L, Manz H, Heisellberg P. Experimental investigation of heat transfer during night-time ventilation. Energy and Building,2010,42(3):366-374.
    [81]彦启森.建筑热过程.北京:建筑工业出版社,1986.
    [82]朱佳音.寒冷地区“被动式房屋”模式研究及能耗分析[D].大连:大连理工大学,2009.
    [83]高庆龙.被动式太阳能建筑热工设计参数优化研究[D].西安:西安建筑科技大学,2006.
    [84]GB50176-93,民用建筑热工设计规范[S].
    [85]中国气象局气象信息中心气象资料室等.中国建筑热环境分析专用数据集[M].北京:中国建筑工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700