高亮度电子束发射度、束长和束斑的先进测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用高亮度电子束作为驱动的大型科研装置如短波长自由电子激光,汤姆逊散射X光源,国际直线对撞机等的成功建造和运行需要强有力的束流测量手段作为保障,以确保在从电子源到作用点的长距离传输中能够维持电子束品质。这类装置对束流性能的要求以低发射度,短束长和小束斑为特征,而现有技术在精确测量其参数方面仍然面临巨大挑战。本论文正是在这样的背景下确定的,论文围绕高亮度电子束测量开展了广泛深入的理论和实验研究。
     针对低发射度的测量问题,我们在清华大学光阴极微波电子枪实验平台上开展了一系列先进束流测量方法研究。我们利用螺线管扫描法测量了电子束热发射度;设计并加工了多缝系统用于测量空间电荷占优的电子束发射度;在国际上首次利用螺线管对光阴极枪出口的相空间分布进行了计算机断层重建,同时也在国际上首次实验观测到热发射度相空间的无规则随机分布。
     针对短束长的测量问题,我们设计并搭建了Martin-Puplett干涉仪,并且利用该干涉仪成功实现了对磁压缩器出口超短电子束纵向分布的无阻拦测量。我们首先利用随机行走模型研究了单个电子辐射谱和整个束团辐射谱的关系,为频域下测量电子束纵向分布提供了理论依据;随后利用虚光子衍射模型对实际情况下的衍射辐射场进行了研究,该工作得到了国际同行的高度认可,被国际同行做为基准用于标定新发展的计算模型;最后我们利用搭建的Martin-Puplett干涉仪实现了对超短电子束纵向分布的无阻拦测量,为基于下一代加速器的大科学工程的建设提供了技术储备。
     针对小束斑的测量问题,我们研究了光学渡越辐射对电子束成像的分辨率问题,提出了利用反卷积获得微米级电子束束斑的方法;国际上首次提出衍射辐射靶扫描法测量极小电子束尺寸的新方法,该方法得到了国际同行的认可;国际上首次研究了光学衍射辐射对电子束成像的点扩散函数和分辨率问题,我们的理论和国际上同期发表的实验结果较好的吻合,有助于进一步将光学衍射辐射用于高能量高密度电子束的无阻拦测量。
Advanced beam diagnostics plays a crucial role in the path to the realization of the short wavelength free electron laser, Thomson scattering based X-ray source, International Llinear Collider, etc. The successful construction and operation of the high-brightness beam driven facility requires the beam quality to be maintained during the long transportation from the electron source to the final target. The high quality accelerator is characterized by the low emittance, short bunch length and small beam size, which also challenges the beam diagnostic methods. Our dissertation is devoted to extensively investigating advanced beam diagnostics both theoretically and experimentally for the above mentioned accelerators.
     We first performed systematical investigations on low emittance measurement with the photocathode RF gun developed at Accelerator Lab of Tsinghua University. The thermal emittance was measured with solenoid scan method under the condition of very low charge for which the space charge induced emittance growth is negligible. A multislit system was designed and fabricated to measure the emittance of the space charge dominated beam at the gun exit. We also for the first time applied the computerized tomography (CT) technique to reconstruct the phase space details of the beam at the photocathode RF gun exit with a solenoid, which may further enable nonlinear emittance compensation that leads to breakthrough in photoinjector performance. Finally, with the CT technique, we observed the stochastic distribution of phase space dominated by thermal emittance. To the best of our knowledge, this is the first time that the thermal emittance was reconstructed from CT technique and visualized with such fruitful details.
     We then devoted much efforts to developing a cost-effective, simple and non-interceptive technique to measure electron bunch length with sub-ps temporal resolution. We first used the random walk model to find the theoretical basis for bunch length measurement in frequency domain. Then a virtual photon diffraction model was applied to calculate the single electron diffraction radiation spectrum with finite size target effect and near field effect taken into account. Our model and results were recently verified by other researchers with vector electromagnetic theory. We then proceed to develop a home-made Martin-Puplett interferometer with which the diffraction radiation spectrum of a whole bunch was measured and further used to find the bunch form factor. Finally we reconstructed the longitudinal bunch profile with Kramers-Kronig relation. We also proposed a novel method to measure ultrashort bunch length with diffraction radiation deflector. The method has wide applicability, high temporal resolution and great simplicity.
     Attention was also paid to measurement of micron size beam profile. We calculated the point spread function of optical transition radiation and optical diffraction radiation in beam imaging. A deconvolution method was proposed to restore micron size beam profile from the blurred image. A new method suitable for small beam size determination with diffraction radiation from rectangular slit by scanning the slit in transverse direction is proposed and analyzed. The theories for imaging of high energy beam with optical diffraction radiation were developed and found to be in reasonable agreement with the recently reported experimental results.
引文
[1] LCLS Conceptual Design Report, SLAC-R-593, 2002.
    [2] Technical Design Report of the European X-Ray Free-Electron Laser. DESY 2006-097, 2006.
    [3] SCSS X-FEL Conceptual Design Report. SCSS X-FEL R&D Group, 2004.
    [4] W. J. Brown, S. G. Anderson, C. P. Barty, et al. Generation of high brightness x-rays with the pleiades thomson x-ray source. Proceedings of PAC03, 2003:95.
    [5] International linear collider reference design report, 9th ICFA ILC Physics and Detector Workshop & ILC GDE Meeting. Beijing, 2007.
    [6] Ian Blumenfeld, Christopher E. Clayton, Franz-Josef Decker, et al. Energy doubling of 42 GeV electrons in a meter-scale plasma wakefield accelerator. Nature, 2007, 445:741.
    [7] Markus Huning, Andy Bolzmann, Holger Schlarb, et al. Observation of femtosecond bunch length using a transverse deflecting cavity. Proceedings of FEL05, 2005:538.
    [8] G. Berden, W.A. Gillespie, S.P. Jamison, et al. Benchmarking of electro-optic monitors for femtosecond electron bunches. Phys Rev Lett, 2007, 99:164801.
    [9]清华大学汤姆逊散射X光源概念设计报告.北京. 2007年12月.
    [10]上海软X射线自由电子激光试验装置项目建议书.上海. 2007年7月.
    [11] Martin Reiser. Theory and design of charged particle beams. John Weily & Sons, 1994.
    [12] P. Emma, Z. Huang, K.-J. Kim, et al. Transverse-to-longitudinal emittance exchange to improve performance of high-gain free-electron lasers. Phys Rev ST-Accel Beams, 2006, 9: 100702.
    [13] P.M. Lapostolle. Possible emittance increase through filamentation due to space charge in continuous beams. IEEE Trans Nucl Sci, 1971, 18:1101-1104.
    [14] F.J. Sacherer. Rms envelope equations with space charge. IEEE Trans Nucl Sci, 1971, 18:1105-1107.
    [15] Claude Lejeune and Jean Aubert. Emittance and Brightness: Definitions and Measurement. Adv Electron Electron Phys Suppl, 1980, 13:159-259.
    [16] E. Saldin, E.A. Schneidmiller, M.V. Yurkov. Design formulas for short wavelength FELs. DESY-Report-04-012, 2004.
    [17]杜应超.基于汤姆逊散射X射线源的理论及初步实验研究.博士论文. 2006.
    [18] P. Muggli, B.E. Blue, C.E. Clayton. Meter-scale plasma wakefield accelerator driven by a matched electron beam. Phys Rev Lett, 2004, 93:014802.
    [19] S.P.D. Mangles, C.D. Murphy, Z. Najmudin, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature, 2004, 431:535.
    [20] C.G.R. Geddes, Cs. Toth, J. Van Tilborg, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 2004, 431:538.
    [21] J. Faure, Y. Glinec, A. Pukhov, et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature, 2004, 431:541.
    [22] W.P. Leemans, B. Nagler, A.J. Gonsalves, et al. GeV electron beams from a centimeter-scale accelerator. Nature Phys, 2006, 2:696.
    [23] W.S. Graves, L.F. Dimauro, R. Heese, et al. Measurement of thermal emittance for a copper photocathode. Proceedings of PAC01, 2001:2227.
    [24] X.J. Wang, M. Babzien, R. Malone, et al. Mg cathode and its thermal emittance. Proceedings of LINAC02, 2002:142.
    [25] V. Miltchev, J. Baehr, H. Grabosch, et al. Measurements of thermal emittance for Cesium Telluride photocathodes at PITZ. Proceedings of FEL05, 2005:560.
    [26]何小中,唐传祥,黄文会,等.光阴极电子枪中金属光阴极的热发射度研究.高能物理与核物理, 2004, 28:1007.
    [27] D. Sertore, D. Favia, P. Michelato, et al. Cesium Telluride and metal photoelectron thermal emittance measurements using a time-of-flight spectrometer. Proceedings of EPAC04, 2004:408.
    [28] W. Schottky and C.A. Hartmann. Z. Phys, 1920, 2:206.
    [29] Dao Xiang, Yingchao Du, Lixin Yan, et al. Phase space mapping with computerized tomography technique using a solenoid with application to thermal emittance measurement. Submitted to Phys Rev ST-Accel Beams.
    [30] S.G. Anderson, J.B. Rosenzweig, G.P. Lesage, et al. Space-charge effect in high brightness electron beam emittance measurement. Phys Rev ST-Accel Beams, 2002, 5: 014201.
    [31] M. Ferrario, D. Alesini, A. Bacci, et al. Direct measurement of the double emittance minimum in the beam dynamics of the Sparc high-brightness photoinjector. Phys. Rev. Lett, 2007, 99:234801.
    [32] J.H. Park, S.J. Park, C.B. Kim, et al. High power beam test and measurement of emittance evolution of a 1.6 cell photocathode rf gun at Pohang Accelerator Laboratory. Jpn. J. Appl. Phys, 2007, 46:1751.
    [33] Lixin Yan, Yingchao Du, Dao Xiang, et al. Multi-slit based emittance measurement of the electron beam from the photocathode RF gun. Chinese Phys Lett, 2008, 25:1640.
    [34] Kwang-Je Kim. Rf and space-charge effects in laser-driven rf electron guns. Nucl Instr and Meth in Phys Res A, 1989, 275:201.
    [35] B.E. Carlsten. New photoelectric injector design for the Los Alamos national laboratory XUV FEL accelerator. Nucl Instr and Meth in Phys Res A, 1989, 285:313.
    [36] L. Serafini and J. Rosenzweig. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation. Phys Rev E, 1997, 55:7565.
    [37] M. Ferrario, J. Clendenin, D. Palmer, et al. HOMDYN study for the LCLS photoinjector. SLAC-PUB-8400, 2000.
    [38] Xiaozhong He, Chuanxiang Tang, Wenhui Huang, et al. A first order analytical investigation on emittance evolution of relativistic space-charge dominated beam. Nucl Instr and Meth in Phys Res A, 2006, 560:197.
    [39] Chun-xi Wang, Kwang-Je Kim, Massimo Ferrario, et al. Criteria for emittance compensation in high-brightness photoinjectors. Phys Rev ST-Accel Beams, 2007, 10:104201.
    [40] Juan C. Gallardo and Robert B. Palmer. Preliminary study of emittance correction. IEEE J Quan Elec, 1990, 26:1328.
    [41] Ming Li, et al. First performance of the bunch compressor at CAEP. Submitted to Chinese Phys C.
    [42] Hung-Chi Lihn, Pamela Kung, Chitrlada Settakorn, et al. Measurement of subpicosecond electron pulses. Phy Rev E, 1996, 53:6413.
    [43] R. Lai, U. Happek and A.J. Sievers. Measurement of the longitudinal asymmetry of a charged particle bunch from the coherent synchrotron or transition radiation spectrum. Phys Rev E, 1994, 50:R4294.
    [44] A.H. Lumpkin, N.S. Sereno, D.W. Rule. First measurements of subpicosecond electron beam structure by autocorrelation of coherent diffraction radiation. Nucl Instr and Meth in Phys Res A, 2001, 475:470.
    [45] M. Castellano, V.A. Verzilov, L. Catani, et al. Measurements of coherent diffraction radiation and its application for bunch length diagnostics in particle accelerators. Phys Rev E, 2001, 63:056501.
    [46] B. Feng, M. Oyamada, F. Hinode, et al. Electron bunch shape measurement using coherent diffraction radiation. Nucl Instr and Meth in Phys Res A, 2001, 475:492.
    [47] Dao Xiang and Wenhui Huang. Properties of diffraction radiation in practical conditions: finite size target effect, surface roughness and pre-wave zone. Nucl Instr and Meth in Phys Res B, 2006, 248:163.
    [48] A.G. Shkvarunets and R.B. Fiorito. Vector electromagnetic theory of transition and diffraction radiation with application to the measurement of longitudinal bunch size. Phys Rev ST-Accel Beams, 2008, 11: 012801.
    [49] Dao Xiang, Xingfan Yang, Wenhui Huang, et al. Experimental characterization of sub-ps electron bunch length with coherent diffraction radiation. Chinese Phys Lett, in press.
    [50] Dao Xiang and Wenhui Huang. Ultrashort electron bunch length measurement with diffraction radiation deflector. Phys Rev ST-Accel Beams, 2007, 10: 012801.
    [51] M. Castellano. A new non-intercepting beam size diagnostics using diffraction radiation from a slit. Nucl Instr and Meth in Phys Res A, 1997, 294:275.
    [52] R. B. Fiorito and D.W. Rule. Diffraction radiation diagnostics for moderate to high energy charged particle beams. Nucl Instr and Meth in Phys Res B, 2001, 173:67.
    [53] N. Potylitsina-Kube and X. Artru. Diffraction radiation from ultrarelativistic particles passing through a slit: determination of the electron beam divergence. Nucl Instr and Meth in Phys Res B, 2003, 201:172.
    [54] T. Muto, S. Araki, R. Hamatsu, et al. Observation of incoherent diffraction radiation from a single-edge target in the visible-light region. Phys Rev Lett, 2003, 90:104801.
    [55] Pavel Karataev, Sakae Araki, Ryosuke Hamatsu, et al. Beam-size measurement with optical diffraction radiation at KEK accelerator test facility. Phys Rev Lett, 2004, 93:244802.
    [56] A.H. Lumpkin, W.J. Berg, N.S. Sereno, et al. Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam. Phys Rev ST-Accel Beams, 2007, 10:022802.
    [57] Dao Xiang and Wen-Hui Huang. Electron beam characterizations with optical diffraction radiation from circular aperture and rectangular slit. Nucl Instr and Meth in Phys Res B, 2007, 254:165.
    [58] Dao Xiang, Wenhui Huang, Yuzheng Lin. Imaging of high-energy electron profile with optical diffraction radiation. Phys Rev ST-Accel Beams, 2007, 10:062801.
    [59] E. Chiadroni, M. Castellano, A. Cianchi, et al. Non-intercepting electron beam transverse diagnostics with optical diffraction radiation at the DESY FLASH facility. Proceedings of PAC07, 2007:3982.
    [60] A.H. Lumpkin, P. Evtushenko, A.P. Freyberger, et al. Feasibility of near-field ODR imaging of multi-GeV electron beams at CEBAF. Proceedings of PAC07, 2007l4381.
    [61] S Walston, S Boogert, C Chung, et al. Performance of a high resolution cavity beam position monitor system. Nucl Instr and Meth in Phys Res A, 2007, 578:1.
    [62] Wencan Xu, Jiejia Zhuang, Kui Zhao, et al. Cavity BPM design for the PKU-FEL injector. High power laser and particle beams, 2006, 18:1564.
    [63] Q. Luo, B.G. Sun, D.H. He, et al. Design of S-band cavity BPM for HLS. Proceedings of PAC07, 2007:4102.
    [64] O. Grimm. Coherent radiation diagnostics for short bunches. Proceedings of PAC07, 2007:2653.
    [65] Dao Xiang, Wenhui Huang, Yuzheng Lin, et al. Wake of a beam passing through a diffraction radiation target. Phys Rev ST-Accel Beams, 2008, 11:024001.
    [66] L.M. Young. LANL Report No. LA-UR-96-1835.
    [67] M.G. Minty and F. Zimmermann. Measurement and control of charged particle beam. Springer, 2003.
    [68] A.W Chao and M. Tigner. Handbook of Accelerator Physics and Engineering. 3rd printing, World Scientific, 2006.
    [69] Yingchao Du, Lixin Yan, Qiang Du, et al. First beam measurements of the S-band photocathode radio-frequency gun at Tsinghua University. Chinese Phys Lett, 2007, 24:1876.
    [70] Curve fitting toolbox. MATLAB, The Mathworks, Inc.
    [71] Min Zhang. Emittance formula for slits and pepper-pot measurement. FERMILAB-TM-1988, 1996.
    [72] K. Flottmann. Pepper pot design for space charge dominated high brightness beam. TESLA-FEL 96-09, 1996.
    [73] H. Braun, F. Chautard, R. Corsini, et al. Emittance growth during bunch compression in the CTF-II. Phys Rev Lett, 2000, 84:658.
    [74] S.G. Anderson, J.B. Rosenzweig, P. Musumeci, et al. Horizontal phase-space distortions arising from magnetic pulse compression of an intense, relativistic electron beam. Phys Rev Lett, 2003, 91:074803.
    [75] Malcolm Slany. Principles of computerized tomographic imaging. IEEE press, New York, 1988.
    [76] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry, John Wiley & Sons, 1963.
    [77]谷安佳,赵夔,丁原涛,等.计算机断层扫描在“双成像法”测量束流二维相空间中的应用.高能物理与核物理, 2003, 27:455.
    [78] D.H. Dowell, P.R. Bolton, J.E. Clendenin, et al. Longitudinal emittance measurements at the SLAC gun test facility. Nucl Instr and Meth in Phys Res A, 2003, 507:331.
    [79] Henrik Loos. Injector commissioning problems. Talk given at ICFA Commissioning workshop, 2005, unpublished.
    [80]杜应超,向导,黄文会,等.基于CT算法的束团横向相空间测量.高能物理与核物理, 2006, 30:888.
    [81] Y. Yakimenko, M. Babzien, I. Ben-Zvi, et al. Electron beam phase-space measurement using a high-precision tomography technique. Phys Rev ST-Accel Beams, 2003, 6:122801.
    [82] J.J. Scheins. Tomographic reconstruction of transverse and longitudinal phase space distributions using the maximum entropy algorithm. TESLA-Report, 2004-08, 2004.
    [83] H. Loos, P.R. Bolton, J.E. Clendenin, et al. Longitudinal phase space tomography at the SLAC gun test facility and the BNL DUV-FEL. Nucl Instr and Meth in Phys Res A, 2004, 528:189.
    [84] Mitsuru Uesaka, Toru Ueda, Takahiro Kozawa, et al. Precise measurement of a subpicosecond electron single bunch by the femtosecond streak camera. Nucl Inst. and Met. in Phy. Re. A, 1998, 406:371.
    [85] D.X. Wang, G.A. Krafft and C.K. Cinclair. Measurement of femtosecond electron bunches using a rf zero-phasing method. Phys Rev E, 1998, 57:2283.
    [86] X. Yan, A.M. MacLeod, W.A. Gillespie, et al. Subpicosecond electro-optic measurement of relativistic electron pulses. Phys Rev Lett, 2000, 85:3404.
    [87] A.L. Cavalieri, D.M. Fritz, S.H. Lee, et al. Clocking femtosecond X-rays. Phys Rev Lett, 2005, 94:114801.
    [88] Dao Xiang and Wenhui Huang. Investigations on collective behavior in radiation process with random walk model. Nucl Instr and Meth in Phys Res B, 2005, 240:855.
    [89] H. Wiedemann. Particle Accelerator Physics. p318, Springer-Verlag, Berlin Heidelberg, 1993.
    [90] J.S. Nodvick and D.S. Saxon. Suppression of coherent radiation by electrons in a synchrotron. Phys Rev, 1954, 96:180.
    [91] A. Papoulis. Probability, Random Variables, and Stochastic Processes. 2nd edition, New York, McGraw-Hill, 1984.
    [92] K. Pearson. The problem of the random walk. Nature, 1905, 72:294.
    [93] K. Ishi, Y. Shibata, T. Takahashi, et al. Observation of coherent Smith-Purcell radiation from short-bunched electrons. Phy Rev E, 1995, 51:5212.
    [94] M.L. Ter-Mikaelian, High-Energy Electromagnetic Processes in Condensed Media, wiley/Interscience, New York, 1972.
    [95] L.D.Landau, E.M.Lifshitz and L.P.Pitaevskii, Electrodynamics of continuous media, Pergamon Press, 1984.
    [96] J.D. Jackson. Classical electrodynamics. 3rd edition, John Wiley & Sons, 1999.
    [97] Y. Shibata, K. Ishi, T. Takahashi, et al. Coherent transition radiation in the far-infrared region. Phys Rev E, 1994, 49:785.
    [98] Yu.N. Dnestrovskii, D.P. Kostomarov. Sov Phys Dokl, 1959, 4:132.
    [99] Yu.N. Dnestrovskii, D.P. Kostomarov. Sov Phys Dokl, 1959, 4:132.
    [100] M. Born and E. Wolf. Principles of Optics. 7th Edition, Cambridge University Press, Chap.8, 1999.
    [101] M. Castellano, V. Verzilov, L. Catani, et al. Search for the prewave zone effect in transition radiation. Phy Rev E, 2001, 67:015501.
    [102] P.V. Karataev. Pre-wave zone effect in transition and diffraction radiation: Problems and solutions. Phys Lett A, 2005, 345:428.
    [103] T. Takahashi, T. Matsuyama, K. Kobayashi, et al. Utilization of coherent transition radiation from a linear accelerator as a source of millimeter-wave spectroscopy. Rev Sci Instrum, 1998, 69:3770.
    [104] J.C. Lesurf. Millimeter wave optics, devices and systems. Adam Hilger, 1990.
    [105] D. H. Martin and E. Puplett. Polarized interferometric spectrometry for the millimetre and submillimetre spectrum. Infrared Phys, 1969, 10:105.
    [106] K. Ishi, Y. Shibata, T. Takahashi, et al. Spectrum of coherent synchrotron radiation in the far-infrared region. Phys Rev A, 1991, 43:5579.
    [107] F. Wooten. Optical properties of solids. Academic press, New York, 1972.
    [108] R. Lai and A.J. Siervers. Determination of a charged-particle-bunch shape from the coherent far-infrared spectrum. Phys Rev E, 1994, 50:3342.
    [109] R. Lai and A.J. Siervers. Phase problem associated with the determination of the longitudinal shape of a charged particle bunch from its coherent far-ir radiation. Phys Rev E, 1995, 52:4576.
    [110] Dao Xiang, Sungju Park, In Soo Ko, et al. Femtosecond electron diffraction and its application in beam characterization at the PAL. Proceedings of PAC05, 2005:3721.
    [111] X.J. Wang, Dao Xiang, T.K. Kim, et al. Potential of femtosecond electron diffraction using near-relativistic electrons from a photocathode RF electron gun. J. Korean Phys. Soc., 2006, 48:390.
    [112] J.B. Hastings, F.M. Rudakov, D.H. Dowell, et al. Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl Phys Lett, 2006, 89:184109.
    [113] Hung-Chi Lihn. Stimulated coherent transition radiation. Ph.D. Thesis, SLAC-R-480, 1996.
    [114]邱睿.高能电子加速器永久磁铁辐射退磁效应研究.清华大学博士论文, 2007.
    [115] R.B. Fiorito, D. Feldman, A.G. Shkvarunets, et al. OTR measurements of the 10 keV electron beam at the University of Maryland electron ring (UMER). Proceedings of PAC07, 2007:4006.
    [116] P. Catravas, W.P. Leemans, E. Esarey, et al. Beam profile measurement at 30 GeV using optical transition radiation. Proceedings of PAC99, 1999:2111.
    [117] D.W. Rule and R.B. Fiorito. Imaging micron-sized beams with optical transition radiation. AIP conference proceedings, 1991, 229:315.
    [118] V.A. Lebedev. Diffraction-limited resolution of the optical transition radiation. Nucl Inst. and Met. in Phy. Re. A, 1996, 372:344.
    [119] X. Artru, M. Castellano, L. Catani, et al. Experimental investigations on geometrical resolution of optical transition radiation. Nucl Inst. and Met. in Phy. Re. A, 1998, 410:148.
    [120] M. Castellano, V.A. Verzilov. Spatial resolution in optical transition radiation beam diagnostics. Phys Rev ST-Accel Beams, 1998, 1:062801.
    [121] Dao Xiang and Wenhui Huang. Theoretical considerations on imaging of micron size electron beam with optical transition radiation. Nucl Inst. and Met. in Phy. Re. A, 2007, 570:357.
    [122] T.K. Mcdonald and D.P. Russell. Methods of emittance measurement. Proceedings of Joint US-CERN school on observation, diagnosis and correction in particle beams, 1988.
    [123] R. Gilliland. In’The restoration of HST images and spectra’(R.L. White and R.J. Allen, eds), Space Telescope Science Institute, Baltimore, 1991.
    [124] B. H. Richardson. Bayesian-based iterative method of image restoration. J Opt Soc Am, 1972, 62:55.
    [125] L.B. Lucy. An iterative technique for the rectification of observed distributions. Astron J, 1974, 79:745.
    [126] I.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series and products. 6-th edition, Academic press, New York, 2000.
    [127] Bruce Goplen, Larry Ludeking, David Smith, et al. User-configurable MAGIC for electromagnetic PIC calculations. Comput Phys Commun, 1995, 87:54.
    [128] G.V. Stupakov. Wake and impedance. Lecture presented at JAS 2000 Accelerator School On Frontiers Of Accelerator Technology, Moscow, Russia, 2000.
    [129] S.A. Heifets and S.A. Kheifets. Coupling impedance in modern accelerators. Rev Mod Phys, 1991, 63:631.
    [130] G.V. Stupakov. Radiation of an ultrarelativistic particle passing through a round hole in a perfectly conducting screen,‘http://www.slac.stanford.edu/~stupakov/’.
    [131] G. Stupakov, K.L.F. Bane and I. Zagorodnov. Optical approximation in the theory of geometric impedance. Phys. Rev. ST Accel. Beams, 2007, 10:054401.
    [132] Alex Chao. Physics of collective beam instabilities in high energy accelerators. John Wiley & Sons, Inc, 1993.
    [133] W.K.H. Panofsky and W.A. Wenzel. Some considerations concerning the transverse deflection of charged particles in RF fields. Rev Sci Instr, 1956, 27:967.
    [134] P. Morton. Introduction to impedance for short relativistic bunch. SLAC-PUB-6052, 1993.
    [135] Zhirong Huang and Kwang-Je Kim. Review of X-ray free electron laser theory. Phys. Rev. ST Accel. Beams, 2007, 10:034801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700