组织纳米化锆-4合金耐腐蚀性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要从以下几个方面来研究组织纳米化Zr-4合金在673K高压釜过热蒸汽中的耐腐蚀性能。
     首先利用金相显微镜测量普通Zr-4合金与组织纳米化Zr-4合金的氧化膜的厚度,绘制它们在400℃腐蚀的氧化膜生长动力学曲线,从而分析纳米化Zr-4合金的耐腐蚀性能。实验结果表明,纳米化Zr-4合金的腐蚀转折时间比普通Zr-4合金的腐蚀转折时间滞后,达到了100天左右;普通Zr-4合金的氧化膜生长速率要比纳米Zr-4合金的氧化膜的生长速率大。实验结果分析表明,纳米化Zr-4合金的氧化膜生长速率与氧化膜内的四方结构氧化锆的含量有关。
     利用X射线衍射(XRD)方法研究纳米结构与普通Zr-4合金氧化膜的物相,相的演变,t-ZrO_2以及m-ZrO_2相的晶格常数,晶胞体积,晶粒的择优取向以及应力的影响等因素。实验结果表明,纳米Zr-4合金的t-ZrO_2相的晶胞体积随着腐蚀进行处于降低过程,纳米Zr-4合金的t-ZrO_2处于比较大的压应力状态;纳米Zr-4合金氧化膜内的氧化膜/金属界面处存在的高压应力,这些将有利于稳定t-ZrO_2相,延缓相变的进程,推迟腐蚀转折的发生,从而降低氧化速率。
     使用EDS方法研究腐蚀过程中氧离子的阴离子空位扩散和氧化物生长情况。从氧元素在普通Zr-4合金与纳米化Zr-4合金中的分布的结果表明,在致密氧化膜形成后的腐蚀过程中,氧离子在普通粗晶Zr-4合金氧化膜中的扩散快于在纳米晶Zr-4合金氧化膜中的扩散。
     结合几个实验的研究分析结果证明了在673K高温过热蒸汽的高压釜中,纳米化Zr-4合金的耐腐蚀性能要比普通Zr-4合金的耐腐蚀性能好。本文表明,纳米化Zr-4合金耐腐蚀性能的提高与氧化膜内四方氧化锆的含量、四方氧化锆的应力状态以及氧化膜内的高压应力有直接的关系。而关于纳米化Zr-4合金耐腐蚀性能机理仍有待进一步的实验研究和分析。
The resistance corrosion of nanocrystallization Zircaloy-4 alloy in autoclave at 673K steam has been discussed in this paper in the following ways.
     In the first, It measured the thickness of oxide film of as-received Zircaloy-4 alloy and nanocrystallization Zircaloy-4 alloy by metallurgical microscope, plotted their oxide film growth kinetics curve in 400℃, and discussed the resistance corrosion of nanocrystallization Ziracloy-4 alloy. The results indication that the corrosion transition time of nanocrystallization Zircaloy-4 alloy reached about 100 days, which was delayed than Zircaloy-4 alloy; and the growth rate of Zircaloy-4 was more quickly than nanocrystallization Zircaloy-4 alloy with the corrosion process. The results indicated the oxide film growth rate of nanocrystallizaion Zircaloy-4 had relation with the percentage of tetragonal-Zirconia.
     It studied on oxide phases, evolution of phases, lattice variation of tetragonal-Zircnia and monoclinic-Zircnia, cell volume, prefer orientation of grains and the stress-influence atc. by X-ray diffraction. The results indication that the tetragonal-Zirconia' s cell volume of nanocrystallization Zircaloy-4 alloy reduced in the process of corrosion, the tetragonal-Zirconia of nanocrystallization Zircaloy-4 alloy was in the high compressed stress; And the interface of oxide/metal in the oxide film of nanocrystallization Zircaloy-4 alloy was in high compressed stress. These results were advantageous to stable the tetragonal-Zirconia, delayed the process of phase transformation, postponed the corrosion transition, and reduced the oxidation rate.
     EDS observed the anion ion vacancy diffusion of oxygen ion and oxide growth in the corrosion process. The results of oxygen distribution of as-received Zircaloy-4 alloy and nanocrystallizaion Zircaloy-4 alloy showed, after compact oxide film formation, oxygen ion diffused in oxide film of as-received Zircaloy-4 alloy more quickly than in nanocrystallization Zircaloy-4 alloy.
     Union these discussion results indication that the resistance corrosion of nanocrystallizaion Zircaloy-4 alloy was more excellence than as-received Zircaloy-4 alloy in autoclave at 673K steam. This paper showed the corrosion resistance improvement of nanocrystallization Zircaloy-4 alloy had relation with the percentage of tetragonal-Zirconia, the stress of tetragonal-Zirconia and the high compressed stress of oxide film. However about the corrosion resistance mechanism of nanocrystallizaion Zircaloy-4 alloy should be researched and discussed in the further.
引文
1 杨遇春,前进中的锆铪工业.有色金属,2001(12):11-14
    2 熊炳昆等,锆铪冶金.北京:冶金工业出版社,2002年
    3 田胜军等,锆铪的分离技术及应用.铀矿冶.2006,25(2):103-109
    4 刘树仁,国外锆铪生产、应用及开发的最近进展.世界有色金属.1992(10):2-10
    5 B.R.T弗罗斯特主编.材料科学与技术丛书(10B卷),核材料(第Ⅱ部分):第7章核应用中的锆合金,赵文金译.北京:科学出版社,1999:17-28
    6 熊炳昆,锆在核电工业中的应用现状.稀有金属快报.24(4),2005:45-47
    7 刘承新,锆合金在核工业中的应用现状及发展前景.稀有金属快报.2004(5):21-23
    8 熊炳昆,属锆在石化工业中的应用.稀有金属快报.2005(9):45-47
    9 田胜军等,锆铪的分离技术及应用.铀矿冶.2006,25(2):103-109
    10 刘建章,国内核动力堆用锆合金的研究动向.稀有金属材料与工程.1990(6):32-35
    11 杨文斗.反应堆材料学.北京:原子能出版社,2000
    12 IAEA -TECDOC- 996. Waterside corrosion of zirconium alloys in nuclear power plants[C]. IAEA ,Vienna, 1998
    13 周邦新,锆合金中的疖状腐蚀问题.核科学与工程.1993(13):51
    14 陈鹤鸣,马春来等编著,核反应堆材料腐蚀及其防护.北京:原子能出版社,1984
    15 Godlewski, J., Gros, J. P., Lambertin, M., Wadier, J. F., Weidingen, H. (1991), 9th Int. Conf. Zr Nucl. Ind., Nov. 1990, Kobe, Japan: ASTM-STP 1132. Philadelphia, PA:Am. Soc. Test. Mat., pp.416-436.
    16 黄强,锆合金耐腐蚀性能研究综述.核动力工程,1996,17:262
    17 刘文庆,周邦新.Zr-4合金在LiOH水溶液中腐蚀机理的概述.核动力工程,2001,22:65
    18 B. Cox, et al. Transient Effects of Lithium Hydroxide and Boric Acid on Zircaloy Corrosion[J]. J. Nucl. Mater, 1993,199:272-284
    19 Cox B.,et al. Dissolution of Zirconium Oxide Films in 300℃ LiOH[J]. J. Nucl. Mater,1995,224:169-178
    20 Ramasubramanian N., et al. Aqueous Chemistry of Lithium Hydroxide and Boric Acid and Corrosion of Zr-4 and Zr-2.5Nb Alloy. Zirconium in the Nuclear Industry: 10th International Symposium, ASTM STP 1245, in: Grade A M and Bradley E REds. American Society for Testing and Materials, Philadelphia, PA, 1994:378-399
    21 Pecheur D, et al. Zirconium in the Nuclear Industry[C]. Twelfth International Symposium, ASTM-STP1354, in: Bradley E R and Sabol G P Eds, America Society for Testing and Materials, 1998
    22 Godlewski J, et al. Raman Spectroscopy Study of the Tetragonal-to-Monoclinic Transition in Oxide Scales and Determination of ~(18)O[C]. Zirconium in the Nuclear Industry[C]. Nineth International Symposium, ASTM-STP1132, in: Eucken C M and Grade A MEds. America Society for Testing and Materials, Philadelphia, PA, 1991: 416-435
    23 周邦新,李强等,锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化.核动力工程,2005,26:364
    24 Gleiter H., Nanostructured materials, Proceedings of the Second Rise International Symposium on Metallurgy and Materials Science. Denmark, Roskilde, 1981, 15-29
    25 Gleiter H., Nanostructured materials-scientific background and technological perspectives, Nanostructured Materials, 1995, 16:3-14
    26 杨剑,滕凤恩.纳米材料综述.材料导报,11,1997(2):6-10
    27 Kizuka T., Ichinose H., Ishida Y.. Structure and hardness of nanocrystalline silver, Journal of Mater Sci, 1997, 32:1501-1507
    28 卢柯,周飞,纳米晶体材料的研究现状.金属学报,1997,33:99-106
    29 许并社等,纳米材料及应用技术,化学工业出版社,2004
    30 张全勤,张继文,纳米技术新进展.国防工业出版社,2005
    31 韦东远,纳米材料与纳米科技发展动态.海峡科技与产业,2006,3:20-23
    32 赵新奇等,40Cr钢表面纳米层形成机理的研究.同济大学学报(自然科学版),2005,33:196-200
    33 张洪旺等,表面机械研磨诱导AISI304不锈钢表层纳米化*Ⅰ.组织与性能,金属学报,2003,39:342
    34 吕爱强等,表面机械研磨316L不锈钢诱导表层纳米化.东北大学学报(自然科学版),2004,25:848
    35 张聪慧等,钛合金表面高能喷丸纳米化后的组织和性能.热加工工艺,2006,35:5-7
    36 石继红等,316L不锈钢表面纳米化后腐蚀性能研究.材料工程,2005,10:42-46
    37 高岩,罗承萍,纳米晶体材料耐腐蚀性能的研究现状.机械工程材料,2005,29:40-42
    38 Ei-Moneim A A, Gebert A, Schneider F, et al., Grain growth effects on the corrosion behavior of nanocrystalline NdFeB magnets[J].Corrosion Science, 2002, 44:1097-1112
    39 李雪莉等,USSP表面纳米化Fe-20Cr合金的腐蚀性能及机制研究.中国腐蚀与防护学报,2002,22:326-329
    40 吕爱强等,表面纳米化对316L不锈钢性能的影响.材料研究学报,2005,19:118
    41 Jian Xu, XinDe Bai, Fei He, et al, Influence of Ar Ion Bombardment on the Uniform Corrosion Resistance of Laser-Surface-Melted Zircaloy-4.Journal of Nuclear Materials, 1999, 265:240
    42 Wang X Y, Li D J, Mechanical and electrochemical behavior of nanocrystalline and surface of 304 stainless steel[J]. Electrochimica Acta, 2002, 47:3939-3947
    43 Souza C.A.C., et al., Influence of corrosion and partial crystallization on corrosion resistance of Fe-M-B-Cu(M=Zr,Nb,Mo) alloys. J. Non-Cryst. Solids, 2000, 273:282
    44 Daniela Zander,Uwe Koster, Corrosion of amorphous and nanocrystalline Zr-based alloys. Materials Science and Engineering A, 2004, 375-377:53
    45 X. Peng, J. Yan, Y. Zhou, F. Wang, Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air. Acta Materialia, 2005, 53:5079-5088
    46 K. Mondal, B.S. Murty, U.K., Chatterjee.Electrochemical behavior of multicom- onent amorphous and nanocrystalline Zr-based alloys in different environments. Corrosion Science, 2005, 47:2619
    47 Changdong Gu, Jianshe Lian, Jinguo He, et al., High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface & Coatings Technology, 2006, 200:5413
    48 Tiansheng Wang, Jinku Yu, Bingfeng Dong, Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surface & Coatings Technology, 2006, 200: 4777
    49 S. Mato, G. Alcal'a, et al.. Corrosion behavior of a Ti-base nanostructure-denddte composite. Electrochimica Acta, 2005, 50:2461
    50 Boel Wadman, Zonghe Lai, Hans-Olof Andren, Anna-lena Nystrom, Peter Rudling, and Hakan Pettersson, Microstructure of oxide layers formed during autoclave testing of Zirconium alloys, Zirconium in the Nuclear Industry, 10th Int. Symp., ASTM STP 1245, (Garde A.M., Bradley E.R., Eds.),American Society for Testing and Materials, W. Conshohocken, PA. 1994, PP. 579-598
    51 Hiroyuki Anada and Kiyoko Takeda, Microstructure of oxide on Zircaloy-4, 1.0Nb Zircaloy-4, and Zircaloy-2 formed in 10.3 MPa steam at 673K, Zirconium in the Nuclear Industry, 10th International Symposium, ASTM STP 1295, E. R. Bradley and G. P. Sabol, Eds., American Society for Testing and Materials, 1996, PP. 35-54
    52 SungJoon Lee, ChanJin Park, YunSoo Lira, Hyuksang Kwon, Influences of laser surface alloying with niobium (Nb) on the corrosion resistance of Zircaloy-4, Journal of Nuclear Materials, 2003,321:177-183
    53 L. Gosmain, C. Valot, D. Ciosmak, O. Sicardy, Study of stress effects in the oxidation of Zircaloy-4, Solid State Ionics 141 - 142, 2001:633-640
    54 周邦新等,水化学对锆合金耐腐蚀性能影响的研究,核动力工程,21,2000:439-447
    55 P. Barberis, Zirconia powders and Zircaloy oxide film: tetragonal phase evolution during 400℃ autoclave test, Journal of Nuclear Materials, 226, 1995:34-43
    56 E. A. Garcia, G. Beranger, Diffusion model for the oxidation of Zircaloy-4 at 400℃ in steam. The influence of metallurgical structure (precipitates and grain size), Journal of Nuclear Materials, 273, 1999: 221-227
    57 Arthur T. Motta, Aylin Yilmazbayhan, Robert J. Comstock, Jonna Partezana, George P. Sabol, Barry Lai, and Zhonghou Cai, Microstructure and growth mechanism of oxide layers formed on Zr alloys studied with micro-beam synchrotron radiation, Journal of ASTM International, 2(5), 2005:205-230
    58 Aylin Yilmazbayhan, Else Breval, Arthur T. Motta, Robert J. Comstock, Transmission electron microscopy examination of oxide layers formed on Zr alloys, Journal of Nuclear Materials,349,2006:265-281
    59 Dominique pecheur, Joel Godlewski, Jean Peybernes, Laurent Fayette, Maxy Noe, Alain Frichet, and Olivier Kerrec, Contribution to the understanding of the effect of the water chemistry on the oxidation kinetics of Zircaloy-4 cladding, Zirconium in the Nuclear Industry, Twelfth International Symposium, ASTM STP 1354, G. P. Sabol and G. D. Moan. Eds., American Society for Testing and Materials, West Conshohocken, PA,2000, pp. 793-811
    60 Y. H. Jeong, J. H. Baek, S. J. Kim, H. G. Kim, H. Ruhmann, Corrosion characteristics and oxide microstructures of Zircaloy-4 in aqueous alkali hydroxide solutions, Journal of Nuclear Materials, 270,1999:322-333
    61 刘文庆,陈文觉等,水化学对Zr-4合金氧化膜形貌的影响,核动力工程,25(6),2004:517-521
    62 Dominique Pecheur, Joel Godlewski, Philippe Billot, and Joel Thomazet, Microstructure of oxide films formed during the waterside corrosion of the Zircaloy-4 cladding in lithiated environment, Zirconium in the Nuclear Industry, Eleventh International Symposium, ASTM STP 1295, E. R. Bradley and G. P. Sabol Eds., American Society for Testing and Materials, 1996, pp. 94-113
    63 Godlewski J., "How the tetragonal zirconia is stabilised in the oxide scale formed on zirconium alloys corroded at 400℃ in steam", Zirconium in the Nuclear Industry, 10th Int. Symp., ASTM-STP-1245, (Garde A.M., Bradley E.R., Eds.), American Society for Testing and Materials, W. Conshohocken, PA. (1994) 663-683.
    64 J S Bryner, The cyclic nature of corrosion of Zircaloy-4 in 633K water. Journal of nuclear materials, 1979, 82:84-101
    65 Brian Cox, Mihaela Ungurelu, Yin-Mei Wong, and Chenguang Wu, Mechanisms of LiOH Degradation and H_3BO_3 Repair of ZrO_2 Films, Zirconium in the Nuclear Industry, Eleventh International Symposium, ASTM STP 1295, E. R. Bradley and G. P. Sabol Eds., American Society for Testing and Materials, 1996, pp. 114-136
    66 周邦新等,锆—4合金在400℃过热蒸汽中均匀腐蚀时出现第二次转折的研究.核燃料及材料重点实验室年报,中国核动力研究设计院,1993,P66
    67 刘文庆,李强,周邦新.锆锡合金腐蚀转折机理的讨论,稀有金属材料与工程,30(2),2001:81-84
    68 J. Godlewski, P. Bouvier, G. Lucazeau, and L. Fayette .Stress distribution measured by Raman spectroscopy in Zirconia films formed by oxidation of Zr-based alloys, Zirconium in the Nuclear Industry: Twelfth International symposium, ASTM STP1354, G.P. Sabol and G.D. Moan, Eds. American Society for Testing and Materials, West Conshohocken, PA, 2000,PP. 877-900
    69 Hyun Seon Hong, Seon Jin kim, Kyung Sub Lee. Long-term oxidation characteristics of oxygen-added modified Zircaloy-4 in 360℃ water, Journal of Nuclear Materials. 273 (1999): 177-181
    70 刘文庆,周邦新,李强,姚美意,不同介质对Zr-4合金氧化膜结构的影响。稀有金属材料与工程,34(4),2005:562-564
    71 张喜燕,李聪,刘年富等,纳米结构锆合金组织氧化膜结构演变的XRD分析。核动力工程,已接收。
    72 Liu Jianzhang, Research and Development of Zirconium Alloys in Light Water Reactors. Rare Metal Materials and Engineering, 25(2), 1996:1-6
    73 Li Zhongkui, Liu Jianzhang, Li Peizhi et. al, Corrosion Resistance of New Zirconium Alloys in Different Media[J]. Rare Metal Materials and Engineering, 28(2), 1999:101-104
    74 Liu Wenqing, Li Qiang, Zhou Bangxin, Discussion on Corrosion Transition Mechanism of Zircaloy[J]. Rare Metal Materials and Engineering, 30(2), 2001:81-84
    75 Zhou Bangxin, Li Qiang, Huang Qiang, et al, The Effect of Water Chemistry on the Corrosion Behavior of Zirconium Alloys[J]. Nuclear Power Engineer, 21 (5), 2000:439-447
    76 Beie H J, Mitwalsky A, Garzarolli F et al, Examinations of the Corrosion Mechanism of Zirc- onium Alloys[C]. Zirconium in the Nuclear Industry, New York, ASTM STP 1245, 1994:615-643
    77 Comstock R. J, Schoenberg G., Sable G P, Influence of Processing Variable and Alloy Chemistry on the Corrosion Behavior of ZIRLO Nuclear Fuel Cladding, in: E. R. Bradley (Ed.), Zirconium in the Nuclear Industry, 11th International Symposium, ASTM STP 1295, ASTM, Philadelphia, A, 1996: 710.
    78 李聪,周邦新,Zr-4合金氧化膜(<100nm)的研究,核动力工程,15,1994:152
    79 Roy C., David G., X-ray diffraction analyses on zirconium and Zircaloy-2, J. Nucl. Mater. 37 (1970) 71-81.
    80 Xiyan Zhang, Chong Jia. The microstructure characteristics of the deformed nanocrystalline cobalt, Materials Science and Engineering A, 2006, 418:77-80
    81 吴刚主编,材料结构表征及应用,北京:化学工业出版社,2002:271
    82 范雄。X射线金属学,机械工业出版社,1981年9月
    83 刘文庆,李强,周邦新,姚美意.水化学对Zr-4合金氧化膜/基体界面处压应力的影响,稀有金属材料与工程,33(10),2004:1112-1115
    84 邵淑英,等。薄膜应力研究,激光与光电子学进展,42(1),2005:22
    85 Zhou Banxin, Jiang Yourong. Oxidation of Zircaloy-2 in Air from 500℃ to 800℃, High Temperature Corrosion and Protection[C]. Protection International Symposium, Shenyang: Liaoning Science and Technology Publishing House, 1991 : 121-124
    86 周邦新,概述锆合金耐腐蚀性能的综述,金属热处理学报[J],18(3),1997:8
    87 Garzaroli F, Seidsl H,Tricot R et al. Oxide Growth Mechanism on Zircaloy[C]. Zirconium in the Nuclear Industry, New York, 1991:395-415
    88 李铁藩,金属高温氧化和热腐蚀,北京:化学工业出版社,2003
    89 P. Bossis, G. Lelievre, P. Barberis, X. Iltis, and F. Lefebvre. Multi-Scale Characterization of the Metal-Oxide Interface of Zirconium Alloys. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP1354, G. P. Sabol and G. D.Moan, Eds., American society for Testing and Materials, West Conshohoken, PA,2000:918-945
    90 Pecheur D.,Godlewski J. et al. Contribution to the understanding of the effect of the water chemistry on the oxidation kinetics of zircaloy-4 cladding,Zirconium in the Nuclear Industry, Twelfth International Symposium,ASTM STP 1354,G. P. Sabol and G. D. Moan eds.,West Conshohocken,2000:793-811
    91 X. Y. Zhang,et al. The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal. Materials Science and Engineering A 448 (2007) 259-263

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700