对强激光等离子体相互作用过程中若干基本问题的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强激光等离子体相互作用的研究,有着非常重要的应用前景,吸引了许多科学工作者对其不断探索。随着研究的不断深入,强激光与完全离化等离子体相互作用的研究结果已经不能满足现代研究对精密物理的要求,所以,对强激光部分离化等离子体的研究具有重要意义。
     强激光脉冲在部分离化等离子体中传播时,由于带有束缚电子的原子(离子)的形状受强激光场的作用要发生变化,从而未完全剥离原子(离子)产生非线性极化,并且产生非线性极化电流,这和完全离化等离子体有明显的区别,势必影响强激光与它的相互作用,激光的传播特性也将不同于在完全离化等离子体中。
     然而,要精确求解离子的非线性响应问题是非常困难的,尤其是介质的非线性极化率无法得到。为此,本文针对线极化激光电场提出了一离子极化的简单模型,在该模型中,用旋转椭球形来近似描述电子云的形状,并假设离子不发生再次电离,也不再与自由电子复合。通过该模型,可以自恰地得到介质的第一阶和第三阶极化率。在激光强度不是很高时,这些结果与传统的非线性谐振子模型得到的结果一致,同时通过对比,还可以得到相应的振子固有频率和非线性系数。
     利用第一阶和第三阶极化率的解析结果,本文分析了强激光在部分离化等离子体中传播时,介质的折射指数的变化,并根据折射指数的变化,讨论了强激光在部分离化等离子体中传播时的自聚焦现象和等离子体通道的形成。
     考虑到超短强激光脉冲能对电子产生很强的有质动力作用,本文讨论了受激光脉冲的有质动力的影响后,束缚电子产生的辐射。本文的研究为强激光部分离化等离子体相互作用的基础研究提供了理论参考。
The study of intense laser pulse interact with plasmas is relevant to a wide range of important applications, and it tempted many people to explore it continually. With the development of study, the results from the study of the intense laser interact with the fully stripped plasmas can't meet the requirement of the exactitude physic of modern study. So the study of the intense laser interact with the partially stripped plasmas is very important.
    When an intense laser pulse propagating in the partially stripped plasmas, due to the shape of the atom (ion) with some unstripped hound electrons will change under the effect of the intense laser field, there will generate a nonlinear polarization of the partially stripped atom (ion), and a nonlinear polarization current come into being. Obviously, it is different from the fully stripped plasmas, and certainly, it will influence the interaction of the intense laser pulse and the plasmas, and the propagation characteristic will different from the laser in the fully stripped plasmas too.
    Whereas, it is very difficult to solve the nonlinear response problem of the atom accurately, especially, the nonlinear susceptibility of the medium cannot be obtained. So, in this paper, we presented a model aimed at the linear polarized laser field. In this model, the shape of electron cloud is described as a spheroid, and takes no account of the further ionization of the bound electrons and combination of an ion with free electrons. From this model, the linear and nonlinear susceptibility can be obtained self-consistently. At low laser field limit, these results are consistent with the results that obtained from the traditional non-harmonic oscillator model and the correlative inherent frequency of the oscillator and the nonlinear coefficient can also be obtained.
    Using the analytical results of the first and the third susceptibility derived from this model, we analyzed the variety of the refraction index yvhen the intense laser propagating in the partially stripped plasmas, and based on the variety of the refraction index, we have discussed the laser self-focusing and the formation of plasma channel in the process of propagation.
    Take account of the strong ponderomotive force from the ultra-short intense laser pulse, the effect of ponderomotive on the radiation of bound electrons in the intense laser pulse field is also discussed in this paper. All these results provided a theoretic reference in the basic study of intense laser pulse interact yvith partially stripped plasmas.
引文
[1] 王乃彦,聚变能及其未来[M],北京:清华大学出版社,2001.
    [2] M. Tabak, J. Hammer, M. E. Glinsky, et.al., Ignition and high gain with ultrapowerful lasers[J], Phys. Plasma, 1994,1(5):1626-1634.
    [3] 陈正林、张杰,对超热电子诱生的磁场分布的估算[J].物理学报,2001,50(4):735-739.
    [4] Wei Yu, M.Y.Yu, Z.M.Sheng, et al., Model for fast electrons in ultrashort-pulse laser interaction with solid targets[J]. Phys. Rev. E, 1998,58(2): 2456-2460.
    [5] A.Pukhov and J. Meyer-Ter-Vehn. Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets[J].Phys. Rev. Lett. 1997, 79(14): 2686-2689.
    [6] R. J. MASON and M. TABAK. Magnetic Field Generation in High-Intensity-Laser-Matter Interactions [J]. Phys. Rev. Lett, 1998, 80(3): 524-527.
    [7] E. L. Clark, K.Krushelnick, J.R.Davies, et al. Measurement of energetic proton transport through magnetized plasma from intense laser interactions with solids[J].Phys. Rev. Lett, 2000, 84(4): 670-673.
    [8] H. Ruhl, Y. Sentoku, K. Mima, et al. Collimated electron jets by intense laser-beam-plasma surface interaction under oblique incidence[J]. Phys. Rev. Lett, 1999, 82(4): 743-746.
    [9] J. Fuchs, G. Malka, J. C. Adam, et al. Dynamics of subpicosecond relativistic laser pulse self channeling in an underdense preformed plasma[J]. Phys Rev Lett, 1998,80(8):1658-1661.
    [10] R. N. Sudan. Mechanism for the Generation of 10~9G Magnetic Fields in the Interaction of Ultraintense Short Laser Pulse with an Overdense Plasma Target[J].Phys. Rev. Lett, 1993, 70(20): 3075-3078.
    [11] 苍宇、王微、张杰,对超短脉冲激光与固体密度等离子体相互作用动力学过程的研究[J].物理学报,2001,50(9):1742-1745.
    [12] D. Giulietti, M.Galimverti, A.Giulietti, et al., High-energy electron beam production by femtosecond laser interations with exploding-foil plasmas[J]. Phys. Rev. E,2001, 64: 015402-1~015402-4.
    [13] S. V. Bulanov, T. Zh.Esirkepov, N. M. Naumova, et al. Solitonlike electromagnetic waves behind a superintense laser pulse in a plasma[J].Phys Rev Lett, 1999,82(17): 3440-3443.
    [14] D. Farina, S. V. Bulanov. Relativistic electromagnetic slitons in the electron-ion plasma[J]. Phys Rev Lett, 2001,86(23): 5289-5292.
    [15] N. M. Naumova, S. V. Bulanov, T. Zh.Esirkepov, et al. Formation of electromagnetic postsolitons in plasmas[J]. Phys Rev Lett, 2001,87(18):5004-1~5004-4.
    [16] A. Pukhov, J. Meyer-Ter-Vehn. Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation[J]. Phys Rev Lett, 1996,76(21): 3975-3978.
    [17] E. L. Clark, K.Krushelnick, J.R.Davies, et al. Measurement of energetic proton transport through magnetized plasma from intense laser interactions with solids[J].Phys. Rev. Lett, 2000, 84(4) 670-673.
    [18] H. Ruhl, Y. Sentoku, K. Mima, et al. Collimated electron jets by intense laser-beam-plasma
    
    surface interaction under oblique incidence[J]. Phys. Rev. Lett, 1999, 82(4): 743-746.
    [19] M. Borghesi, A. J. Mackinnon. R. Gaillard,et al. Large Quasistatic Magnetic Fields Generated by a Relativistically Intense Laser Pulse Propagating in a Preionized Plasma[J] Phys. Rev. Lett, 1998, 80(23): 5137-5140.
    [20] Y. Sentoku, T. Zh.Esirkepov, K. Mima. et al. Bursts of superreflected laser light from inhomogene-ous plasmas due to the generation of relativistic solitary waves[J]. Phys Rev Lett, 1999,83(17): 3434-3437.
    [21] J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys. Plasmas, 1995, 2(11):3933-4024.
    [22] L.Gremillet, F. Amiranoff, S. D. Baton, et.al. Time-Resolved Observation of Ultrahigh Intensity Laser-Produced Electron Jets Propagating through Transparent Solid Targets[J] Phys Rev Lett., 1999, 83: 5015-5018.
    [23] Wei Yu, Z. M. Sheng, M. Y. Yu, et,al. Model for transmission of ultrastrong laser pulses through thin foil targets[J]. Phys Rev E., 1999, 59: 3583-3587.
    [24] W. B. Mori, C. D. Deker, D. E. Hinkel, et.al. Raman Forward Scattering of Short-Pulse High-Intensity Lasers[J]. Phys Rev Lett., 1994. 72:1482-1485.
    [25] T. M. Antonsen, Jr. and P. Mora, Self-Focusing and Raman Scattering of Laser Pulses in Tenuous Plasmas[J]. Phys Rev Lett., 1992, 69: 2204-2207.
    [26] William L.Kruer, The Physics of Laser Plasma Interactions[M], Addison-Wesley, 1988
    [27] 徐家鸾,金尚宪,等离子体物理学[M],原子能出版社,1981。
    [28] 杜世刚.等离子体物理[M].北京:原子能出版社,1998.
    [29] 常铁强等.激光等离子体相互作用与激光聚变[M].长沙:湖南科技出版社,1991.
    [30] 李玉同,张杰,陈黎明,等.对飞秒激光等离子体中成丝现象的研究[J].物理学报,2001,50(2):204-207.
    [31] A. Rubenchik and S. Witkowski, Physics of Laser Plasma[M] Elsevier Science, Netherlands, 1991.
    [32] Hu YeMin and Hu XiWei, Parametric processes of a strong laser in partially ionized plasma[J]. Phys Rev E., 2003, 67: 036402-1~036402-9.
    [33] R Sprangle. E. Esarey and J. Krall, Self-guiding and stability of intense optical beams in gases undergoing ionization[J]. Phys Rev E., 1996,54: 4211-4232.
    [34] P. Sprangle. E. Esarey and B. Hafizi, Propagation and stability of intense laser pulses in partially stripped plasmas[J]. Phys Rev E., 1997, 56: 5894-5907.
    [35] P. Sprangle. E. Esarey and B. Hafizi, Intense Laser Pulse Propagation and Stability in Partially Stripped Plasmas[J]. Phys Rev Lett.. 1997, 79: 1046-1049.
    [36] Esarey Eric. Self-Focusing and Guiding of Short Laser Pulses in Ionizing Gases and Plasmas [J]. IEEE Journal of Quantum electronics, 1997, 33 (11):1879-1914.
    [37] Peter M.Banks, George J. Lewak. Ion Velocity Distributions in a partially Ionized plasma[J]. Phys. Fluids, 1968, 11(4): 804-810.
    [38] P. Helander, S. L. Krasheninnikov, P. J. cairo. Fluid equations for a partially ionized plasma[J]. Phys. Plasmas. 1994, 1(10): 3174-3180.
    [39] Th. Ohde, M. Bonitz, Th. Bornath, and D. Kremp, Two-temperature relaxation in nonideal partially ionized plasmas[J]. Phys. Plasmas. 1996, 3(4): 1241-1249.
    
    
    [40] W. Daughton, Peter J. Catto, B. Coppi, et.al. Interchange instabilities in a partially ionized plasma [J]. Phys. Plasmas. 1998, 5(6): 2217-2231.
    [41] P. Sprangle and B. Hafizi. Guiding and stability of short laser pulses in partially stripped ionizing plasmas[J]. Phys. Plasmas. 1999, 6(5): 1683-1689.
    [42] Forrest J. Rogers. Ionization equilibrium and equation of state in strongly coupled plasmas[J]. Phys. Plasmas. 2000, 7(1): 51-58.
    [43] S. Mondal, Susmita Sarkar, A. M. Basu, et.al. A theory for Landau damping of ion acoustic waves in dope plasma[J]. Phys. Plasmas. 2001, 8(3): 713-718.
    [44] R. A. Nemirovsky, D. R. Fredkin, and A. Ron. Hydrodynamic flow of ions and atoms in partially ionized plasmas[J]. Phys. Rev. E. 2002.66:066405-1~066405-4.
    [45] C. E. Max, J. Aron, and A. B. Langdon, Self-Modulation and Self-Focusing of Electromagnetic Waves in Plasmas[J]. Phys. Rev. Lett. 1974, 33: 209-212.
    [46] N. M. Nanmova, S. V. Bulanov, T. Zh.Esirkepov, et al. Formation of electromagnetic postsolitons in plasmas[J]. Phys Rev Lett, 2001,87:185004-1~185004-4.
    [47] W. B. Mori, C. Joshi, J. M. Dawson, et al. Evolution of self-focusing of intense electromagnetic waves in plasma[J].Phys Rev Lett. 1988,60(13):1298-1301.
    [48] S. V. Bulanov, F. Pegoraro, A. M. Pukhov. Two-dimensional regimes of self-focusing, wake field generation, and induced focusing of a short intense laser pulse in an underdense plasma[J]. Phys Rev Lett, 1995,74:710-713.
    [49] B.D. Gnapol, G. Spiga, S. Oggioni. Evalualion of the electric field generated by longitudinal plasma waves[J]. Phys. Fluids B 1989, 1(11): 2149-2152.
    [50] John V. Dicarlo, Mark J.Kushner. Solving the spatially dependent Boltzmanis equation for the electron-velocity distribution using flux corrected transport[J]. 1989, 66(12): 5763-5774.
    [51] Chen X L, Sudan R N. Two dimensional self-focusing of short intense laser pulse in underdense plasma [J]. Phys Fluids B,1993,5 (4): 1336-1348.
    [52] Y. R. Shen, The principles of nonlinear Optics[M]. (Wiley, New York, 1988).
    [53] R. W. Boyd, Nonlinear Optics[M]. (Academic, San Diego, 1993).
    [54] P. E. Young, J. H..Hammer, S. C. Wilks, and W. L. Kruer. Laser beam propagation and channel formation in underdense plasmas[J]. Phys. Plasmas. 1995, 2(7): 2825-2834.
    [55] 张家泰,胡北来,刘松芬,快点火与惯性聚变能[J],激光与光电子学进展,2002,39(9):4-8.
    [56] 张家泰,何斌,贺贤士,常铁强,许林宝,激光聚变快点火机理研究[J].物理学报,2001,50(5):921-925.
    [57] T.-Y. Brian Yang, William L. Kruer, Richard M. More, and A. Bruce Langdon. Absorption of laser light in overdense plasmas by sheath inverse bremsstrahlung[J]. Phys. Plasmas. 1995, 2(8): 2146-3154.
    [58] 赵尚弘,石磊,李玉江,朱蕊频.飞秒激光脉沖在大气中的光丝现象及其应用[J].激光技术,2003,27(3):256-258
    [59] 杨辉,张杰.超短脉冲激光在引导闪电中的应用[J],物理,2001,30(1):18-21
    [60] D. G. Lee, H. T. Kim, K. H. Hong, et.al. Generation of bright low-divergence high-order harmonics in a long gas jet[J]. APPLIED PHYSICS LETTERS, 2002, 81(20): 3726-3728
    
    
    [61] V. P. Krainov. Generation of high-order harmonics in plasmas of multicharged atomic ions producedby an intense laser pulse[J]. Phys. Rev. E. 2003,68:027401-1~027402-4.
    [62] Celso Grebofi, Vipin K. Tripathi. and Hsing-Hen Chen. Harmonic generation In a steep density profile[J]. Phys. Fluids 1983, 26(7):1904-1908
    [63] S. Banerjee, A. R. Valenzuela, R. C. Shah. et.al. High harmonic generation in relativistic laser-plasma interaction[J], Phys. Plasmas. 2002, 9(5): 2393-2398.
    [64] M. Mori, E. Takahashi, and K. Kondo. Image of second harmonic emission generated from ponderomotively excited plasma density gradient[J]. Phys. Plasmas. 2002, 9(6): 2812-2815.
    [65] J. Prager, S. X. Hu, and C. H. Keitel. High-order regime of harmonic generation with two active electrons[J]. Phys. Rev. A. 2001,64:045402-1~045402-3.
    [66] Baifei Shen, Wei Yu, Guihua Zeng, Zhizhan Xu. Relativistic harmonic generation by intense laser in plasmas[J], Phys. Plasmas. 1995, 2(12): 4631-4634.
    [67] R. Ondarza-Rovira, T. J. M. Boyd. Plasma harmonic emission from laser interactions with dense plasma[J], Phys. Plasmas. 2000, 7(5): 1520-1530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700