Beta分子筛择形催化合成对二异丙苯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子筛择形催化作为选择生成对位异构体的有效途径,一直以来都备受化工行业的重视,迄今已有很多科研人员投身这方面的研究。但作为芳烃烷基化的对位选择性催化剂,以ZSM系列、Y、MOR以及SAPO系列的研究居多,却鲜见有关β分子筛的报道。本论文主要针对β分子筛的改性和预处理方法,就异丙苯与异丙醇烷基化选择生成对二异丙苯的工艺,考察了影响对位选择性的各种因素,从而采取相应的措施来达到提高选择性的目的。实验过程中采用UV、XRD、FT-IR、NH_3-TPD、BET等手段对催化剂进行表征,并将其与催化性能进行关联。具体研究结果如下:
     (1)在高压釜中进行反应时,异丙苯和异丙醇烷基化的适宜反应条件是:IPA/IPB=4:1(mol),催化剂用量10w%,反应温度250℃,反应时间5h,此时异丙苯的转化率达57.2%,二异丙苯异构体中的间对位比值m/p=1.21。
     (2)综合对比ZSM-5、MOR、HY以及Hβ的物化性能,发现Hβ用作异丙苯异丙基化选择生成p-DIPB的分子筛催化剂,有效酸中心多,活性高,只是选择性有待进一步提高。
     (3)分别对Hβ分子筛催化剂进行覆硅改性和杂元素氧化物改性。实验发现覆硅改性后,催化剂用量10w%,反应温度为250℃时,异丙苯转化率20%,选择性提高到m/p=1.00;铜、硼、磷氧化物改性后,相同的反应条件下,异丙苯转化率为70%,选择性不变或稍有下降;稀土金属元素氧化物(Ce_2O_3及La_2O_3)改性,在异丙苯转化率为30%时,产物中m/p=0.80,对位选择性大大提高。
     (4)本论文在固定床微反装置上,考察扩散效应对异丙苯烷基化反应产物中异构体组成的影响。以样品4%Ceβ为前驱物,经表面覆碳预处理可获得高选择性的异丙苯烷基化催化剂,当反应条件为IPA/IPB=4:1、催化剂用量10mL、反应温度300℃、体积空速5h~(-1)、反应压力3MPa、氢气/反应原料=300(体积比)时,异丙苯转化率23%,产物组成m/p=0.66。
As an efficient way to produce p-isomers, shape-selective catalysts have been paid more and more attention by the chemical industry. Till now, lots of researchers dedicate to this field. ZSM series、Y、MOR and SAPO series are common p-selection zeolites to catalyze aromatics alkylation, but fewer records about zeoliteβ.
     In this paper, the alkylation of cumene (IPB) with isopropyl alcohol (IPA) for preparing p-DIPB on modified Hβzeolites was studied. The purpose is to discuss the chief factors of p-DIPB selectivity, then corresponding measures can be advanced. The catalysts were characterized by means of UV、XRD、FT-IR、NH_3-TPD、BET etc., and these results were related to their catalytic performances. Some conclusions were obtained as below:
     (1) When the alkylation of cumene with isopropyl alcohol proceeds in autoclave, the optimal reaction conditions are that, mole ratio of isopropyl alcohol to cumene 4:1, reaction temperature 250℃, catalyst dosage 10w%, and reaction time 5 hrs. Under this condition, a m/p=1.21 selective to m-DIPB/p-DIPB is achieved at a 57.2% cumene conversion.
     (2) By comparison of the physical and chemical properties between ZSM-5、MOR、HY and Hβ, it was found, Hβis the most suitable choice for cumene isopropylation to generate p-DIPB in zeolite catalysts, for it has more effective acids with high activity. But its selectivity has to be further enhanced.
     (3) When covered with silicone oxide, at 250℃, catalyst dosage 10w%, a m/p=1.00 selective is achieved at a 20% cumene conversion; and when loaded of copper、boron or phosphorus oxides, the cumene conversion increased to 70%, but the selectivity was unchanged or decreased. However, rare earth metal oxides (Ce_2O_3 and La_2O_3) modified zeolites had their conversion rate down to 30%, but the selectivity can improve to m/p=0.80.
     (4) This paper studied the alkylation of cumene on fixed bed micro-reactor to discuss the effect of product diffusion. A highly selective catalyst for cumene alkylation is obtained by previous carbon-covering treatment to sample 4%Ceβ. When IPA/IPB=4:1, catalyst dosage 10mL, reaction temperature 300℃, WHSV 5h~(-1), reaction pressure 3MPa and H_2/materials=300 (volume ratio), a m/p=0.66 selective to m-DIPB/p-DIPB is achieved at a 23% cumene conversion.
引文
[1]赵培侠,张春勇,刘靖.分子筛催化剂上二异丙苯异构化反应[J].工业催化, 2005.1, 13(1): 29-32
    [2]高滋.沸石催化与分离技术[M].北京:中国石化出版社, 1999: 279-290
    [3]赵培侠.改性β沸石催化二异丙苯异构化反应的研究[D].大连:大连理工大学, 2005
    [4]刘迎新,李新学,魏雄辉.对苯二酚合成方法的研究进展[J].化学通报, 2004; 12: 869-875
    [5]汪家铭.对苯二酚生产应用及市场前景[J].化工生产与技术, 1997; (1): 38
    [6] K.韦瑟麦尔,等著,白凤娥,等译.工业有机化学重要原料和中间体[M].北京:化学工业出版社, 1986: 236
    [7]曾昭槐.择形催化[M].北京:中国石化出版社, 1994
    [8] Thomas F., Degnan Jr. The implication of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. Journal of Catalysis, 2003; (216): 32-46
    [9] Mignoni M. L., Petkowicz D. I., Fernandes Machado N. R. C., et al. Synthesis of mordenite using kaolin as Si and Al source[J]. Applied Clay Science, 2008; 41: 99-104
    [10]张雅静.丝光沸石转晶的研究[D].大连:大连理工大学, 2005
    [11] Gonzáles M. D., Cesteros Y., Salagre P., et al. Effect of microwaves in the dealumination of mordenite on its surface and acidic properties[J]. Microporous and Mesoporous Materials, 2008: 1-7
    [12]周志伟.甲苯与叔丁醇烷基化反应催化剂研究[D].南京:南京工业大学, 2006
    [13]贾宏敏,田正华,赵桂利,等.丝光沸石上精萘的择形异丙基化反应[J].精细化工, 2006; 23(2): 205-208
    [14]贾宏敏,田正华,王文瀚,等.丝光沸石的处理对萘异丙基化反应的影响[J].鞍山科技大学学报, 2006; 29(3): 225-230
    [15]贾宏敏,田正华.丝光沸石催化萘异丙基化反应的积炭失活研究[J].鞍山科技大学学报, 2006; 29(2): 113-115
    [16]丁蓓,崔群,褚睿智,等.丝光沸石择形催化合成甲胺反应的性能研究[J].现代化工, 2002; 22(11): 33-37
    [17]孙海.超临界条件下甲苯甲醇烷基化反应制对二甲苯的研究[D].大连:大连理工大学, 2002
    [18]邹薇,杨德琴,孔德金,等.硅改性HZSM-5沸石上甲苯于甲醇选择性甲基化的研究[J].化学反应工程与工艺, 2006; 22(4): 305-309
    [19] Yu Chih-Chieh, Tan Chung-Sung. Selective toluene ethylation in supercritical CO2 using chemical liquid deposition modified HZSM-5 pellets[J]. J.of Supercritical Fluids, 2008; 44: 341-346
    [20]董涛.高纯相SAPO-5分子筛的微波合成及其表征[D].陕西:陕西师范大学, 2005
    [21]徐东彦. SAPO分子筛的研究与催化应用进展[J].工业催化, 2001; 9(1): 23-28
    [22] Wu Xianchun, Anthony R. G. Effect of feed composition on methanol conversion to light olefins over SAPO-34[J]. Applied Catalysis A: General, 2001; 218: 241-250
    [23]郭军利,孙艳平. SAPO-5分子筛合成技术研究进展[J].精细石油化工进展, 2006; 7(8): 24-28
    [24]胡健,王建伟,田松柏. SAPO分子筛在烃类异构化反应中的应用[J].化工进展, 2005; 24(11): 1211-1215
    [25] Gabriela C., Gabriela C., Octavian C. Structure of mixed matrix membranes made with SAPO-5 zeolite in polyurethane matrix[J]. Microporous and Mesoporous Materials, 2008; 115: 61-66
    [26] Sridevi U., Bokade V. V., Satyanarayana C. V. V., et al. Kinetics of propylation of benzene over H-beta and SAPO-5 catalysts:a comparison[J]. Journal of Molecular Catalysis A: Chemical, 2002; 181: 257-262
    [27]许昀,杜军,李峥,等.小晶胞Y型沸石的催化裂化反应性能[J].石油学报, 2006; 22(6): 8-13
    [28] Al-Khattaf S. The influence of Y-zeolite unit cell size on the performance of FCC catalysts during gas oil catalytic cracking[J]. Applied Catalysis A: General, 2002; 231: 293-306
    [29] Hosseinpour N., Mortazavi Y., Bazyari A., et al. Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation[J]. Fuel Processing Technology, 2008: 1-9
    [30]祁晓岚,刘希尧.β沸石合成与表征的研究进展[J].分子催化, 1999; 13(6): 471-482
    [31] Reddy K. S. N., Rao B. S., Shiralkar V. P. Selective formation of cymenes over large pore zeolites[J]. Applied Catalysis A: General, 1995; 121: 191-201
    [32] Jacobus C. J., Edward J. C., Swie L. N., et al. On the remarkable behaviour of zeolite Beta in acid catalysis[J]. Catalysis Today, 1997; 38: 205-212
    [33] Ding Lianhui, Zheng Ying, Zhang Zisheng, et al. Effect of agitation on the synthesis of zeolite beta and its synthesis mechanism in absence of alkali cations[J]. Microporous and Mesoporous Materials, 2006; 94: 1-8
    [34]马骏,王海彦,陈文艺,等.β沸石的微波合成及吸附行为[J].辽宁石油化工大学学报. 2006, 12; 26(4): 141-144
    [35]马骏,田彦文,王海彦.β沸石的微波制备及修饰[J].材料与冶金学报. 2005, 12; 4(4): 282-285
    [36]周群,裘式纶,庞文琴.导向剂法合成β沸石的晶化机制研究[J].高等学校化学学报. 2000; 21(1): 1-4
    [37]周群,李宝宗,裘式纶,等.导向剂法合成低硅铝比β-沸石[J].高等学校化学学报. 1999; 20(5): 693-695
    [38]谢传欣,潘惠芳.表面润湿法合成β沸石体系中晶种作用的研究[J].化学物理学报. 2005; 18(1): 129-135
    [39]左丽华,刘冠华.表面润湿法合成β沸石的NMR研究[J].石油学报. 2000; 16(5): 76-81
    [40] Chaikittisilp W., Yokoi T., Okubo T. Crystallization behavior of zeolite beta with balanced incorporation of silicon and zluminum synthesized from alkali metal cation-free mixture[J]. Microporous and Mesoporous Materials, 2008; 116: 188-195
    [41] Aguado J., Serrano D. P., Rodríguez J. M. Zeolite Beta with hierarchical porosity prepared from organofunctionalized seeds[J]. Microporous and Mesoporous Materials, 2008; 115: 504-513
    [42]王永睿,刘冠华,贾小梅,等.一种小晶粒β沸石的合成方法[P].中国专利: 00107486.5, 2001-12-5
    [43]王鼎聪,孙万富.一种纳米分子筛的制备方法[P].中国专利: 200710079038.2, 2008-5-21
    [44]黄震,苏峻峰.纳米分子筛beta的快速合成方法[P].中国专利: 200710150794.X, 2008-5-14
    [45]刘百军,汪梅,卢义鹏.纳米分子筛/硅铝氧化物复合催化材料的制备方法[P].中国专利: 200610165597.0, 2008-6-25
    [46]王永睿,闵恩泽.含纳米分子筛的催化材料的制备[P].中国专利: 02100379.3, 2004-11-17
    [47] Sakthivel A., Iida A., Komura K., et al. Nanosizedβ-zeolites with tunable particle size:Synthesis by the dry gel conversion (DGC) method in the presence of surfactants, characterization and catalytic properties[J]. Microporous and Mesoporous Materials, 2008: 1-34
    [48]杨兴斌,何静,李峰,等.高温脱胺对β分子筛酸性和结构的影响[J].石油学报, 1997; 13(4): 99-103
    [49]杨兴斌,李峰,何静,等.组合脱胺对β分子筛酸性和结构的影响[J].催化学报, 1997; 18(5): 398-401
    [50]孔德金,邢宇,陈波,等.抑制β分子筛骨架脱铝的焙烧研究[J].化学物理学报, 2002; 5(2): 127-131
    [51]沈剑平,李悦,孙铁,等.酸处理对β分子筛结构和酸性的影响[J].高等学校化学学报, 1995; 16(6): 943-947
    [52]林靖,韩明汉,徐聪,等.氢氟酸处理对β分子筛催化剂烷基化反应的影响[J].石油化工, 2003; 32(2): 96-99
    [53]陈庆龄,谢在库,包佳青,等.β沸石及其改性方法[P].中国专利: 99113579.2, 2000-10-4
    [54]包佳青,谢在库,陆贤,等.铝化β分子筛的硅铝分布及表面酸性质[J].高等学校化学学报, 2002; 23(10): 1930-1935
    [55] Tsutsui T. K., Toshio, Kubota, et al. Process for Producing Dimethylnaphthalene and Alkylnaphthalene with Methallosilicate Catalyst[P]. US: 6414208, 2002-07-02
    [56] Degman J., Thomas F., John D., et al. Low acidity alumina-bound zeolites containing tetrahedral boron, gallium, indium and/or thallium[P]. US: 4788169, 1987-10-26
    [57]刘玉梅,白雪峰,刘宁生,等. Mg2+改性β分子筛催化甲基萘烷基化应[J].化学与粘合, 2003; 6: 277-279
    [58]吴伟,刘玉梅,郭亚军,等. Zn2+改性β分子筛催化合成2,6-二甲萘[J].化学与粘合, 2004; 1: 1-2
    [59]喻顺祥,李光岩,李桂民,等.稀土浸渍处理对β分子筛结构、酸性和催化性能的影响[J].石油学报, 1998; 14(4): 30-34
    [60]任行涛,曹建秋,王震宇,等.五氧化二磷气相沉积改性Hβ分子筛[J].南开大学学报(自然科学版), 2005; 38(6): 22-27
    [61] Bokhoven J. A.van, Koningsberger D. C., Kunkeler P., et al. Influence of Steam Activation on Pore Structure and Acidity of Zeolite Beta: An Al K Edge XANES Study of Aluminum Coordination[J]. Journal of Catalysis, 2002; 211: 540-547
    [62] Kuehl G. H., Timken H. K. C. Acid sites in zeolite Beta: effects of ammonium exchange and steaming[J]. Microporous and Mesoporous Materials, 2000; 35-36: 521-532
    [63]范广,林诚.β分子筛的改性研究进展[J].分子催化, 2005; 19(5): 408-417
    [64]李丽华,于廷云,张金生,等.水蒸气处理β-沸石载体对降烯烃催化剂性能的影响[J].石油化工高等学校学报, 2004; 17(4): 26-31
    [65] Kim J. H., Sugi Y., Matsuzaki T., et al. Cerium impregnated H-mordenite as a catalyst for shape-selective isopropylation of naphthalene.Selective deactivation of acid sites on the external surface[J]. Applied Catalysis A: General, 1995; 131: 15-32
    [66]张铭金,郑安民,邓风,等.沸石分子筛催化剂的表面化学修饰及其萘烷基化反应性能[J].中国科学(B辑), 2002; 32(6): 509-514
    [67]白雪峰,张迎光,张洪林.化学液相沉积改性Hβ分子筛催化剂催化甲基萘与甲醇烷基化反应[J].石油化工, 2005; 34(7): 664-667
    [68]钟海军,柳云骐,冯锡兰,等.硅改性Hβ沸石催化萘异丙基化反应[J].石油化工, 2007; 36(5): 479-484
    [69]张秀斌.甲苯择形歧化制对二甲苯催化剂的作用机理及工艺[D].东营:中国石油大学, 2006
    [70]乐英红,唐颐,高滋.分子筛的孔口改性与气体吸附分离[J].物理化学学报, 1995; 11(10): 912-915
    [71]乐英红,唐颐,高滋.化学液相沉积法精细调变分子筛孔径[J].石油学报, 1997; 13(1): 30-35
    [72]陈昕,淳远,严爱珍.硅氧化合物化学蒸气沉积法精细调变沸石分子筛[J].催化学报, 1994; 15(5): 375-379
    [73]徐青,乐英红,高滋.化学液相沉积与分子筛择形催化性能[J].物理学报, 1998; 19(4): 349-353
    [74] Zhu Zhirong, Xie Zaiku, Chen Qingling, et al. Chemical liquid deposition with polysiloxane of ZSM-5 and its effect on acidity and catalytic properties[J]. Microporous andMesoporous Materials, 2007; 101: 169-175
    [75]李隽春.固体酸催化异丙苯歧化反应的研究[D].北京:北京化工大学, 2002.
    [76]周斌,高焕新,方华,等.合成对二异丙苯的催化剂[P].中国专利: 1704166, 2004-5-28
    [77]周斌,高焕新,方华,等.制备对二异丙苯的方法[P].中国专利: 1721379, 2004-07-12
    [78] Chung K. H., Takayuki K., Seitaro N., et al. Para-selectivity of SAPO-5 and mordenite catalysts in thealkylation of curnene with 2-propanol. Microporous Materials, 1995; 3: 377-384
    [79] Hervert G. L., Woodstock. Process for producing para-diisopropylbenzene[P]. US: 3763259, 1973-10-02
    [80] Bennett R. Q., Goodwin J. A. Process for synthesizing diisopropylbenzene[P]. US: 7102043B2, 2006-09-05
    [81] Chung K. H. Dealumination of mordenites with acetic acid and their catalytic activity in the alkylation of cumene[J]. Microporous and Mesoporous Materials, 2007: 1-7
    [82]傅吉全.不同模板剂制成的β沸石对苯和丙烯烷基化反应的影响[J].燃料化学学报, 2003; 31(3): 254-258.
    [83] Niwa M., Murakami Y. CVD zeolites with controlled pore opening size[J]. Journal of Physics and Chemistry of Solids, 1989; 50(5): 487-496
    [84] Hibino T., Niwa M., Murakami Y. Inactivation of external surface of mordenite and ZSM-5 by chemical vapor deposition of silicon alkoxide[J]. Zeolites, 1993; 13(7): 518-523
    [85]余少兵,周荣琪,李永红,等.β分子筛的物化性质对其催化活性的影响[J].化学通报, 2004; (9): 679-684
    [86] Sugi Y., Tawada S., Sugimura T., et al. Shape-selective isopropylation of biphenyl over H-mordenites Relationships of bulk products and encapsulated products in the pores[J]. Applied Catalysis A: General, 1999 ; (189) : 251-261
    [87] Yoshihiro sugi., Toyama I., Tamada H., et al. The isomerization of 4,4’-diisopropylbiphenyl at external acid sites of H-mordenite during the isopropylation of biphenyl[J]. Journal of Molecular Catalysis A: Chemical, 2009; (304): 22-27
    [88]赵培侠,张春勇,刘靖.分子筛催化剂上二异丙苯异构化反应[J].工业催化, 2005; 13(1): 29-32
    [89]余少兵,李永红,陈洪钫.改性对β分子筛酸性的影响[J].化工学报, 2004; 55(6): 913-918
    [90]刘爱全,马丽景,袁良经.β沸石酸改性对结构和催化活性影响的研究[J].北京化工大学学报, 2003; 30(6): 31-35
    [91] Maache M., Janin A., Lavalley J. C., et al. The Acidity of Zeolites Beta Dealuminated by Acid Leaching : an FTIR Study Using Different Probe Molecules ( Pyridine , Carbon Monoxide )[J]. Zeolites, 1993; (13): 419 -426
    [92]谢在库,张成芳,陈庆龄,等.以固体硅胶为硅源的β分子筛晶化过程的研究[J].石油学报(石油加工), 2000; 16(3): 33-37
    [93]沈剑平,李悦,孙铁,等.酸处理对β沸石结构和酸性的影响[J].高等学校化学学报, 1995; 16(6): 943-947
    [94] Gedeon A., Bonardet J. L., Lepetit C., et al. Application of 129Xe nuclear magnetic resonance to the study of Cu-Y zeolites: dehydration and redox effects[J]. Solid State Nuclear Magnetic Resonance, 1995; (5): 201-212
    [95]曾海生,关乃佳,李伟,等.金属氧化物改性Hβ沸石的烷基转移反应活性和酸性[J].石油化工, 1999; 28(11): 745-748
    [96]葛欣,王文月,沈俭一.改性ZSM-5分子筛催化异丙苯、甲醇苯环烷基化反应的研究进展[J].无机化学学报, 2001; 17(1): 17-26
    [97]张铭金.沸石子筛催化剂上萘择形烷基化基础研究[D].山西:中国科学院山西煤炭化学研究所, 2000
    [98] Schmitz A. D., Song C.. Shape-selective isopropylation naphthalene. Reactivity of 2,6-diisopropylnaphthalene on dealuminated mordenites[J]. Catalysis Today, 1996; 31(1): 19-25
    [99] Colon G., Ferinoa I., Rombia E., et al. Liquid-phase alkylation of naphthalene by isopropanol over zeolites. Part 1: HY zeolites[J]. Applied Catalysis A: General, 1998; (168): 81-92
    [100] Tawada S., Sugi Y., Imada Y., et al. Ceria-modification of H-mordenites The deactivation of external acid sites in the isopropylation of biphenyl and the isomerization of 4,4’-diisopropylbiphenyl[J]. Catalysis Today, 2000; (60): 243-253
    [101] Perego C., Amarilli S., Millini R., et al. Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis[J]. Microporous Materials, 1996; (6): 395-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700