纳米锆合金耐腐蚀性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文讨论了纳米化处理对锆合金的抗腐蚀性能的影响。首先在wagner理论和固体电子理论的基础上,将电导率与电子的平均自由程及晶粒尺寸的关系联系起来,建立了纳米及超细晶结构Zr—4合金腐蚀速率-晶粒尺寸关系模型,并结合锆合金的性质,模拟计算了不同温度下晶粒尺寸对锆合金腐蚀速率常数的影响,结果表明,与普通晶粒相比,纳米晶粒尺寸下锆合金的速率常数低于普通晶粒锆合金的速率常数,同时,随着纳米晶粒尺寸的减小锆合金的速率常数也降低,对比纳米Zr-4合金在673K水蒸气中的腐蚀试验数据,二者符合很好,显示出纳米化处理可以改善锆合金的腐蚀性能。其次通过XRD、SEM、EDS、AFM分析了纳米锆合金与粗晶锆合金在673K高温高压水的高压釜中腐蚀形成的氧化膜的成分、形貌、表面粗糙度、晶粒尺寸大小及氧浓度分布,发现纳米化改善了锆合金的耐腐蚀性能,与所建的模型符合。然而对于具有表面纳米及超细晶组织的锆合金来说,其腐蚀性能的影响因素不仅仅包括晶粒尺度,还包括合金成分、氧化膜的组织与性质、热处理工艺方法、表面状态、反应堆水化学、水冷却剂温度、通过包壳锆合金的热通量密度、辐照效应等等。而上述因素中的任何一个因素发生变化,都会导致材料腐蚀性能的改变。因此对于锆合金纳米化后腐蚀性能的研究,应该从全方位考虑,从而对锆合金的腐蚀性能有一个全方位的认识。
This article discussed a superficial nanometer processing to the zircaloy corrosion resistance performance influence. At frist a computation model of corrosion rate-grain size of nanocrystalline and ultra-fine Zircaloy-4 has been presented. The model is based on the Wagner's theory and the electron theory of solids. The conductivity, electronic mean free path and grain size of metal were considered. By this model, the corrosion rate of Zircaloy-4 under different temperature was computed. The results show that the corrosion resistance of nanocrystalline Zircaloy-4 is much superior to that of Zircaloy with coarse grain size. The corrosion rate constant and weight gain of nanocrystalline Zircaloy-4 decrease with the decrease of grain size. Compare to nanometer Zr-4 alloy corrosion test data in 400℃steam, the two tallies very well. So the refinement of grain size can remarkably improve the corrosion resistance of Zircaloy-4. The oxide film component .topography , surface roughness, grain size and stress distribution of nanocrystallization and coarse grain Zircaloy-4 alloy were observed though the XRD、SEM、AFM、TEM. The results show that the corrosion resistance of nanocrystalline Zircaloy-4 is much superior to that of Zircaloy-4 with coarse grain size, tallied with the model. For a surface nanometer and the ultra finer organization's zircaloy, its corrosion property influence factor not only includes the grain size, but also includes the alloy composition, the oxide film organization and the nature, the heat treatment technique, the surface condition, chemistry of reactor coolant, temperature of reactor coolant , heat flux through the cladding, irradiation effects and so on. Any one of these factors change will lead to corrosion property can be change. Therefore, this kind of research should be carried out carefully.
引文
1 Moulin L., Reschke S., Tenckhoff E., "Correlation between fabrication parameters, microstructure and texture in Zry tubings", Zirconium in the Nuclear Industry: 6th Int. Symp., ASTM-STP-824, (Franklin D.G., Adamson R.B., Eds.), American Society for Testing and Materials, W. Conshohoeken, PA. (1984)225-243.
    2 许并社等,纳米材料及应用技术[M]化学工业出版社2004年1月出版
    3 H Gleiter N.Hansen ,A. Horseweil, T.Leffers and H.Liholt (eds) In Proceedings of the second Riso International symposium on metallurgy and materials science , Riso Nat.Laboratory Roskilde ,Denmark,1981.15
    4 卢柯,纳米晶体材料的研究进展,中国科学院基金,第四期
    5 Comstok R J, Schoenberge G, Sable G P, Influence of Processing Variable and Alloy Chemistry on the Corrosion Behavior of ZIRL0 Nuclear Fuel Cladding, Zirconium in the Nuclear Industry, 11th International Symposium, ASTM STP 1295, Eds. by Bradley E R et al, ASTM, Philadelphia, PA, 1996:710
    6 严冬生,纳米材料合成与制备,无机材料学报[J],1995(10)1-6
    7 李新勇,李树本,纳米半导体研究进展,化学进展[J],1996(3)231-239
    8 Luk, Nanocrystalline metals crystallized from amorphous solids: nanocrystailization, structure, and properties Materials Science and Engineering: R: Reports [J], 1996(16), 161-221
    9 杨文斗,反应堆材料[M],原子能出版社,2000
    10 黄建中,左禹,材料的耐蚀性和腐蚀数据[M]化学工业出版社,2002
    11 黄强.锆合金耐腐蚀性能研究综述,核动力工程[J],1996(3):262-265
    12 Waterside corrosion of zireonium alloys in nuclear power plants, international atomic energy agency IAEA[Ⅱ],249-260
    13 叶长江,李铁藩,周江龙,晶粒尺寸对含Zr的Ni_3Al合金氧化行为的影响,金属学报[J].1995(15)109-115
    14 李铁藩,金属品界在高温氧化中的作用,中国腐蚀与防护学报[J].2002(3)180-183
    15 Basu S N, YurekG J. Oxid. Met. 1991, 35.5/6:441
    16 Shenglong Zhu, Fuhui Wang, Hanyi Lou et al, Reactive sputter deposition of alumina films on superalloys and their high-temperature corrosion resistance. Surface and Coatings Technology[J], 1995(1) 9-15
    17 Guofen Cheng, Hanyi Lou.. The effect of nanocrystallization on the oxidation resistance of Ni-5Cr-5Al alloy. Scripta Materialia[J]1999(8) 883-887
    18 李铁藩,金属高温氧化和热腐蚀[M],化学工业出版社,2003
    19 A. S. Khanna, R. K. Singh Raman, E. W. Kreutz et al, The effect of stainless steel plasma coating and laser treatment on the oxidation resistance of mild steel Corrosion Science[J], 1992(6) 949-951
    20 杨德钧,沈卓身,金属腐蚀学[M],冶金工业出版社,2003
    21 李美栓,金属的高温腐蚀[M],冶金工业出版社,2001
    22 李英,王福会,表面纳米化对金属材料电化学腐蚀行为的影响,腐蚀与防护[J],2003(1)6-12
    23 席艳君,贺连龙,王福会,纳米化对Ti-48Al-8Cr-2Ag合金抗氧化和抗腐蚀性能的影响,中国腐蚀与防护学报[J],2005(3)135-141
    24 Daniela Zander, Vwe Koster, Corrosion of amorphous and nanocrystalline Zr-based alloys, Materials Science and EngineeringA [J],2004 (15) 53-59
    25 周邦新,苗志,李聪,Zr(Fe,Cr)_2金属间化合物在500℃过热蒸汽中的腐蚀研究,核动力工程[J],1997(1)53-60
    26 李聪,李蓓,周邦新等,Zr-4合金a-Zr固溶体中的Fe、Cr含量分析,核动力工程[J],2002(4)20-24
    27 李聪,周邦新,苗志,Zr-4合金氧化膜中Zr(Fe,Cr)2第二相粒子的HREM观察,腐蚀科学与防护技术[J],1996(3)242-246
    28 E.A. Garcia, G. Béranger, Diffusion model for the oxidation of Zircaloy-4 at 400℃ in steam. The influence of metallurgical structure (precipitates and grain size), Journal of Nuclear Materials [J], 1999(2)221-227
    29 陈达,纳米晶体的结构模型及性质研究,金属学报[J],1994(8)348-350
    30 孙秋霞,材料的腐蚀与防护[M],冶金工业出版社,2001
    31 魏宝明,金属腐蚀理论及应用[M],化学工业出版社,1984,2
    32 IAEA-TECDOC-996. Waterside corrosion of zirconium alloys in nuclear power plants[C]. IAEA,Vienna, 1998
    33 Z.L.Cui,L.F.Dong and Z.K.Zhang, Oxidation behavior of nano-Fe prepared by hydrogen ARC plasma method, NanoStructured Materials[J], 1995(5)829-833
    34 P.Bouvier, E.Djurado,C.Ritter, A.J.Dianoux,G.Lucazeau, Low temperature phase transformation of nanocrystalline tetragonal ZrO_2 by neutron and Raman scattering studies, International Journal of Inorganic Materials[J],2001 (21) 647-654
    35 P.Bouvier, J.Godlewski, G.Lucazeau, A Raman study of the nanocrystailite size effect on the pressure-temperature phase diagram of zirconia grown by zirconium-based alloys oxidation,Journal of Nuclear Materials [J],2002(300)118-126
    36 丁秉钧,纳米材料[M],机械出版社,2004
    37 P. Bouvier, these de doctorat, INPG,2000
    38 Jorg Weissmüller, Jorg Loffler, Martin Kleber, Atomic structure of nanocrystalline metals studied by diffraction techniques and EXAFS, Nano Structured Materials[J],1995(6)105-114
    39 J. Rawers, D. Cook, Influence of attrition milling on nano-grain boundaries ,NanoStructured Materials[J], 1999(11)331-340
    40 IAEA - TECDOC - 996.Waterside corrosion of zirconium alloys in nuclear power plants, international atomic energy agency IAEA[Ⅰ] 1998 249-260
    41 施利毅 纳米科技基础[M],华东理工大学出版社
    42 D. Sundararaman, P. Shankar and V. S. Raghunathan J.Rawers, D.Cook. Microstructural aspects of nanocrystalline titanium, NanoStructured Materials [J],1995(5)801-807
    43 Jian Xu, XinDe Bai, Fei He,et al, Influence of Ar ion bombardment on the uniform corrosion resistance of laser-surface-melted Zircaloy-4, Journal of Nuclear Materials[J], 1999(3)240-244
    44 Jeong-Yong Park, Hyun-Gil Kim, Yong Hwan Jeong, et al, Crystal structure and grain size of Zr oxide characterized by synchrotron radiation microdiffraction, Journal of Nuclear Materials[J], 2004 (335)433-442
    45 D. Sundararaman, E Shankar, V. S. Raghunathan J.Rawers and D.Cook. Microstrnctural aspects of nanocrystalline titanium, NanoStructured Materials [J],1995 (5) 801-807
    46 Tadashi Fukuda, Effect of Titanium Carbide Precipitates on the Ductility of 30 mass% Chromium Ferritic Steels ,Mater. Trans [J]. 2003 (44) 1153-1158.
    47 M. Murayama, Z. Horita, K. Hono Mahayana, Microstructure of two-phase Al-1.7 at% Cu alloy deformed by equal-channel angular pressing, Acta Mater[J]. 2001 (49) 21-29.
    48 Dong Hyuk Shin, Byung Cheol Kim, Yong-Seog Kim, Kyung-Tae Park, Microstructural evolution in a commercial low carbon steel by equal channel angular pressing, Acta Mater[J]. 2000 (48) 2247-2255.
    49 R. S. Mishra, V. V. Stolyarov, C. Echer, R. Z. Valiev, A. K. Mukherjee, Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti-6Al-4V alloy Materials Science and Engineering A[J], 2001 (298) 44-50.
    50 Zhang X. Y, Jia C, Liu Z. N, Yi J, Rare Metal. Mater. Eng[J]. 35 (2006) (Supp. 1)178.
    51 Rajan Ambat, Naing Naing Aung and W. Zhou ,Ambat R, Aung N. N, Zhou, Zhou W W, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy ,Corrosion Sci [J], 2000 (42) 1433-1455.
    52 Shinji Fujimoto, Hideki Hayashida, Toshio Shibata, Extremely high corrosion resistance of thin film stainless steels deposited by ion beam sputtering, Materials Science and Engineering A[J] 1999 (267) 314-318.
    54 Viana F, Pinto A. M. P, Santos H. M. C, Lopes A.B, Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization, Journal of Materials Processing Technology [J]. 1999 (92) 54-59.
    55 Donohue L. A, Lewis D. B, Münz M.D. Stack M.M,et al, The influence of low concentrations of chromium and yttrium on the oxidation behaviour, residual stress and corrosion performance of TiAIN hard coatings on steel substrates, Vacuum, 1999(55) 109-114
    56 李美栓,金属的高温腐蚀[M],冶金工业出版社,2001
    57 沈以赴,固体物理学基础教程[M],化学工业出版社,2004
    58 J.克莱邦德,纳米材料化学[M],化学工业出版社,2004
    59 黄锡文,电触头材料的导电性探讨,电工合金[J],1998(3)26—29
    60 江全元等,CuCr复合材料的导电性,华中理工大学学报[J],1998(8)78—80
    60 王从曾,材料性能学[M],北京工业大学出版社,2001
    61 李聪,周邦新,Zr—4合金氧化膜(<100nm)的电镜研究,核动力工程[J],1994(40)152—157
    62 熊炳昆,温旺光,杨新民等,锆铪冶金[M]冶金工业出版社,54/2,2003
    63 王爱芬,晶格中电子有效质量的讨论,德州学院学报[J],21/2,2005
    64 黄昆,固体物理学,高等教育出版社[M],300/6,2002
    65 Yong hwan, Jeong, Hyun Gil Kim, Dae Jung kim et al, Influence of Nb concentration in the a-matrix on the corrosion behavior of Zr-xNb binary alloys, Journal of Nuclear Materials[J] 2003 (323)72-80
    66 杨德钧,沈卓身,金属腐蚀学[M],冶金工业出版社,2003
    67 Aylin Yilmazbayhan, Arthur T. Motta, Robert J. Comstoek, George P. Sabol, Barry Lai, Zhonghou Cai Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate, Journal of Nuclear Materials 2004 (324) 6-22
    68 Zhang X. Y, Jia C, The microstructural characteristics of the deformed nanocrystalline cobalt, Materials Science and Engineering A [J], 2006 (418) 77-80.
    69 刘文庆,李强,周邦新,锆锡合金腐蚀转折机理的探讨,稀有金属材料与工程[J],2001(02) 81-84
    70 Godlewski J., "How the tetragonal zirconia is stabilised in the oxide scale formed on zirconium alloys corroded at 400℃ in steam", Zirconium in the Nuclear Industry, 10th Int. Symp., ASTM-STP-1245, (Garde A.M., Bradley E.R., Eds.), American Society for Testing and Materials, W. Conshohocken, PA. (1994) 663-683.
    71 Aylin Yilmazbayhan, Else Breval, Arthur T. Motta, Robert J. Comstoek. Transimission electron microscopy examination of oxide layers formed on Zr alloys. Journal of Nuclear Materials 2006 (349) 265-281.
    72 Hiroyuki Anada, Kiyoko Takeda. Microstructure of oxide on Zircaloy-4, 1.0Nb Zircaloy-4, and Zircaloy-2 formed in 10.3MPa steam at 673K. Zirconium in the Nuclear Industry[C]: Eleventh International Symposium, ASTM STP 1295, E. R. Bradley and G. P. Sabol, Eds., American society for Testing and Materials, 1996:35-54
    73 刘文庆等,不同介质对Zr-4合金氧化膜结构的影响,稀有金属材料与工程,2005(4)562-564
    74 Pecheur D.,Godlewski J. et al. Contribution to the understanding of the effect of the water chemistry on the oxidation kinetics of zircaloy-4 cladding,Zirconium in the Nuclear Industry, Twelfth International Symposium,ASTM STP 1354,G. P. Sabol and G. D. Moan eds.,West Conshohocken,2000:793-811
    75 X. Y. Zhang, et al. The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal. Materials Science and Engineering A 2007 (448) 259-263
    76 Pecheur D, Godlewski J, Billot Pet al. Mierostrueture of Oxide Film Formed during the Waterside Corrosion of the Zircaloy-4 Cladding in Lithiated Environment, In:Bradley E R and Sabol G Peds. Zirconium in the Nuclear Industry, Eleventh International Symposiu[C], Philadelphia: America Society for Testing and Materials, 1996:94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700