用户名: 密码: 验证码:
质子交换膜燃料电池膜电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池采用贵金属铂作催化剂,高昂的成本限制了它的产业化应用。本文以质子交换膜燃料电池的核心组件——膜电极作为研究对象,研究了燃料电池单体制备、操作过程等影响因素。通过对膜电极的三个主要组成部分:质子交换膜、气体扩散层和催化层的深入研究,提出了双催化层结构的电极,降低了贵金属铂的用量,同时提高了燃料电池的性能。
     膜电极的电化学性能采用极化曲线进行了表征,并采用非线性最小二乘法对部分数据进行拟合及分析;操作条件及材料对膜电极性能的影响采用交流阻抗谱表征,并对实验数据进行拟合及分析,实验研究了采用PTFE和Nafion作为粘结剂的催化层性能,并用扫描电镜观察膜电极(包括支撑层、微多孔层和催化层)的微观形貌并进行分析。
     对膜电极的制备及操作过程条件进行了研究。研究表明,在130℃和8MPa的条件下,热压120s后得到的膜电极内阻降低到0.4??cm-2。单体运行的装配力矩在3N?m为宜。在1atm下和运行温度低于65℃时,反应气体利用率随流量的增加而降低,随温度升高而升高;运行温度超过65℃时,氧气的利用率降低。考虑温度与电池内阻的关系,电池操作温度选择65℃为宜。膜电极在常压下的活化时,温度为50℃时采用变电流活化,活化10h后的性能稳定。
     对膜的组件的三个组成部分进行研究表明:质子交换膜厚度越薄,反应过程中产生质子经过膜的传递阻力越小。在实验温度范围内,不同厚度膜制备的膜电极质子传递能力,都随温度升高而提高。气体扩散层包括支撑层和微多孔层,支撑层厚度降低有利于气体传质。微多孔层采用碳材料XC-72和20wt.%的PTFE的混合物,其载量为2mg·cm-2时,膜电极性能达到0.35W·cm-2。当微多孔层的碳材料采用炭黑XC-72时,气体传质阻力小,在电化学极化区性能较好;采用炭黑BP2000时,液体传质阻力小,在浓差极化区性能较好;两种炭黑混合制备气体扩散层,由于大孔和小孔数目的减少,膜电极性能下降。催化层的制备过程中,喷涂法制备催化层的性能好于丝网印刷。当憎水电极的催化层PTFE含量为25wt.%,Nafion溶液的载量为1.5mg·cm-2时,制备膜电极的性能最好。当亲水型电极的催化层Nafion含量为30wt.%、催化剂载量为0.2mg·cm-2的膜电极性能达到0.5W·cm-2。催化层只采用PTFE或者Nafion粘合剂,催化层内存在反应活性层和非反应活性层,电化学反应由活性层向非活性层梯度递减。
     提出一种双催化层电极结构,包含内外两个催化层。内催化层是亲水结构,采用Nafion作为粘结剂;外催化层是憎水结构,采用PTFE作为催化剂。内外两催化层的交接处在热压过程中形成一个过渡层,反应集中在过渡层内发生。外催化层中PTFE和内催化层Nafion形成相反的梯度分布,有利于反应进行。铂载量均为0.3mg·cm-2时,电流密度1A·cm-2时,双催化层电极性能比憎水电极和亲水电极分别提高了37.2%和20.4%。采用两组铂载量为0.2mg·cm-2双催化层电极,考察Nafion分布的对膜电极性能影响。提高内催化层的Nafion含量,质子传递阻力降低,膜电极在浓差扩散阶段的性能提高;将内外催化层中间的再铸膜含量降低后,膜电极性能由0.64W·cm-2提高到0.77W·cm-2。在双催化层内外层催化剂载总量相同,改变内外催化层中催化剂的分布比例,得到阴极反应中质子传质阻力要大于气体传质,是氧还原反应的控制步骤。
     本研究将氢氧燃料电池的催化剂铂载量下降到0.2mg·cm-2,膜电极的峰值功率提高到0.7W·cm-2,在降低膜电极制造成本的同时提高了膜电极性能。
The proton exchanged membrane fuel cell (PEMFC) adopts platinum as catalyst, which restricts its commertialization due to high price. In this paper, membrane electrode assembly (MEA), a key component of fuel cell, was investigated on fabrication of electrode and operation. Farther research has been done on MEA, including membrane, gas diffusion layer and catalyst layer. Based on work above, a noval structure of dual-bonded catalyst layer electrode was introduced to enhance the cell performance with low Pt loading.
     Polarization curve was introduced to characterize the cell performance and data was used to fit by non-linear least square. AC impedance was also used to study the effect of opertation conditions on performance of cell. Scanning electron microscope graphs were adapted to investigate MEA, including substrate, gas diffusion layer and catalyst layer.
     Preparation and operation condition of MEA were studied. Resistance of MEA reduced to 40??cm-2 when it was hot-pressed at 130℃under 8MPa for 120 seconds. Torque of fixture was matained 3N?m for cell assemblage. Utilization of reactant gas was increased with temperature and decreased with increasing flow rate under 1atm when temperature was less than 65℃. Utilization of oxygen was reduced when temperature was more than 65℃.Operation temperature of cell should be chosed as 65℃with lowest resistance. Investigating MEA’s activation at ambient pressure, cell showed stable performance when actived with varied current at 50℃after 10h.
     Three part of MEA were investigated and found that high protonic conductivity was conrresponding to thinner membrane. Protonic conductivity of different membrane was increased with high temperature. Gas diffusion layer was comprised of substrate and micro-pouose layer. Thinner substrate was favorable for gas transport. Micro-porous layer of electrode with 2mg·cm-2 cabon black XC-72 containing 20wt.% PTFE provided 0.35W·cm-2. Micro-porous laye formed by XC-72 was favorable for gas transport and showed a better performance in active rigion, whilst it formed by BP2000 was advantage in water drainage and showed a better performance in concertration polarization. Cell performance was poor when two types of carbon mixed to make micro-porous laye because incrased of mass transport resistance. Spray was a better choice to make catalyst layer than print. Hydrophobic catalyst layer containing 35wt.% PTFE and 1.5mg·cm-2 Nafion showed high performance. Hydrophilic catalyst layer containing 30wt.% Nafion and 0.2mg·cm-2 Pt loading showed performance of 0.5W·cm-2. There exsit active layer and inactive layer when PTFE or Nafion was chosed as bonded material for catalyst layer. Electrochemical reaction was decreased from active layer to inactive layer.
     The dual-bonded catalyst layer with inner and outer catalsty layer was designed. Inner catalyst layer was hydrophilic and bonded with Nafion. Outer catalyst layer was hydrophilic and bonded with PTFE. A transition layer formed when two catalyst layers was hot-pressed that main reaction occurs. PTFE of out layer and Nafion of inner layer were distributing in grads for reaction. When electrode with 0.3mg·cm-2 Pt loadings at 1A·cm-2, it was calculated that performance of cathode with dual-bonded catalyst layer offers 37.2% higher than that of hydrophobic cathode and 20.4% higher than that of hydrophilic catalyst layer. Two groups of dual-bonded electrode with 0.3mg·cm-2 Pt loadings were fabricated to investigate Nafion effect on cell performance. Peak power density of electrodes increased from 0.64W·cm-2 to 0.77W·cm-2 at ambient pressure as recast film decrase. The prtonic conductivity affected more on reaction than that of mass transfer when adjust ratio of catalyst layer.
     Catalyst layer was decreased to below 0.2mg·cm-2 Pt loading and the cell performance was increased to above 0.7W·cm-2 when operated in hydrogen and oxygen. Cell performance was increased whilst cost of MEA was reduced.
引文
1 S. Prince-Richard, M. Whale, N. Djilali. A Techno-economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles. Int. J. Hydrogen. Energ. 2005, 30(11):1159~1179
    2 S. H. Wu, D .B. Kotak, M. S. Fleetwood. An Integrated System Framework for Fuel Cell-based Distributed Green Energy Applications. Renew. Energ. 2005, 30(10): 1525~1540
    3 M.Y. El-Sharkh, A. Rahman, M. S. Alam. Evolutionary Programming-based Methodology for Economical Output Power from PEM Fuel Cell for Micro-grid Application. J. Power Sources. 2005, 139(1-2): 165~169
    4 K. Sopian, W. R. W. Daud. Challenges and Future Developments in Proton Exchange Membrane Fuel Cells. Renew. Energ. 2006, 31(5): 719~727
    5 A.Folkessona, C. Anderssonb, P.Alvfors et al. Real Life Testing of a Hybrid PEM Fuel Cell Bus. J. Power Sources. 2003, 118(1-2): 349~357
    6 A. V. W. Possible Fuel Cells Applications for Ships and Submarines. J. Power Sources. 1990, 29(1-2): 181~192
    7 Y. Sohn, G. Park, T. Yang et al. Operating Characteristics of an Air-cooling PEMFC for Portable Applications. J. Power Sources. 2005, 14(2): 604~609
    8 J. D. Holladay, J. S. Wainright, E. O. Jones et al. Power Generation Using a Mesoscale Fuel Cell Integrated with a Microscale Fuel Processor. J. Power Sources. 2004, 130(1-2): 111~118
    9 M. Tanrioven, M. S. Alam. Impact of Load Management on Reliability Assessment of Grid Independent PEM Fuel Cell Power Plants. J. Power Sources. 2006, 157(1): 401~410
    10 K. Subramanyan, U. M. Diwekar, A. Goyal. Multi-objective Optimization for Hybrid Fuel Cells Power System Under Uncertainty. J. Power Sources. 2004, 132(1-2): 99~112
    11 J. M. Moore, J. B. Lakeman, G. O. Mepsted. Development of a PEM Fuel Cell Powered Portable Field Generator for the Dismounted Soldier. J. Power Sources. 2002, 106(1-2): 16~20
    12 V. Mehta, J. S. Cooper. Review and Analysis of PEM Fuel Cell Design and Manufacturing. J. Power Sources. 2003, 114(1): 32~53
    13 W. Feng, S. Wang, W. Ni et al. The Future of Hydrogen Infrastructure for Fuel Cell Vehicles in China and a Case of Application in Beijing. Int. J. Hydrogen. Energ. 2004, 29(4): 355~67
    14 Y. Jia, H. Wangb, M. Ouyang. Electric Power System for a Chinese Fuel Cell City Bus. J. Power Sources. 2006, 155 (2): 319~324
    15 J. V. Mierlo, G. Maggetto, P. Lataire. Which Energy Source for Road Transport in the Future? A Comparison of Battery, Hybrid and Fuel Cell Vehicles. Energ. Convers. Manage. 2006, 47(17): 2748~2760
    16 S. Pischinger, C. Schonfelder, J. Ogrzewalla. Analysis of Dynamic Requirements for Fuel Cell Systems for Vehicle Applications. J. Power Sources. 2006, 154(2): 420~427
    17 J. V. Mierlo, P. V. D. Bossche, Gaston Maggetto. Models of Energy Sources for EV and HEV Fuel Cells, Batteries, Ultracapacitors, Flywheels and Engine-generators. J. Power Sources. 2004, 128(1): 76~89
    18 C. A. Frangopoulos, L. G. Nakos. Development of a Model for Thermo Economic Design and Operation Optimization of a PEM Fuel Cell System. Energy. 2006,31(10-11):1501~1519
    19 P. Thounthong, S. Rael, B. Davat. Control Strategy of Fuel Cell/supercapacitors Hybrid Power Sources for Electric Vehicle. J. Power Sources. 2006, 158(1): 806~814
    20 W. H. Zhu, R. U. Payne, D. R. Cahela et al. Uniformity Analysis at MEA and Stack Levels for a Nexa PEM Fuel Cell System. J. Power Sources. 2004, 128(2): 231~238
    21 D. Yu, S. Yuvarajan. Electronic Circuit Model for Proton Exchange Membrane Fuel Cells. J. Power Sources. 2005, 142(1-2): 238~242
    22 J. Garnier, A. D. Bernardinis, M. C. Pera. Study of a PEFC Power Generator Modular Architecture Based on a Multi-stack Association. J. Power Sources. 2006, 156(1): 108~113
    23 M. H. Saidi, M. A. Ehyaei, A. Abbasi. Optimization of a Combined Heat and Power PEFC by Exergy Analysis. J. Power Sources. 2005, 143(1-2): 179~184
    24 I. Mohamed, N. Jenkins. Proton Exchange Membrane (PEM) Fuel Cell StackConfiguration Using Genetic Algorithms. J. Power Sources. 2004, 131(1-2): 142~146
    25 C. P. Leona, F. C. Walsh, D. Pletcher et al. Direct Borohydride Fuel Cells. J. Power Sources. 2006, 155(2): 172~181
    26 R. C. Dante. Hypotheses for Direct PEM Fuel Cells Applications of Photobioproduced Hydrogen by Chlamydomonas Reinhardtii. Int. J. Hydrogen. Energ. 2005, 30(4): 421~424
    27 M.T. Iqbal. Simulation of a Small Wind Fuel Cell Hybrid Energy System. Renewable Energy. 2003, 28(4): 511~522
    28 M. P. Hekkert, F. Hendriks, A. C. Faaij et al. Natural Gas as an Alternative to Crude Oil in Automotive Fuel Chains Well-to-wheel Analysis and Transition Trategy Development. Energy Policy. 2005, 33(5): 579~594
    29 W. Mitchell, B. J. Bowers, C. Garnier et al. Dynamic Behavior of Gasoline Fuel Cell Electric Vehicles. J. Power Sources. 2006, 154(2): 489~496
    30 K. Adamson. Calculating the Price Trajectory of Adoption of Fuel Cell Vehicles. Int. J. Hydrogen. Energ. 2005, 30 (4): 341~350
    31 R. K. Ahluwalia, X. Wang, A. Rousseau. Fuel Economy of Hybrid Fuel-Cell Vehicles. J. Power Sources. 2005, 152(1-2): 233~244
    32 M. Nadal, F. Barbir. Development of a Hybrid Fuel Cell/battery Powered Electric Vehicle. Int. J. Hydrogen. Energ. 1996, 21(6): 497~505
    33 K. S. Jeong, B. S. Oh. Fuel Economy and Life-cycle Cost Analysis of a Fuel Cell Hybrid Vehicle. J. Power Sources. 2002, 105(1): 58~65
    34 C. E. Borroni-Bird. Fuel Cell Commercialization Issues for Light-duty ehicle Applications. J. Power Sources. 1996, 61(1-2): 33~48
    35 毕道治. 燃料电池的历史、现状和未来. 电池工业. 2002, 5(6): 248~253
    36 S. Srinivasan, E. A. Ticianelli, C. R. Derouin et al. Advances in Solid Polymer Electrolyte Fuel Cell Technology with Low Platinum Loading Electrodes. J. Power Sources. 1988, 22(3-4): 359~315
    37 Z. Lemes, A. Vath, T. Hartkopf et al. Dynamic Fuel Cell Models and Their Application in Hardware in the Loop Simulation. J. Power Sources. 2006, 154(2): 386~393
    38 J. J. Hwang, D.Y. Wang, N.C. Shih. Development of a Lightweight Fuel Cell Vehicle. J. Power Sources. 2005, 141(1): 108~115
    39 S. U. Jeong, E. A. Chob, H. J. Kim et al. Effects of Cathode Open Area and Relative Humidity on the Performance of Air-breathing Polymer Electrolyte Membrane Fuel Cells. J. Power Sources. 2006, 158(1): 348~353
    40 F. Chena, H. Chub, C. Soongc et al. Effective Schemes to Control the Dynamic Behavior of the Water Transport in the Membrane of PEM Fuel Cell. J. Power Sources. 2005, 140(2): 243~249
    41 H. Suna, H. Liua, L. Guo. PEM Fuel Cell Performance and Its Two-phase Mass Transport. J. Power Sources. 2005, 143(1-2): 125~135
    42 S. Litster, G. McLean. PEM Fuel Cell Electrodes. J. Power Sources. 2004, 130(1-2): 61~76
    43 P. Costamagna, S. Srinivasan. Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000. Part I. Fundamental Scientific Aspects. J. Power Sources. 2001, 102(1-2): 242~252
    44 P. Costamagna, S. Srinivasan. Quantum jumps in the PEMFC Science and Technology from the 1960s to the Year 2000. Part II. Engineering, Technology Development and Application Aspects. J. Power Sources. 2001,
    102(1-2): 253~269
    45 M. Wakizoe, O. A. Welev, S. Arinivasan. Analysis of Proton Exchange Membrane Fuel Cell Performance with Alternate Membranes. Elecrochim. Acta. 1995, 40(3): 335~344
    46 E. A. Ticianelli, C. R. Derouin, A. Redondo et al. Methods to Advance Technology of Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 1988, 135(9): 2209~2214
    47 H. Zhong, H. Zhang, G. Liu et al. A Novel Non-noble Electrocatalyst for PEM Fuel Cell Based on Molybdenum Nitride. Electrochem.Commun. 2006, 8(5): 707~712
    48 L. Zhang, J. Zhang, D. P. Wilkinson et al. Progress in Preparation of Non-noble Electrocatalysts for PEM Fuel Cell Reactions. J. Power Sources. 2006, 156(2):171~182
    49 B. Wang. Recent Development of Non-platinum Catalysts for Oxygen Reduction Reaction. J. Power Sources. 2005, 152(1-2): 1~15
    50 L. Y. Liu, J. W. Lee, B. N. Popov. Development of ruthenium-based bimetallic electrocatalysts for oxygen reduction reaction. J. Power Sources.2006, 162(2): 1099~1103
    51 P. Yu, M. Pemberton, P. Plasse. PtCo/C Cathode Catalyst for Improved Durability in PEMFCs. J. Power Sources. 2005, 144(1): 11~20
    52 N. P. Subramanian, S. P. Kumaraguru, H. C. Mercado. Studies on Co-based Catalysts Supported on Modified Carbon Substrates for PEMFC Cathodes. J. Power Sources. 2006, 157(1): 56~63
    53 A. F. Ghenciu. Review of Fuel Processing Catalysts for Hydrogen Production in PEM Fuel Cell Systems. Current Opinion in Solid State and Materials Science. 2002, 6(5): 389~399
    54 H. Sun, G. Zhang, L. J. Guoa et al. A Novel Technique for Measuring Current Distributions in PEM Fuel Cells. J. Power Sources. 2006, 158(1): 326~332
    55 H. Kim, N. P. Subramanian, B. N. Popov. Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition. J. Power Sources. 2004, 138(1-2): 14~24
    56 Y. G. Chun, C. S. Kim, D. H. Peck et al. Performance of a Polymer Electrolyte Membrane Fuel Cell with Thin Film Catalyst Electrodes. J. Power Sources. 1998, 71(1-2):174~178
    57 C. S. Kim, Y. G. Chun, D. H. Peck et al. A Novel Process to Fabricate Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cell. Int. J. Hydrogen. Energy. 1998, 23(11): 1045~1048
    58 T. Frey, M. Linardi. Effects of Membrane Electrode Assembly Preparation on the Polymer Electrolyte Membrane Fuel Cell Performance. Electrochim. Acta. 2004, 50(1): 99~105
    59 G. Bender, T. A. Zawodzinski, A. P. Saab. Fabrication of High Precision PEFC Membrane Electrode Assemblies. J. Power Sources. 2003, 124(1): 114~117
    60 D. E. Curtin, R. D. Lousenberg, T. J. Henry. Advanced Materials for Improved PEMFC Performance and Life. J. Power Sources. 2004, 131(1-2):41~48
    61 M. Ulbricht. Advanced Functional Polymer Membranes. Polymer. 2006, 47(7): 2217~2262
    62 S. Banerjee, D. E. Curtin. Nafion Perfluorinated Membranes in Fuel Cells. J. Fluorine Chemistry. 2004, 125(8): 1211~1216
    63 S. Reichman, T. Duvdevani, A. Aharon. A Novel PTFE-based Proton-conductive Membrane. J. Power Sources. 2006, 153(2): 228~233
    64 R. Blunk, M. Hassan A. Elhamid. Polymeric Composite Bipolar Plates for Vehicle Applications. J. Power Sources. 2006, 156(2): 151~157
    65 X. Li, I. Sabir. Reviewof Bipolar Plates In PEMFuel Cells: Flow-field Fesigns. Int. J. Hydrogen. Energy. 2005, 30(4): 359~371
    66 N. M. Markovic, B. N. Grgur, P .N. Ross. Temperature Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. J. Phys. Chem. B. 1997, 101(21): 5405~5413
    67 M. B. Vukmirovic, J. Zhang, K. Sasaki et al. Performance of Pt–Co/C prepared by the selective deposition of Co on Pt as a cathode in PEMFCs. J. Power Sources. 2006, 163(1):403~408
    68 J. M. Song, S. Y. Cha, W. M. Lee. Optimal Composition of Polymer Electrolyte Fuel Cell Electrodes Determined by the AC Impedance Method. J. Power Sources. 2001, 94(1): 78~84
    69 E. Passalacqua, F. Lufrano, G. Squadrito et al. Infuence of the Structure in Low-Pt loading Electrodes for Polymer Electrolyte Fuel Cells. Electrochim. Acta. 1998, 43(24): 3665~3673
    70 L. R. Jordan, A. K. Shukla, T. Behrsing et al. Diffusion Layer Parameters Influencing Optimal Fuel Cell performance. J. Power Sources. 2000, 86(1): 250~254
    71 E. A. Ticianelli, C. R. Derouin, S. Srinivasan. Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Densities in SPE Fuel Cells. J. Electroanal. Chem. 1988, 251(2):275~295
    72 S. J. Lee, S. Mukerjee, J. McBreen et al. Effects of Nafion Impregnation on Performances of PEMFC Electrodes. Electrochim. Acta. 1998, 43(24): 3693~3701
    73 Y. G. Yoon, T. H. Yang, G. G. Park et al. A Multi-layer Structured Cathode for the PEMFC. J. Power Sources. 2003, 118(1-2): 189~192
    74 H. K. Lee, J. Park, D. Kim et al. A study on the Characteristics of the Diffusion Layer Thickness and Porosity of the PEMFC. J. Power Sources. 2004, 131(1-2): 200~206
    75 Y. G. Yoon, G. G. Park, T. H. Yang et al. Effect of Pore Dtructure of CatalystLayer in a PEMFC on Its Performance. Int. J. Hydrogen. Energy. 2003, 28(6): 657~662
    76 J. Yu, T. Matsuura, Y. Yoshikawa et al. In Situ Analysis of Performance Degradation of a PEMFC Under Nonsaturated Humidification. Electrochem. Solid-State Lett. 2005, 8(3): A156~A158
    77 E. Passalacqua, F. Lufrano, G. Squadrito et al. Nafion Content in the Catalyst Layer of Polymer Electrolyte Fuel Cells: Cffects on Structure and Performance. Electrochim. Acta. 2001, 46(6): 799~805
    78 K. Broka, P. Ekdunge. Oxygen and Hydrogen Permeation Properties and Water Uptake of Nafion 117 Membrane and Recast Film for PEM Fuel Cell. J Appl. Electrochem. 1997, 27(2): 117~124
    79 S. E. Iyuke, A. B. Mohamad, A. A. Kadhum et al. Improved Membrane and Electrode Assemblies for Proton Exchange Membrane Fuel Cells. J. Power Sources. 2003, 114(2):195~202
    80 S. Miachon, P. Aldebert. Internal Hydration H2/O2 100 cm2 Polymer Electrolyte Membrane Fuel Cell. J. Power Sources. 2003, 114 (2): 195~202
    81 X. Du, J. Yu, B. Yi et al. Performances of Proton Exchange Membrane Fuel Cells with Alternate Membranes. Phys. Chem. Phys. 2001, 3(15): 3175~3179
    82 M. S. Wilson, J. A. Valerio, S. Gottjbfeld. Low Platinum Loading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers. Electrochim. Acta. 1995, 40(3): 355~363.
    83 M. S. Wilson, S. Gottesfeld. Thin-film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes. J. Appl. Electrochem. 1992, 22(1): 1~7
    84 M. S. Wilson, S. Gottesfeld. High Performance Catalyzed Membranes of Ultra-low Pt Loading for Polymer Electrolyte Fuel Cell. J. Electrochem. Soc. 1992, 139(2): L28~L30
    85 E. Antolini, L. Giorgi, A. Pozio et al. Influence of Nafion Loading in the Catalyst Layer of Gas-diffusion Electrodes for PEFC. J. Power Sources. 1999, 77(2): 136~142
    86 Z. Qi, A. Kaufman. Low Pt Loading High Performance Cathodes for PEM Fuel Cells. J. Power Sources. 2003, 113(1): 37~43
    87 G. Sasikumar, J. W. Ihm, H. Ryu. Dependence of Optimum Nafion Content in Catalyst Layer on Platinum Loading. J. Power Sources. 2004, 132(1-2)11~17
    88 S. Gamburzev, A. J. Appleby. Recent Progress in Performance Improvement of the Proton Exchange Membrane Fuel Cell (PEMFC). J. Power Sources. 2002, 107(1): 5~12
    89 L. Xiong, A. Manthiram. High Performance Membrane-electrode Assemblies with ultra-low Pt Loading for Proton Exchange Membrane Fuel Cells. Electrochim. Acta. 2005, 50(16-17): 3200~3204
    90 J. Chen, T. Matsuura, M. Hori. Novel Gas Diffusion Layer with Water Management Function for PEMFC. J. Power Sources. 2004, 131(1-2): 155~161
    91 A. Su, F. Weng, C. Y. Hsu et al. Studies on Flooding in PEM Fuel Cell Cathode Channels. Int. J. Hydrogen. Energy. 2006, 31(8): 1031~1039
    92 Z. Qi, A. Kaufman. Improvement of Water Management by a Microporous Sub Layer for PEM Fuel Cells. J. Power Sources. 2002, 109(1): 38~46
    93 H. A. Gasteiger, J. E. Panels, S .G. Yan. Dependence of PEM Fuel Cell Performance on Catalyst Loading. J. Power Sources. 2004, 127(1-2):162~171
    94 H. A. Gasteiger, S. S. Kocha, B. Sompalli et al. Activity Benchmarks and Requirements for Pt, Pt-alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs. Applied Catalysis B. 2005, 56 (1-2.): 9~35
    95 R. C. Dante, J. L. Escamilla, V. Madrigal et al. Fractional Factorial Design of Experiments for PEM Fuel Cell Performances Improvement. Int. J. Hydrogen. Energy. 2003, 28(3): 343~348
    96 M. Hu, S. Sui, X. Zhu et al. A 10 kWclass PEM Fuel Cell Stack Based on the Catalyst-coated Membrane (CCM) Method. Int. J. Hydrogen Energy. 2006, 31(8): 1010~1018
    97 M. Prasanna, H. Y. Ha, E. A. Cho et al. Investigation of Oxygen Gain in Polymer Electrolyte Membrane Fuel Cells. J. Power Sources. 2004, 137(1): 1~8
    98 Z. Xu, Z. Qi, Arthur Kaufman. Modification and Improvement of Proton-Exchange Membrane Fuel Cells via Treatment Using Peracetic Acid. J. Power Sources. 2003, 115(1): 49~53
    99 S. Kundu, M. W. Fowler, L. C. Simon. Morphological Features (defects) in Fuel Cell Membrane Electrode Assemblies. J. Power Sources. 2006, 157(2): 650~656
    100 C. H. Hsu, C. C. Wan. An Innovative Process for PEMFC Electrodes Using the Expansion of Nafion Film. J. Power Sources. 2003, 115(2): 268~273
    101 G. A. Hards, T. R. Rulph. Porous electrode for electrode assemblies in a fuel cell[P]. US:5501915
    102 E. Gulzow, M. Schulze, N. Wagner et al. Dry Layer Preparation and Characterisation of Polymer Electrolyte Fuel Cell Components. J. Power Sources. 2000, 86(1-2): 352~362
    103 E. Gulzow, T. Kaz, R. Reissner et al. Study of Membrane Electrode Assembies for Direct Methanol Fuel Cells. J. Power Sources. 2005, 105(2): 261~266
    104 E. Gulzow, T. Kaz. New Results of PEFC Electrodes Produced by the DLR Dry Preparation Technique. J. Power Sources. 2002, 106(1-2): 122~125
    105 S. Hirano, J. Kim, S. Srinivasan. High Performance Proton Exchange Membrane Fuel Cell with Sputter-deposited Pt Layer Electrode. Electrochim. Acta. 1997, 42(10): 1587~1593
    106 H. Kim, N. P. Subramanian, B. N. Popov. Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition. J. Power Sources. 2004, 138(1-2): 14~24
    107 Z. He, J. Chen, D. Liu. Deposition and Electrocatalytic Properties of Platinum Nanoparticals on Carbon Nanotubes for Methanol Electrooxidation. Mater. Chem. Phy. 2004, 85(2-3): 396~401
    108 D. S. Thompson, R. L. Jordan, M. Forsyth. Platinum Electrodeposition for Polymer Electrolyte Membrane Fuel Cells. Electrochim. Acta. 2001, 46(10-11): 1657~1663
    109 徐洪峰, 邢怡铭, 邵志刚等. Nafion115 膜的溶解及其再铸膜性能测定. 化学通报, 2003, 66: 1~4
    110 D. Chu, R. Jiang. Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stack and Single Cell. J. Power Sources. 1999, 80(1-2): 226~234
    111 贾小勇, 徐传胜, 白欣. 最小二乘法的创立及其思想方法. 西北大学学报. 2006, 36(3): 507~511
    112 解同信. 最小二乘法求作拟合直线. 北京工业职业技术学院学报. 2006, 5(3): 5~7
    113 肖爱玲. 非线性最小二乘法的算法. 数学理论与应用. 2004, 24(2): 86~90
    114 张彬, 曹福军. 用最小二乘法处理回归问题. 唐山师范学院学报. 2004, 26(5): 28~32
    115 G. Li, Peter G. Pickup. Measurement of Single Electrode Potentials and Impedances in Hydrogen and Direct Methanol PEM Fuel Cells. Electrochim. Acta. 2004, 49(24): 4119~4126
    116 J. Y. Song, H. H. Lee, Y.Y. Wang et al. Two and Three Electrode Impedance Spectroscopy of Lithium-ion Batteries. J. Power Sources. 2002, 111(2): 255~267
    117 N. Wagner. Characterizaiton of Membrane Electrode Assemblies in Polymer Electrode Fuel Cells Using A.C. Impendance Spectroscopy. J. Appl. Electrochem. 2002, 32(5): 859~863
    118 郭建伟, 毛宗强, 徐景明. 采用交流阻抗法对质子交换膜燃料电池电化学行为的研究. 高等学校化学学报. 2003, 24(8):1477~1481
    119 曹楚南, 张鉴清.电化学阻抗谱导论. 北京: 科学出版社. 2002:53~57
    120 J. Yu, M. Islam, T. Matsuura et al. Improving the Performance of a PEMFC with Ketjenblack EC-600JD Carbon Black as the Material of the Microporous Layer. Electrochem. Solid-State Lett. 2005, 8(6): A320~A323
    121 J. Yu, Y. Yoshikawa, T. Matsuura et al. Preparing Gas-Diffusion Layers of PEMFCs with a Dry Deposition Technique. Electrochem. Solid-State Lett. 2005, 8(3): A152~A155
    122 Z. Qi, A. Kaufman. Activation of Low Temperature PEM Fuel Cells. J. Power Sources. 2002, 111(1): 181~184
    123 Z. Qi, A. Kaufman. Quike and Effective Activation of Proton-Exchange Membrane Fuel Cells. J. Power Sources. 2003, 114(1): 21~23
    124 J. Yu, T. Matsuura, Y. Yoshikawa et al. Lifetime Behavior of a PEM Fuel Cell with Low Humidification of Feed Stream. Phys. Chem. Chem. Phy. 2005, 7(2): 373~378
    125 衣宝廉. 燃料电池——原理 技术 应用. 北京: 化学工业出版社. 2003: 158~160
    126 史美伦. 交流阻抗谱原理及应用. 北京: 国防工业出版社. 2001:310~315
    127 X. Cheng, B. Yi, M. Han et al. Investigation of Platinum Utilization and Morphology in Catalyst Layer of Polymer Electrolyte Fuel Cells. J. PowerSources. 1999, 79(1): 75~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700