激光等离子体冲击波的测试和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对激光等离子体冲击波的测试方法和特性进行了研究,对激光支持爆轰波的点燃阈值、激光支持爆轰波的冲量耦合过程及其激光吸收区内气态粒子和离化粒子的组分进行了实验、理论、数值模拟的分析工作。
     提出了一种采用了波长为1064nm的激光作用在铝靶表面,产生的等离子体声波的峰值声压与作用激光功率密度间存在跃变阶段,并进行了理论分析和实验验证,取得了激光支持爆轰波的点燃阈值。针对激光与靶材相互作用过程中存在的冲量传递问题,提出了悬摆法和光电测速法相结合的测量方法,用于激光支持爆轰波对靶冲量耦合作用的实验测试研究。应用该测试方法测量了不同激光功率密度下的激光支持爆轰波对靶产生的冲量,得到了聚焦透镜焦点附近的靶获得的冲量、冲量耦合系数随作用激光功率密度变化的关系,进而根据有关理论对实验测试结果进行了解释。在对激光与靶材相互作用时伴生的纵向稀疏波和横向稀疏波对激光支持爆轰波的影响的基础上,提出了利用稀疏波与冲击波作用时间为时间标度,进而通过数值模拟计算了激光作用于靶的冲量,并将该冲量与实验测试的结果进行了比较。最后根据不同功率密度的激光束作用于靶材时比热比的差异,确定了激光吸收区内气态粒子和离化粒子的组分。
     本文结果对于金属表面处理、激光加工的自动控制、激光推进技术的研究均有一定的参考价值。
Testing methods and properties of the laser plasma shock wave is studied in this paper by analyzing the experimental, data simulation and theoretical result in the lit threshold , the mechanism of action between Laser-Supported Detonation Wave and component of plasma and gas with the variation of laser power density
     Based on the phenomena of laser supported combustion or detonation wave occurs because of the interaction between the high-intensity laser and material, a new method is present for diagnosing the ignition threshold of laser supported detonation wave by measuring the jump of the sound peak pressure of laser-target plasma. The ignition threshold can be obtained by analyzing the jump stage between laser power density and the sound peak pressure of laser-target plasma, which generates on the surface of target due to interaction between Nd: YAG laser whose wavelength is 1064 nanometer and aluminum target. The test results are largely in accord with those form other methods。For solving the impulse coupling between laser and target, a new method of combining pendulum with light electric tachometer was presented, which was adopted in the experiment to measure the impulse of laser supported detonation wave impacting target at a series of laser power density. The target's impulse near the focal spot and the relation between impulse coupling coefficient and the laser power density were obtained. Furthermore, the experimental result was explained base on the relational theory. Considering the two direction influence between rarefaction and shock that include lateral and forward directions in the interaction between laser and target, the time scale of shock and rarefaction is founded. Furthermore, the result from the data simulation, which calculates the impulse on the target, is compared with the experimental result. Finally, the difference of specific heat ratio with variation of laser power density, the component in the shock region can be determined.
     These research results will provide the theoretical, numerical simulation references metal surface treatment and laser propulsion.
引文
1.李维新.一维不定常流与冲击波.第一版.北京:国防工业出版社,2003
    2.孙承纬.激光辐照效应.第一版.北京:国防工业出版社,2002
    3.陆建,倪晓武,贺安之.激光与材料相互作用物理学.第一版.北京:机械工业出版社,1996
    4. N. A. Pirri, Monsler. Propusion by absorption of laser radiation. AIAA Journal, 1974, 12(9):1254-1261
    5. L. N. Myrabo, D. G. Messitt, Franklin. Ground and flight tests of a laser propelled vechicle. AIAA, 98-1001:1-10
    6. C. R. Phipps, J. P. Reilly. Laser launching a 5-kg object into low earth orbit. High-power laser ablation Ⅲ, SPIE, 2000, 4065:502-510
    7.郑志远,张翼,吴秀文,鲁欣,李玉同,张杰.激光等离子体推进技术研究新进展.2007,36 (3):236-240
    8. Leik N. Myrabo. World Record Flights of Beam-Riding Rocket Lightcraft: Demostration of "Disruptive" Propulsion technology. AIAA 2001-3798
    9. C. R. Phipps, J. Luke, J. Marquis. Diode Laser-Based Microthrusters: A New Departure in High I_(sp), Long-Life Engines. AIAA 2000-3477
    10. Yuri S. Protasov, Yuri Yu. Protasov, Victor D. Telekh. Laser Propulsion: Radiative Gasdynamic and thermophysical interchamber process of double-stage laser rocket thruster. I. AIAA 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000-3485
    11. A. Sasoh. In-Tube Laser Propulsion. 31st AIAA Plasmadynamics and Lasers Conference. AIAA 2000-2344
    12. Akihiro Sasoh, Maxim Kister, Naohide Urabe, Kazuyoshi Takayama. LITA Operation under Elevated Pressures. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA 2001-3666
    13. Jonathan E. Jones, Ten-See Wang. Time Dependent Measurement of Electron Temperature and Density in a laser Lightcraft. 37th Propulsion Conference. AIAA 2001-3796
    14. Kouichi Mori, Kimiya Komurasaki, Hiroshi Katsurayama, Yoshihiro Arakawa. A Fae-field repetitive pulse laser thruster. AIAA 2001-0649
    15. A. V. Pakhomov, M. S. Thompson, D. A. Gregory, W. Swift, Jr. Specific Impulse Study of Ablative Laser Propulsion. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 2001-3663
    16. K. Toyoda, K. Komurasaki, Y. Arakawa. Thrust Performance of a CW laser thruster in Vacuum. Vacuum 65 (2002): 383-388
    17. Shigeaki Uchida, Kazuhisa Hashimoto, Kazuhisa Fujita, Masayuki Niino, Takashi Ashizuka, Nobuki Kawasahima. Comparison of Surface and Internal Laser Irradiation of Solid Propellant for Propulsion. 33rd Plasmadynamics and Lasers Conference. AIAA 2002-2155
    18. Akihiro Sasoh, Naohide Urabe, Sukyum Kim. Laser-Driven In-Tube Accelerator Operation using Monoatomic Gases. 33rd Plasmadynamics and Lasers Conference. AIAA 2002-2201
    19. Koichi Mori, Hiroshi Katsurayama, Yasuro Hirooka, Kimiya Komurasaki, Yoshihiro Arakawa. An experimental study on the energy balance in the repetitive pulsed laser propulsion. 41st Aerospace Sciences Meeting and Exhibit. AIAA 2003-496
    20. M. A. Libeau. Experimental Measurements of the Laser-Induced Reaction on a Lightcraft Engine. 41 st Aerospace Sciences Meeting and Exhibit. AIAA 2003-300
    21. Akihiro Sasoh, Xilong Yu, Toshiro Ohtani, Toshihiro Ogawa, Takehiro Kawahara. Laser Impulse Generation in Flight. 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004-650
    22. Andrew V. Pakhomov, Jun Lin. Specific impulse of ablative laser propulsion. 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004-651
    23. S. T. Surzhikov. Radiative Gas Dynamics of Laser Propulsion Thruster Nozzles. 30th Plasma Dynamics and Lasers Conference. AIAA 99-3550
    24. Jun-Sik Pang, In-Seuck Jeung, Jeong-Yeoi Choi. A Numerical Study on Laser-Driven Ram Accelerator. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. AIAA 2000-3491
    25. Ten-See Wang, Yen-Sen Chen, Jiwen Liu, Leik N. Myrabo, Franklin B. Mead, Jr. Performance Modeling of Experimental Laser Lightcrafts. 31st AIAA Plasmadynamics and Lasers Conference. AIAA 2000-2347
    26. Ten-See Wang, Yen-Sen Chen, Jiwen Liu, Leik N. Myrabo, Franklin B. Mead, Jr. Advanced Performance Modeling of Experimental Laser Lightcrafts. 39th AIAA Aerospace Sciences Meeting & Exhibit. AIAA 2001-0648
    27. Ten-See Wang, Yen-Sen Chen, Jiwen Liu, Leik N. Myrabo, Analysis of the Effect of Pulse Width on Laser Lightcraft Performance. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 2001-3664
    28. P. Molina-Morales, K. Toyoda, K. Komurasaki, Y. Arakawa. CFD Simulation of a 2-KW Class Thruster. AIAA 2001-0650
    29. Jeong-Yeol Choi, Akihiro Sasoh, In-Seuck Jeung, Su-Kyum Kim, Hyuk-Jin Cho. Numerical and experimental stusies of Laser-Driven Ram Accelerator. AIAA 2001-3924
    30. Hiroshi Katsurayama, Kimiya Komurasaki, Yoshihiro Arakawa. Numerical Analyses on Pressure Wave Propagation in Repetitive Pulse Laser Propulsion. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA 2001-3665
    31. Hiroshi Katsurayama, Kimiya Komurasaki, Yoshihiro Arakawa. Computational Performance Estimation of Laser Ramjet Vehicle. 38th AIAA/ASME/SAE/ASEE joint Propulsion Conference & Exhibit. AIAA 2002-3778
    32. Hiroshi Katsurayama, Yasuro Hirooka, Kimiya Komurasaki, Yoshibiro Arakawa. Feasibility study of a laser ramjet single-stage-to-orbit vehicle. 41st Aerospace Sciences Meeting & exhibit. AIAA 2003-497
    33. Kimiya Komurasaki, Yoshihiro Arakawa, Satoshi Hosoda, Hirodhi Katsurayama, Koichi Mori. Fundamental Researches on Laser Powered Propulsion. 33rd Plasmadynamics and Lasers Conference. AIAA 2002-2200
    34. Jeong-Yeol Choi, Akihiro Sasoh, In-Seuck Jeung, Naohire Urabe, Harald Kleine, Kazuyoshi Takayama. Numerical Study of Laser-Induced Pulsed Airbreathing Propulsion. 33rd Plasmadynamics and Lasers Conference. AIAA 2002-2202
    35. Y. Hirooka, H. Katsurayama, K. Mori, K. Komurasaki, Y. Arakawa. Computational Analysis on Nozzle Performance of a RP Laser Thruster. 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004-653
    36. C. W. Larson, F. B. Mead, Jr. Energy Conversion in Laser Propulsion. 39th AIAA Aerospace Sciences Meeting & Exhibit. AIAA 2001-0646
    37. C. W. Larson, F. B. Mead, Jr. Energy Conversion in Laser Propulsion Ⅱ. 40th AIAA Aerospace Sciences Meeting & Exhibit. AIAA 2002-0632
    38. M. A. ibeau, L. N. Myrabo, M. Filippelli, Joe Mcinerney. Combined theoretical and experimental flight dynamics investigation of a laser-propelled vehicle. 38th AIAA/ASME/SAE/ASEE joint Propulsion Conference & Exhibit. AIAA 2002-3781
    39. C. W. Larson, Franklin B. Mead, Jr., Sean D. Knecht. Benefit of Constant Momentum Propulsion for Larger △ V Mission-Application in Laser Propulsion. 42nd Aerospace Sciences Meeting and Exhibit. AIAA 2004-0649
    40.辜建辉,徐启阳,李再光,陈殊殊.激光推进原理与技术.推进技术.1995,16(2):80-84
    41.许德胜,郭振华,S.Messaoud,辜建辉.论光动力飞行器.激光技术.1999,23(2):86-90
    42.郑立铭,朱定强,徐旭,蔡国飙.激光推进火箭发动机吸收室的数值模拟.推进技术.2002.23(5):387-390
    43.龚平,唐志平.大气呼吸模式激光推进的机理分析和数值模拟.爆炸与冲击.2003.23(6):501-508
    44.王海兴,陈熙.激光推进的初步数值模拟研究.工程热物理学报.2004.25:83-86
    45.童慧峰,唐志平,胡晓军,龚平,李静,蔡建,王声波,林丽耘.“烧蚀模式”激光推进的实验 研究.强激光与粒子束.2004.16(11):1380-1384
    46.唐志平,龚平,胡晓军,蔡健,谭荣清,吕岩.大气吸气模式激光推进的实验研究.航空学报.2005.26(1):13-17
    47.翟冰洁,左都罗,卢宏,程祖海.空气呼吸模式激光推进实验研究.光学与光电技术.2005.3(1):14-17
    48.郑义军,龚平,谭荣清,唐志平,柯常军,蔡建等.TEA CO_2激光推进耦合系数的实验研究.光电子激光.2005.16(5):624-628
    49.郑义军,龚平,谭荣清,唐志平,柯常军,蔡建等.大气模式激光推进耦合系数的实验研究.中国激光.2005.32(7):889-893
    50.郑义军,谭荣清,张阔海,郑光,柯常军,万重怡等.激光推进自由飞行实验.中国激光.2006.33(2):171-174
    51.郑义军,谭荣清,王东蕾,郑光,柯常军,张阔海等.激光脉冲重复频率对冲量耦合系数的影响.强激光与粒子束.2005.17(7):979-982
    52.伍贤欣,程谋森,廖育荣.微型卫星激光推进发射概念与影响因素研究.装备指挥技术学院学报.2006.17(3):59-63
    53.姚宏林,窦志国,王军,文明,王鹏等.重复脉冲激光推进工质推进性能与入射激光参数关系.装备指挥技术学院学报.2006.17(6):104-108
    54.李俊美,洪延姬,文明,姚宏林.激光推进中一种光船结构的设计.装备指挥技术学院学报.2002,13(6):97-100
    55.洪延姬,崔村燕,王鹏,李俊美.吸气式激光推进环聚焦光船设计方法.装备指挥技术学院学报.2003,14(2):102-104
    56.李修乾,洪延姬,陈景鹏,崔村燕,何国强.激光推力器液体工质注入系统设计.军械工程学院学报.2006,18(1):1-4,8
    57.文明,洪延姬,金星,王军.三次反射激光聚焦系统的设计与实现.激光与光电子学进展.2006,43(11):49-52
    58. Kennedy P K, Hammer D X, Rockwell B A. Laser-induced breakdown in aqueous media. Prog. Quant. Electron. 1997, 21:155-248
    59. Rayleigh Lord. On the pressure developed in liquid during the collapse of a spherical cavity. Philos. Mag. 1917, 34:94-98
    60. Plesset M S. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 16:227-290
    61. Noltingk B K, Neppiras E A. Cavitation produced by ultrasonics. Proc. Phys. Soc. London B 1950; 63: 674~685
    62. Poritsky H. The collapse or growth a spherical bubble or cavity in a viscous fluid. Proc, First Nat. Cong. In Appl. Mech. 1952, 813~821
    63. Gilmore F R. The collapse and growth of a spherical bubble in a viscous compressible liquid. Calif. Inst. Of Tech. Hydrodynamics Lab. Rep. No.26-4, 1952
    64. Kirkwood J G., Bethe H A. The pressure wave produced by an underwater, explosion. OSRD Rep. 588, 1942
    65. Boguslavskii Y Y, Loffe A I, Naugol'nykh K A. Sound radiation by a cavitation zone. Soy. Phy.-Acoustics 1970, 16:17~20
    66. Sochard S, Wilhelm A M, Delmas H. Modeling of free radicals production in a collapsing gas-vapor bubble. Ultrasonics. 1997, 4:77-84
    67. Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W. Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids. 2001, 13(10):2805~2819
    68. Herring C. Theory of the pulsation of the gas bubble produced by an underwater explosion. Columbia Unversity. NDRC, C-4-sr10-010, 1941
    69. Trilling L. The collapse and rebound of a gas bubble. J. Appl. Phys. 1952, 23
    70. Mellen R H. An experimental study of the collapse of a spherical bubble in a viscous compressible liquid. Calif. Inst. Of Tech. Hydrodynamics Lab. Rep. No. 26-4, 1952
    71. Flynn H G. Collapse of a transient cavity in a compressible liquid part 1, an approximate solution. Harvard Acoustic Res. Lab. TM-38, 1957
    72. Benjamin T B. Pressure waves from collapsing cavities. Proc. Second Symp. On Naval Hydrodyn, Washington D. C. ONR/ACR-38, 1958
    73. Hunter C. On the collapse of an empty cavity in water. J. Fluid Mech. 1960, 8:241-245
    74. Tomita Y, Shima A. On the behavior of a spherical bubble and the impulse pressure in a viscous compressive liquid, Bulletin of the JSME. 1981, 20-149:1453-1460
    75. Lastman G J, Wentzell R A. Equation of radial motion of a cavitating spherical bubble in an inviscid compressible liquid with variable speed of sound. Acustica, 1981, 49:120-123
    76.黄景泉.气核成分及其对空化现象的影响.水动力学研究与进展A.1992,7(2):138~140
    77.黄景泉,韩成才.气核尺度对空化现象的影响.应用数学和力学.1992,13(4):341~348
    78.黄景泉.物体运动速度对空化噪声的影响.应用数学和力学.1993,14(11):967~970
    79.黄继汤,田立言.液体粘性对空泡收缩及膨胀的影响.水利学报.1988,12:15~18
    80.黄继汤,陈嘉范,丁彤,田立言.表面张力对单空泡运动特性的影响.水利学报.1996,12:1~7
    81. Gregg D W, Thomas S J. Momentum transfer and plasma formation above a surface with a high-power CO_2 laser. J. Appl. Phys. 1966, 37(7): 2787-2789
    82. Pirri A N et al. Momentum transfer and plasma formation above a surface with a high-power CO_2 laser. Appl. Phys. Lett. 1972, 21(3): 79-81
    83. L. R. Hettche, J. T. Schriempf, R. L. Stegman. Impulse reaction resulting from the in-air irradiation of aluminum by a pulsed CO_2 laser. J. Appl. Phys. 1973, 44 (9): 4079-4085
    84. S. Marcus, J. E. Lowder. Impulse loading of targets by HF laser pulses. J. Appl. Phys. 1975, 46 (5): 2293-2294
    85. S. A. Metz et al. Effect of beam intensity on target response to high-intensity pulsed CO_2 laser radiation. J. Appl. Phys. 1975, 46 (4): 1634-1642
    86. L. R. Hettche et al. Mechanical response and thermal couPling of metallic targets to high-intensity 1.06μm laser radiation. J. Appl. Phys. 1976, 47 (4): 1415-1421
    87. B. S. Holmes, D. C. Ehich. Surface pressures from laser-supported detonations. J. Appl. Phys. 1977, 48 (6): 2396-2403
    88. C. Duzy, J. A. Woodroffe, J. C. Hsia, A. Ballantyne. Interaction of a pulsed XeF laser with an. aluminum surface. Appl. Phys. Lett., 1980, 37(6): 542-544
    89. D. I. Rosen, J. Mitteldorf, G. Kothandaraman, A. N. Pirri, E. R. Pugh. Coupling of pulsed 0.35-μm laser radiation to aluminum alloys [J]. J. Appl. Phys., 1982, 53(4): 3190-3200
    90. M. Bass, M. A. Nassar, R. T. Swimm. Impulse coupling to aluminum resulting from Nd: glass laser irradiation induced material removal [J]. J. Appl. Phys., 1987, 61(3): 1137-1144
    91. C. R. Phipps, T. P. Turner, R. F. Harrison, et al. Impulse coupling to targets in vacuum by KrF, HF and CO_2 single-pulse lasers [J]. J. Appl. Phys., 1988, 64(3): 1083-1096
    92. P. Bickel, H. Arenz, J. Christiansen, E. Eberl, M. Kauf. Spatially and temporally resolved study of laser induced absorption waves produced by a 5μs/1J TE-CO_2 laser. SPIE, 1994, Vol 2207:501-512
    93. M. F. Kanevskii, M. A. Stepanova. Multidimensional phenomena in laser produced plasma. SPIE, 1994, Vol. 2119:92-103
    94. Vladimir D. Zvorykin. Comparative analysis of gasdynamic regimes of high-power UV and IR gas lasers interactions with solids in atmosphere [J]. SPIE, 2000, Vol. 4065:128-139
    95. O. A. Bukin, A. A. Il'in, S. S. Golik, V. I. Tsarev. Investigation of stark shift and shock waves parameters relationships in laser plasmas generated on the surfaces of solid targets. SPIE, 2002, Vol. 4748:184-190
    96. W. O. Schall, H. -A. Eckel, W. Mayerhofer, W. Riede, E. Zeyfang. Comparative lightcraft impulse measurements. Proceedings of SPIE, 2002, Vol. 4760:908-917
    97. W. O. Schall, H. -A. Eckel, W. Riede. Laser propulsion experiments with high-power pulsed CO_2-laser. Proceedings of SPIE. 2003, Vol. 5120:618-622
    98.徐建波,林俊德,刘晋.气压对脉冲激光冲量耦合系数的影响.爆炸与冲击,2002,22(3):285-288
    99. F. Cottet, J. P. Romain. Formation and Decay of Laser-generated shock Waves. Physics Review A. 1982, 25 (1): 576-579
    100. A. Leob, S. Elizer. An analytical model for creation and decay of strong shock waves caused by a trapezoidal laser pulse. Phys. Fluids. 1985, 28 (4): 1196-1201
    101. M. Boustie, F. Cottet. Experimental and Numerical study of laser induced spallation into aluminum and copper targets. J. Appl. Phys. 1991, 69 (11): 7533-7538
    102.袁钢,周光泉,唐志平,李欣增.高压短脉冲激波的传播及衰减.爆炸与冲击.1992,12(4):307-312
    103.蔡宗良,张建泉,刘峰,强希文.脉冲激光产生的激波在靶材中的传播过程.1997,14(4-5):426-428
    104.强希文,张建泉,李邦固,刘峰.高功率脉冲激光产生的激波在靶材中的传播.红外与激光工程.2000,29(2):41-45,50
    105. Y. Fan, Y, Wang, S. Vukelic, Y. L. Yao. Wave-solid interactions in laser-shock-induced deformation process. J. Appl. Phys. 2005, 98 (10): 104904-1-014904-11
    106. Yong-kang Zhang Yongyu Gu, Xingquan Zhang, Jianguo Shi, Jun Zhou. Study of the mechanism of overlays acting on laser shock waves.
    107. NI xiao wu, Lu jian et al. Study of the attenuation of laser-induced plasma shock wave[J], International Journal Optoelectronics, 1998, 12(2): 37~39
    108.陆建,倪晓武等.激光与材料相互作用[M].北京:机械工业出版社,1996,111~134
    109. MAHER W. E. et al. Experimental study of ignition and propagation of laser-supported detonation waves [J]. J. Appl. phys., 1974, 45(5):2138~2145.
    110. R. B HALL et al. An interfermetric investigation of laser-supported absorption waves [J]. J. Appl. Phys., 1975, 46(2): 761~772.
    111. NI xiao wu, Lu jian, He an zhi. Investigation of ignition and propagation features of laser-supported—detonation wave using interference pattern[J]. Laser Technology, 1996, 20 (2):74~77
    112. KOICHI MORI and KIMIYA KOMURASAKI, et al. Influence of the focusing f number on the heating regime transition in laser absorption waves [J]. J. Appl. Phys., 2002, 92(10): 5563~5567
    113. T. Yabe, C. Phipple, K. Aoki, M. Yamaguchi, R. Nakagawa, et al. Laser-derived vehicles-from inner-space to outer-space [J]. Appl. Phys. A, 2003, 77, 243~249
    114. Lu jian, Ni xiao wu, Shen zhong hua. Physics mechanisms of Ignition of a High-power laser supported detonation wave[C]. SPIE, 1997, Vol.3173: 168~172
    115. Zhang Yu lian, Lin yu wang et al. explode gas dynamics foundation, [M]. Beijing: Beijing Industry Institute Publishing House, 1986, 317~319 (in Chinese)
    116. Pakhomov AV, Thompson MS, Swift W, Gregory DA, Ablative laser propulsion: Specific impulse and thrust derived from force measurements [J]. AIAA Journal, 2002, 40(11):2305~2311
    117. T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, et al., Laser-drived vehicles-from inner-space to outer-space[J], [J]. Appl Phys A, 2003, 77:243~249
    118. J. F. Ready et al., Development of plume of material vaporized by giant-pulse laserR[J], Appl. Phys. Lett., 1963, 3:11~13
    119. C. Phipps, and J. Luke, "Diode Laser-driven Microthrusters:A New Departure for Micropropulsion," [C]AIAA Journal, 2002, 40(2):310~318
    120.陈贤隆、林祥龙,复摆的空气阻尼修正[M],大学物理,1991,10(12):24~25.
    121. Xi-jie Cai et al., Impulse coupling to AL-target by 1.06μm and 0.53μm laser[C]. SPIE, 1992, pp.100
    122. L. N. Myrabo, D. G. Messitt and F. B. Mead JR, et al. "Ground and Flight Tests of a Laser Propelled Vehicle" [A]. AIAA Paper. Aerospace Sciences Meeting & Exhibit[C]. Reno, USA:AIAA Paper, 1998. 12~15
    123. Claude R. Phipps, Seibert. Daniel B., Royse. Robert. W., et al. Very high coupling coefficients at low laser fluence with a structured target[A]. In:Claude R. Phipps. High-Power Laser Ablation Ⅲ[C]. Washington, USA: SPIE—TheInternational Society for Optical Engineering, 2000, Vol. 4065:931~938
    124. Duluo ZUO, Hong Lu, and Zuhai Cheng, et al. Studies on a 100-Joule-Class UV-Preionized tea CO2 laser[A]. In:Jarmila Kodymova. Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers [C]. Washington, USA: SPIE—TheInternational Society for Optical Engineering, 2005, Vol.5777:442~445
    125. Willy L Bohn, Wolfgang O Schall. Laser propulsion activities in germany[A]. In: Pakhomov, Andrew V. The First Intenrational Symposium on Beamed Energy propulsion [C]. Alabama, USA: American Institute of Physics, 2003, Vol 664: 79~91.
    126. Phipps C. R., Reilly J. P. Laser launching a 5kg object into low earth orbit[A]. Proc of SPIE[C]. Washington, USA: SPIE—TheInternational Society for Optical Engineering, 2000, Vol 4065:502~510
    127.陈贤隆、林祥龙.复摆的空气阻尼修正[J].大学物理,1991,10(12):24~25,35
    128. Cai Xi-Jie, Wang Hai-Yu, Mao Jiao-Hua, et al. Impulse coupling to L-target by 1.06μm and 0.53μm laser[A]. In:ZhiJiang Wang, Zhizhan Xu. International Symposium on Laser-Plasma Interactions[C]. Washington, USA: SPIE—TheInternational Society for Optical Engineering, 1992, Vol 1928: 100~102.
    129. Man Baoyuan, et al., Emission spectra produced by laser ablation of metal Al at different ambient pressures. Chinese Sci. Bull[J]., 1997, 42(13): 1139~1142
    130. S. Marcus et al., Impulsive loading of targets by HF laser pulses. Journal of applied physics[J], 1975, Vol 46(5):2293~2293
    131. W. O. Schall et al, Laser propulsion experiments with high-power pulsed CO_2 laser[C]. SPIE, 2003, Vol.5120:618~622
    132. Cheng-Wei Sun et al., Laser induced pressure and impulse on a solid surface in air[C]. AIAA 24th Plasma dynamics & Lasers Conference, 1993, AIAA93-3024: (1~5)
    133.朱自强,应用计算流体力学[M],北京:北京航空航天大学出版社,1998,27
    134. Xi-jie Cai et al., Impulse coupling to Al-target by 1.06μm and 0.53μm laser[C]. SPIE, 1992, 1928: 100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700