FGF1、FGFR1在大鼠全脑缺血预处理诱导缺血耐受的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察成纤维生长因子-1(FGF-1)和成纤维生长因子受体-1(FGFR-1)在大鼠全脑缺血预处理诱导缺血耐受过程中不同时相的表达,探讨两者在脑保护作用中的意义。
     材料与方法:采用改良四血管阻断法制作大鼠全脑缺血模型,选用健康成年SD大鼠120只随机分成A、B、C、D 4组,根据设计时间点不同每组分5亚组,每个亚组6只。A组为假手术对照组,仅进行相关血管游离后缝合切口,分别再饲养1天、3天、7天、14天及21天;B组为全脑缺血3分钟预处理对照组,B1、B3、B7、B14及B21亚组分别为全脑缺血3分钟后再灌注1天、3天、7天、14天及21天;C组为全脑缺血9分钟对照组,C1、C3、C7、C14及C21亚组分别为全脑缺血9分钟后再灌注1天、3天、7天、14天及21天;D组为试验组,均做全脑缺血3分钟预处理后,D1、D3、D7、D14及D21亚组分别灌注1天、3天、7天、14天及21天后均再次全脑缺血9分钟。A组、B组和C组均在饲养时间或再灌注时间完成后即断头取脑,D组在最后一次缺血再灌注7天后即断头取脑。在视交叉后1mm及4mm处冠状切面取切片行H-E染色、FGF-1和FGFR-1免疫组化染色,分别观察海马区神经元的存活情况及FGF-1和FGFR-1的表达,采用SPSS13.0软件对实验数据进行进行完全随机设计单因素方差分析,各组均数两两比较采用LSD-t检验。
     结果:H-E染色切片于光镜下计数海马CA1区存活神经元密度,A组和B组无明显神经元坏死;C组和D1、D14、D21亚组可见大量神经元坏死;D3和D7亚组可见部分神经元坏死,其中D3亚组存活神经元数目最多,最接近A组存活神经元数目。免疫组化染色切片观察见:FGF-1和FGFR-1免疫阳性细胞均表现为棕黄着色,主要位于胞浆。(1)FGF-1免疫阳性细胞观察结果如下:A组和B1、B3、B7、C1、C3、C7亚组的FGF-1免疫阳性细胞稀疏;B14、B21、C14、C21亚组和D组免疫阳性细胞明显增多。(2)FGFR-1免疫阳性细胞观察结果如下:A组和B14、B21、C14、C21亚组免疫阳性细胞较少;B1、B3、B7、C1、C3、C7亚组及D组免疫阳性细胞明显增多。经过相应的全脑缺血处理后,各组及各亚组之间两两对比显示神经元存活数目及FGF-1和FGFR-1表达强度存在显著性差异。
     结论:(1)全脑3分钟缺血预处理后,脑组织能对随后致死性的脑缺血能产生有效的保护作用;(2)无论全脑缺血3分钟还是9分钟后,FGF-1和FGFR-1在脑组织中表达均有增强,但先缺血预处理3分钟后在不同时间点再缺血9分钟,FGF-1和FGFR-1在脑组织中表达得到更进一步增强;(3)FGF-1和FGFR-1参与了缺血预处理诱导缺血耐受的过程,在此过程中,其表达的改变与缺血预处理的神经保护作用相关。
OBJECTIVE:To investigate the changes of expression of both FGF-1 and FGFR-1 in the process of ischemia tolerance induced by global cere- bral ischemia preconditioning(IP)in the adult SD rat and to explore their role in ischemic tolerance.
     MATERIALS AND METHODS:Modified four-vessel occlusion rat models was used in this study.120 healthy adult Sprague-Dawley(SD) rats were divided randomly into 4 groups,and each group was divided into 5 subgroups according to different time points that were designed in advance.Group A:sham-operated control group,The subgroup A1,A3, A7,A14 and A21 were raised respectively 1 day,3 days,7 days,14 days and 21 days after sham operation;Group B:Control group to be given ischemia preconditioning for 3 minuts,subgroup B1,B3,B7,B14 and B21 were respectively reperfused for 1 day,3 days,7 days,14 days and 21 days;Group C:Control group to be given ischemia preconditioning for 9 minuts,subgroup C1,C3,C7,C14 and C21 were respectively reperfused for 1 day,3 days,7 days,14 days and 21 days;Group D:Trial group,subgroup D1,D3,D7,D14 and D21 were reperfused respectively for 1 day,3 days,7 days,14 days and 21 days followed 3 minuts' ischemia,then all be given ischemia for 9 minuts.Rats of Group A, Group B and Group C were decapitated and the brains were taken out when raise or reperfusion finished,and so did the rats of group D 7 days after 9 minuts' ischemia.The histopathological changes and ultrastructure of cerebral hippocampus CA1 subarea were exmined by HE staining and the expressions of FGF-1 and FGFR-1 were studied by immunohistochemistry. All the experimental data were analyzed to be deployed one-way analysis of variance by SPSS 13.0 software.
     RESULTS:HE-stained slices were observed by microscope,all results showed:There were no significant changes of cellular necrosis in subgroups of A1,A3,A7,A14,A21,B1,B3,B7,B14 andB21;Mass cellular necrosis were observed in subgroups of C1,C3,C7,C14,C21, D1,D14 and D21,part of neurons of D3 and D7 were necrotic,and neuronal survival of D3 was highest among all subgroups of group D. immunohistochemical staining of FGF-1 showed:Positive stains were rare inhippocampusinsubgroupsofA1,A3,A7,A 14,A21,B1, B3,B7,C1,C3 and C7;Positive stains were abundant in hippocampus in subgroups of B14,B21,C14,C21,D3,D7,D14 and D21. immunohistochemical staining of FGF-1 showed:Positive stains were rare inhippocampus in subgroups of A1,A3,A7,A14,A21,B14, B21,C14,C21;Positive stains were abundant in hippocampus in subgroups of B1,B3,B7,C1,C3,C7,D1,D3,D7,D14,D21.Compared with each other of groups,due to IP,the quantum of survive neuron and expression ofFGF-1 and FGFR-1 were different significantly.
     CONCLUSIONS:(1)after single cerebral ischemia for 3 minutes, brain can got the protective effect against the following deadly cerebral ischemia;especially in the third day;(2)single cerebral ischemia for both 3 minutes and 9 minutes,the expression of FGF-1 and FGFR-1 had a strengthen tendency,after single cerebral ischemia for 3 minutes and respective reperfusion for 1 day,3 days,7 days,14 days and 21 days, then all for cerebral ischemia once more for 9 minuts,the expression of FGF-1 and FGFR-1 have a further expression;(3)FGF-1 and FGFR-1 played a role in the mechanism of ischemic tolerant effect,and the level of FGF-1 and FGFR-1 's expression was related to the protective effect on brain.
引文
[1]Moncayo J,de Freitas GR,Bogousslaky J,et al.Do transient ischemic attacks have a neuroal protective effect[J].Neurology,2000,54(11)2089-2094.
    [2]Pulsinelli WA,James BB.A new model of bilateral hemispheric ischemia in the unanesthetised rat[J].Stroke,1979,10:267-272.
    [3]皮业庆 缺血再灌注模型 汪谦主编《现代医学方法》人民卫生出版社,1997,第一版:904-905.
    [4]Schaller B.Ischemic preconditioning as induction of ischemic tolerance after transient ischemic attacks in human brain.Its clinical relevance.Neurosci.Lett.2005,377,206-211.
    [5]Dowden J,Corbett D,Ischemic preconditioning in 18-20 month old gerbils:long-term survival with functional outcome measures[J].Stroke,1999,30(6):240-246.
    [6]Kitagawa K,Matsumoto M,Mabuchi T,et al.Ischemic tolerance in hippocampal CA1 neurons studied using contralateral controls [J].Neuroscience,1997,81:989-998.
    [7]Matsunaga H,Ueda H.Evidence for serum-deprivation-induced co-release of FGF-1 and S100A13 from astrocytes.Neurochem Int.2006 Aug;49(3):294-303.
    [8]Matsunaga H,Ueda H.Synergistic Ca~(2+)and Cu~(2+)requirements of the FGF1-S100A13 interaction measured by quartz crystal microbalance:An initial step in amlexanox-reversible non-classical release of FGF1.Neurochem Int.2008 May;52(6):1076-1085.
    [9]Kinukawa H,Jikou T,Nitta A,Furukawa Y,Hashimoto M,Fukumitsu H,Nomoto H,Furukawa S.Cyclic AMP/protein kinase a signal attenuates Ca(2+)-induced fibroblast growth factor-1 synthesis in rat cortical neurons.J Neurosci Res.2004 Aug 15;77(4):487-497.
    [10]Nagayasu Y,Ito JI,Nishida T,Yokoyama S.Reactivity of Astrocytes to Fibroblast Growth Factor-1 for Biogenesis of Apolipoprotein E-High Density Lipoprotein is Down-Regulated by Long-Time Secondary Culture.J Biochem.2008 Jan 23.
    [11]Reimers D,Lopez-Toledano MA,Mason I,et al.Developmental expression of fibroblast growth factor(FGF)receptors in neural stem cell progeny: modulation of neuronal and glial lineages by basic FGF treatment [J] . Neurol Res, 2001 ,23(6): 612-621.
    [12] Hossain M A, Russell J C, Gomez R, et al. Neuroprotection by catter factor Phepatocyte growth factor and aFGF in cerebellar ranule neurons is phosphatidylinositol 3-kinase Pakt-dependent and mapkpcreb-independent. J Neurochem,2002 ,81 (2) :365-378.
    [13] Aletsee C, Volter C,Brors D, et al. Effect of fibroblast growthfactor21 (FGF21) on spiral ganglion cells of the mammalian cochlea. Hno, 2000, 48(6) : 457-461.
    [14] Walshe J, Mason I. Expression of FGFR-1, FGFR-2 and FGFR-3 during early neural development in the chick embrya. Mech Dev, 2000, 90:103 - 110.
    [15] Caron A, Michelet S, Caron A, Sordello S, Ivanov MA, Delaère P, Branellec D, Schwartz B, Emmanuel F. Human FGF-1 gene transfer promotes the formation of collateral vessels and arterioles in ischemic muscles of hypercholesterolemic hamsters. J Gene Med. 2004 Sep;6(9): 1033-45.
    [16] Hara Y, Tooyama I, Yasuhara O, Akiyama H, McGeer PL, Handa J, Kimura H. Acidic fibroblast growth factor-like immunoreactivity in rat brain following cerebral infarction. Brain Res. 1994 Nov 21;664(1-2):101-107.
    [17] Li AJ, Oomura Y, Sasaki K, Suzuki K, Hori T. Protective effect of acidic fibroblast growth factor against ischemia-induced learning and memory deficits in two tasks in gerbils. Physiol Behav. 1999 Jun;66(4):577-583.
    [18] Ras Trokovic, Tomi Jukkol, Jonna Saarim7ki, Paula Peltopuro, Thorsten Naserke,Daniela M. Vogt Weisenhorn, Nina Trokovic, Wolfgang Wurst, Juha Partanen. Fgfr1-dependent boundary cells between developing mid- and hindbrain.. Developmental Biology 278 (2005) 428-439.
    [19] C. S. Weickert, D. A. kittell, R. C. saunders, M. M. herman, R. A. horlick, J. E. kleinman, T. M. hyde. Basic fibroblast growth factor and fibroblast growth factor receptor-1 in the human hippocampal formation. Neuroscience 131 (2005) 219-233.
    [20] Liu X, Zhu XZ. Increased expression and nuclear accumulation of basic fibroblast growth factor in primary cultured astrocytes following ischemic-like insults. Brain Res Mol Brain Res. 1999 Aug 25;71(2): 171 - 177.
    [21] Vargas MR, Pehar M, Cassina P, Martinez-Palma L, Thompson JA, Beckman JS, Barbeito L. Fibroblast growth factor-1 induces heme oxygenase-1 via nuclear factor erythroid 2-related factor 2 (Nrf2) in spinal cord astrocytes: consequences for motor neuron survival. J Biol Chem. 2005 Jul 8;280(27):25571-25579.
    [22] Bouleau S, Grimal H, Rincheval V, Godefroy N, Mignotte B, Vayssière JL, Renaud F. FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway. Oncogene. 2005 Nov 24;24(53):7839-7849.
    [23] Egusa, H, Schweizer, F. E, Wang, C. C, Matsuka, Y, and Nishimura, I. (2005) J. Biol. Chem. 280, 23691-23697.
    [24] Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW. Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem. 2008 Feb 29;283(9):5287-5295.
    [25] Forough R, Weylie B, Patel C, Ambrus S, Singh US, Zhu J. Role of AKT/PKB signaling in fibroblast growth factor-1 (FGF-1)-induced angiogenesis in the chicken chorioallantoic membrane (CAM). J Cell Biochem.2005 Jan 1;94(1):109-116.
    [26] Uriel S, Brey EM, Greisler HP. Sustained low levels of fibroblast growth factor-1 promote persistent microvascular network formation. Am J Surg. 2006 Nov; 192 (5): 604-609.
    [27] Hayrabedyan S, Kyurkchiev S, Kehayov I. FGF-1 and S100A13 possibly contribute to angiogenesis in endometriosis. J Reprod Immunol. 2005 Oct;67(1-2):87-101.
    [28] Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: from biology through engineering to potential medical applications. Crit Rev Clin Lab Sci. 2008; 45 (1) :91-135.
    [29] Wu X, Su Z, Li X, Zheng Q, Huang Y, Yuan H. High-level expression and purification of a nonmitogenic form of human acidic fibroblast growth factor in Escherichia coli. Protein Expr Purif. 2005 Jul;42(1):7-11.
    [1]Murry CE,Jennings RB,Reimer KA,et al.Preconolitioning with ischemia:a delay of lethal cell injury in ischemic myocardium.[J].Circulation,1986,74:1124-1136.
    [2]Kitagawa K,Matsumoto M,Tagaya M,et al."Ischemic tolerance" phenomenon found in the brain.Brain Res,1990,528(1):21-26.
    [3]Xu GP,Dave KR,Vivero R,Schmidt-Kastner R,Sick TJ,Perez-Pinzon MA.Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures.Brain Res.2002,952,153-158.
    [4]Perez-Pinzon MA,Rosenthal M,Lutz PL,Sick TJ.Anoxic survival of the isolated cerebellum of the turtle Pseudemis scripta elegans.J.Comp.Physiol.B 1992,162,68-73.
    [5]Sheng H,Laskowizt DT,Pearlstein RD,Warner DS.Characterization of a recovery global cerebral ischemia model in the mouse.J Neurosci Methods 1999;88:103-109.
    [6]Pulsinelli WA,Brierley JB.A new model of bilateral hemispheric ischemia in the unanesthetised rat.[J].Stroke,1979,10:267-272.
    [7] Dowden J,Corbett D,Ischemic preconditioning in 18—20 month old gerbils:long-term survival with functional outcome measures. [J]. Stroke, 1999, 30 (6): 240-246.
    [8] Bruer U, Weih MK, Isaer NK, et al. Induction of tolerance in rat cortical neurous:hypoxic preconditioning. [J].FEBS Lett, 1997,4 (1):117-121.
    [9] Belayev I, Ginsberg MD. Bilateral ischemic tolerance of not hippocampus induced by prior unilateral focal ischemia relationship to c-fos mRNA. Neuroreport 1996; 8 (1):55-59.
    [10] Pera J, Zawadzka M, Kaminska B, et al. Neurotrophic factor expression after focal brain ischemia preceded by different preconditioning strategies[J]. Cerebrovasc Dis, 2005,19 (4):247-252.
    [11] Tokuno S, Hinokiyama K, Tokuno K, et al.Spontaneous ischemic events in the brain and heart adapt the hearts of severely atherosclerotic mice to ischemia. Arterioscler Thromb Vasc Biol 2002;22:995.
    [12] Vlasov TD, Korzhevskii DE, Poliakova EA. Ischemic adaptation of the rat brain as a method for protection of endothelium from Ischemic reperfusion injury. Ross Fiziol Zh Im I M Sechenova 2004;90:40.
    [13] Dave KB, Saul I, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett. 2006,404:170-175.
    [14] Jin RL, Li WB, Li QJ, Zhang M, Xian XH, Sun XC, Zhao HG, Qi J. The role of extracellular signal-regulated kinases in the neuroprotectioning of limb ischemic preconditioning. Neurosci Res. 2006, 55:65-73.
    [15] Steiger HJ, Hanggi D. Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir (Wien). 2007, 149:1 - 10.
    [16] C Ren, X Gao, G K Steinberg, H Zhao. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience 151 (2008) 1099-1103.
    [17] Pasupathy S, Homer-Vanniasinkan S. Ischaemic preconditioning protects against ischaemia/reperfusion injury: Emerging concepts. Eur J Vasc Endovasc Surg 2005;29:106.
    [18] Sun HS, Feng ZP, Miki T, Seino S, French RJ. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K~+ channels. J Neurophysiol. 2006,95,2590-2601.
    [19] Yao ZH, Gross GJ, A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs efficacy time course, and role of KATP channels.[J] Circulation 1994, 89,1229-1236.
    [20] Takano H, Bolli R, Richard G, et al.A1 or A3 adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms.[J] Circ Res. 2001,88:520-528.
    [21] Xu ZL, Mueller RA, Park SS, et al. Cardioprotection with adenosine A2 receptor activation at reperfusion. [J] J Cardiovase Pharmacol. 2005,46:794-804.
    [22] Abbracchio MP, Cattabeni F, Brain aderosine receptors as targets for therapeutic intervention in neurodegenerative diseases.[J]. Ann NY Acad sci, 1999,890:79.
    [23] Lu GW. Changes of adenosine and its A1 receptor in hypoxic preconditioning. Biol. Signals Receipt 1999;8(4-5):275-280.
    [24] Bhardwaj A,Alkayed NJ,Kirsch JR,Hurn PD:Mechanisms of ischemic brain damage.Curr Cardiol Rep 2003, 5:160-167.
    [25] Hashiguchi A, Yano S, Morioka M, Hamada J, Ushio Y, Takeuchi Y, Fukugnaga K:Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab 2004,24:271-279.
    [26] Huang PL:Nitric oxide and cerebral ischemic preconditioning.Cell Calcium 2004,36:232-329.
    [27] Albrecht EW, Stegeman CA, Heeringa P, et al. Protective role of endothelial nitric oxide synthase. J Pathol 2003; 199:8.
    [28] Kubes P, McCafferty DM. Nitric oxide and intestinal inflammation. Am J Med 2000;109:150.
    [29] Prass K, Buscher K, Karsch M, Isaev N, Megow D, Priller J, ScharffA, Dirnagl U, Meisel A. Desferoxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J. Cereb. Blood Flow Metab. 2002,22, 520-525.
    [30] Hamrick SE, McQuillen, PS, Jiang X, Mu D, Madan A, Ferriero D.M. A role for hypoxia-inducible factor-1 alpha in desferoxamine neuroprotection. Neurosci. Lett. 2005,379,96-100.
    [31] Prass K, Buscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A. Desferoxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro.J. Cereb. Blood Flow Metab. 2002,22,520-525.
    [32] Demougeot C, Van Hoecke M, Brtrand N, Prigent-Tessier A, Mossiat C, Beley A, Marie C. Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2'- dipyridyl in the rat photothrombotic ischemic stroke model.J Pharmacol. Exp. Ther. 2004, 311,1080-1087.
    [33] Moos T,Brain iron homeostasis.Dan. Med.Bull.2002,49,279-301.
    [34] Carbonell T, Rama R. Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr. Med. Chem. 2007, 14,857-874.
    [35] Mehta S.H, Webb R.C, Ergul A, Tawfik A, Dorrance A.M. Neuroprotection by tempol in a model of iron-induced oxidative stress in acute ischemic stroke. Am. J. Physiol, Regul. Integr. Comp. Physiol. 2004,286,283-288.
    [36] Mailhos C, Howard MK, Latchman DS. Heat shock proteins hsp70 protect neuronal cells from thermal stress but not from programmed cell death. J. Neurochem. 1994,63,1787-1795.
    [37] Wen TC, Sadamoto Y, Tanaka J, et al. Erythropoietin protects neurous against chemical hypoxia and cerebral ischemic injury by upregulating Bcl-2 expression.[J]. Neurosci Res, 2002,67(6):795-803.
    [38] Liu D, Lu C, Wan R, Auyeung WW, Mattson MP. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome C release. J. Cereb. Blood Flow Metab. 2002,22,431-443.
    [39] Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P. Identification and properties of a novel intracellular(mitochondrial)ATP-sensitive potassium channel in brain. J. Biol. Chem. 2001,276, 33369-33374.
    [40] Lacza Z, Snipes JA, Kis B, Szabo C, Grover G, Busija DW. Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+channel in the brain.Brain Res. 2003, 994,27-36.
    [41] Ami P. Raval, Kunjan R, Dave R, Anthony DeFazio, Miguel A, Perez-Pinzon. ΣPKC phosphorylates the mitochondrial K~+ APT channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res. 2007, 1184, 345-353.
    [42] Takeda A, Onodera H, Sugimoto A, Kogure K, Obinata M, Shibahara S. Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischemia. Neuroscience 1993,55,23-31.
    [43] Shozuhara H, Onodera H, Katoh-Semba R, Kato K, Yamasaki Y, Kogure K. Temporal profiles of nerve growth factor beta-subunit level in rat brain regions after transient ischemia. Neurochem, 1992,59,175-180.
    [44] Tsong-hai Lee, Jen-Tsung Yang, Yu-Shien Ko, Hiroyuki Kato, Yasuto Itoyama, Kyuya Kogure. Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia. Brain Research. 2008,1187,1 - 11.
    [45] Kluck RM,Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome C from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997;275:1132-1136.
    [46] Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, et al. Prevention of apoptosis by Bcl-2:release of cytochrome C from mitochondria blocked. Science 1997; 275:1129-32.
    [47] Liu D, Lu C, Wan R, Auyeung WW, Mattson MP. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome C release. J Cereb. Blood Flow Metabol. 2002,22,431-443.
    [48] Ettaiche M, Heurteaux C, Blondeau N, Borsotto M, Tinel N, Lazdunski M. ATP-sensitive potassium channels(KATP) in retina: a key role for delayed ischemic tolerance. Brain Res. 2001, 890,118-129.
    [49] Tikhomirov O, Carpenter G. Bax activation and translocation to mitochondria mediate EGF-induced cell death. J. Cell Sci. 2005,118, 5681-5690.
    [50] Niquet J, Seo DW, Wasterlain CG. Mitochondrial pathways of neuronal necrosis. Biochem Soc Trans 2006; 34:1347-1351.
    [51] Tanaka H, Yokota H, Jover T, Cappuccio I, Calderone A, Simionescu M, et al. Ischemic preconditioning:neuronal survival in the face of caspase-3 activation. J Neurosci 2004;24:2750-2759.
    [52] Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B,et al. Bax activation and mitochondrial insertion during apoptosis. Apoptosis 2007;12:887-896.
    [53] Precht RA, Phelps RA, Linseman DA, Butts BD, Le SS, Laessig TA, et al. The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ 2005;12:255-265.
    [54] J. Wang, R. Bright, D. Mochly-Rosen, R.G. Giffard, Cell-specific rolefor epsilon- and betaI-protein kinase C isozymes in protecting cortical neurons and astrocytes from ischemia-like injury, Neuropharmacology 47 (2004) 136-145.
    [55] S. Koponen, G. Goldsteins, R. Keinanen, J. Koistinaho, Induction of protein kinase Cdelta subspecies in neurons and microglia after transient global brain ischemia, J. Cereb. Blood Flow Metab. 20 (2000) 93-102.
    [56] Raval A P, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA. Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J. Neurosci, 2003, 23, 384-391.
    [57] Lange-Asschenfeldt C, Raval AP, Dave PR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA. Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J. Cereb. Blood Flow Metab. 2004, 24, 636-645.
    [58] S. Miettinen, R. Roivainen, R. Keinanen, T. Hokfelt, J. Koistinaho, Specific induction of protein kinase C delta subspecies after transient middle cerebral artery occlusion in the rat brain: inhibition by MK-801, J. Neurosci. 16 (1996) 6236-6245.
    [59] S. Savithiry, K. Kumar, mRNA levels of Ca~(2+)-independent forms of protein kinase C in postischemic gerbil brain by Northern blot analysis, Mol. Chem. Neuropathol. 21 (1994) 1 - 11.
    [60] R. Selvatici, S. Marino, C. Piubello, D. Rodi, L. Beani, E. Gandini, A.Siniscalchi, Protein kinase C activity, translocation, and selective isoform subcellular redistribution in the rat cerebral cortex after in vitro ischemia, J. Neurosci. Res. 71(2003)64-71.
    [61] Brunet A, Datta SR, Greenberg ME. Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 2001,11:297-305.
    [62] Yin W, Signore AP, Iwai M, Cao G, Gao Y, Johnnides MJ, Hickry RW, Chen J. Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke 2007,38:1017-1024.
    [63] Garcia L, Burda J, Hrehorovska M, Burda R, Martin ME, Salinas M. Ischaemic preconditioning in the rat brain: effect on the activity of several initiation factors, Akt and extracellular signal-regulated protein kinase phosphorylation, and GRP78 and GADD34 expression. J Neurochem 2004,88:136-147.
    [64] Nakajima T, Iwabuchi S, Miyazaki H, Okuma Y, Kuwabara M, Nomura Y, Kawahara K. Preconditioning prevents ischemia-induced neuronal death through persistent Akt activation in the peumbra region of the rat brain. J Vet Med Sci 2004,66:521-527.
    [65] Yano J, Miyamoto E, Ushio Y. Activation of Atk/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb blood Flow Metab 2001, 21: 351-360.
    [66] Garcia L, Burda J, Hrehorovska M, Burda R, Martin ME, Salinas M. Ischaemic preconditioning in the rat brain:effect on the activity of several initiation factors, Akt and extracellular signal-regulated protein kinase phosphorylation, and GRP78 and GADD34 expression. J Neurochem 2004; 88:136-147.
    [67] Heiss WD. Best measure of ischemic penumbra: positron emission tomography. Stroke. 2003, 34, 2534-2535.
    [68] Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and necrosis. Brain Res. Bull. 1998,46,281-309.
    [69] Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev, Neurosci. 2003,4, 399-415.
    [70] Liou AK, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia,traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog. Neurobiol.2003,69,103-142.
    [71] Schaller B. Prospects to the future: the role of free radicals in the treatment of stroke. Free Radical.Biol. Med.2005,38,411-425.
    [72] Muller GJ, Stadelmann C, Bastholm L, Elling F, Lassmann H, Johansen FF. Ischemia leads to apoptosis- and necrosis-like neuron death in the ischemic rat hippocampus. Brain Pathol 2004;14:415-424.
    [73] Wei L, Ying DJ, Cui L, Langsdorf J, Yu SP. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res 2004; 1022:54-61.
    [74] Lau A, Arundine M, Sun HS, Jones M, Tymianski M. Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 2006; 26: 11540-11553.
    [75] Tsubokawa T, Jadhav V, Solaroglu I, Shiokawa Y, Konishi Y, Zhang JH. Lecithinized superoxide dismutase improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Stroke 2007; 38:1057-1062.
    [76] Allain R, Marone LK, Meltzer J, Jeyabalan G. Carotid endarterectomy. Int Anesthesiol Clin 2005,43:15-38.
    [77] Wilson PV, Ammar AD. The incidence of ischemic stroke versus intracerebral hemorrhage after carotid endarterectomy: a review of 2452 cases. Ann Vasc Surg 2005,19:1-4.
    [78] Ferguson GG, Eliasziw M, Barr HWK, Clagett GP, Barnes RW, Wallace MC, Taylor DW, Haynes RB, Finan JW, Hachinski VC, Barnett HJM: The North American Symptomatic Carotid Endarterectomy Trial: surgical results in 1415 patients. Stroke 1999, 30:1751 - 1758.
    [79] Ferguson GG, Eliasziw M, Barr HWK, Clagett GP, Barnes RW, Wallace MC, Taylor DW, Haynes RB, Finan JW, Hachinski VC, Barnett HJM. The North American Symptomatic Carotid Endarterectomy Trial:surgical results in 1415 patients. Stroke 1999, 30:1751 - 1758.
    [80] Koch CG, Khandwala F, Cywinski JB, Ishwaran H, Estafanous FG, Loop FD, Blackstone EH. Health-related quality of life after coronary artery bypass grafting:a gender analysis using the Duke Activity Status Index.J Thorac Cardiovasc Surg 2004,128: 284-295.
    [81] Ozatik MA, Gol MK, Fansa I, Uncu H, Kucuker SA, Kucukaksu S, Bayazit M, Sener E, Tasdemir O.Risk factors for stroke following coronary artery bypass operations. J Card Surg 2005, 20:52-57.
    [82] Weise J, Kuschke S, Bahr M. Gender-specific risk of perioperative complications in carotid endarterectomy patients with contralateral carotid artery stenosis or occlusion. J Neurol 2004, 251: 834-844.
    [83] Bond R, Rerkasem K, Cuffe R, Rothwell PM. A systematic review of the associations between age and sex and the operative risks of carotid endarterectomy. Cerebrovasc Dis 2005, 20: 69-77.
    [84] Murphy SJ, Mccullough LD, Smith JM. Stroke in the female:role of biological sex and estrogen. ILAR J 2004, 45: 147-159.
    [85] Schaller BJ. Influence of age on stroke and preconditioning-induced ischemic tolerance in the brain.Exp Neurol 2007, 205: 9-19.
    [86] Moncayo, J, de Freitas, G.R, Bogousslavsky, J, Altieri, M, van Melle, G. Do transient ischemic attacks have a neuroprotective effect. Neurology 2000, 54, 2089-2094.
    [87] Wegener. S, Gottschalk. B, Jovanovic. V, Knab. R, Fiebach. J.B, Schellinger. P.D, Kucinski. T, Jungehulsing. G.J, Brunecker. P, Muller. B, Banasik. A, Amberger. N, Wernecke. K.D, Siebler. M, Rother. J, Villringer. A, Weih. M. Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke, 2004,35, 616-621.
    [88] Nishio.S.C, Z-F, Yunoki. M, Toyoda. T, Anzivino. M, Lee. K.S. Hypothermia-induced ischemic tolerance. Ann. N. Y.Acad. Sci. 1999,890, 26-41.
    [1]Hoshikawa M,Ohbayshi N,Yonamine A.Structure and expression of a novel fibroblast growth factor,FGF-17,preferentially expressed in the embryonic brain.[J].Biochem Biophys Res Commu,1999,244:187-191.
    [2]Payson RA,Canatan H,Chotari MA,et al.Cloning of two novel forms of human acidic fibroblast growth factor( aFGF) mRNA. Nucleic Acids Res, 1993, 21: 489-495.
    [3] Reimers D, Lopez-Toledano MA, Mason I, et al. Developmental expression of fibroblast growth factor (FGF) receptors in neural stem cell progeny: modulation of neuronal and glial lineages by basic FGF treatment [J]. Neurol Res, 2001, 23(6): 6122-621.
    [4] Hossain M A, Russell J C, Gomez R, et al. Neuroprotection by carter factorPhepatocyte growth factor and aFGF in cerebellar ranule neurons is phosphatidylinositol 3 kinase Pakt-dependent and mapkpcreb-independent. J Neurochem,2002 ,81 (2) :365-378.
    [5] Aletsee C, Volter C, Brors D, et al. Effect of fibroblast growthfactor21 (FGF21) on spiral ganglion cells of the mammalian cochlea. Hno, 2000, 48(6) :457-461.
    [6] M.Wolan'ska, E. Ban'kowski. Fibroblast growth factors (FGF) in human myometrium and uterine leiomyomas in various stages of tumour growth. Biochimie 88 (2006) 141 - 146.
    [7] C.J. Powers, S.W. McLeskey, A. Wellstein, Fibroblast growth factor,their receptors and signaling, Endocr. Relat. Cancer 7 (2000) 165-167.
    [8] P. Klint, L. Claesson-Welsh, Signal transduction by fibroblast growth receptors, Front. Biosci. 4 (1999) D165-D177.
    [9] Chiuim, Touhaliskyk, Baranc. Multiple controllingmecha-nismsof FGF-1 gene expression through multiple tissue-specific promoters[J]. ProgNucleic Acid ResMol Biol, 2001, 70:155-174.
    [10] Graziani I, Bagala C, Duarte M, Soldi R, Kolev V, Tarantini F, Kumar TK, Doyle A, Neivandt D, Yu C, Maciag T, Prudovsky I. Release of FGF-1 and p40 synaptotagmin 1 correlates with their membrane destabilizing ability. Biochem Biophys Res Commun. 2006 Oct 13;349(1):192-199.
    [11] Matsunaga H, Ueda H. Synergistic Ca~(2+) and Cu~(2+) requirements of the FGF1-S100A13 interaction measured by quartz crystal microbalance: An initial step in amlexanox-reversible non-classical release of FGF1. Neurochem Int. 2008 May;52(6):1076-1085.
    [12] Wu XF,Xu YX,Shen GX,etal.Surface plasmon resonance analysis to evaluate the importance of heparin sulfate groups binding with human aFGF and bFGF.[J]. J Zhejiang Univ Sci,2003,4(1):86-94.
    [13] Pye DA, Vives RR, Hyde P, etal. Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. [J]. Glycobiology, 2000,10(11):1183-1192.
    [14] Kreuger J, Jemth P, Sanders-Lindberg E, Eliahu L, Ron D, Basilico C, Salmivirta M, Lindahl U. Fibroblast growth factors share binding sites in heparan sulphate. Biochem J. 2005 Jul 1;389(Pt 1):145-50.
    [15] Guzman-Casado M, Cardenete A, Gimenez-Gallego G, etal. Myo-inositol hexasulphate and low molecular weight heparin binding to human acidic fibroblast growthfactor: a calorimetric and FTIR study[J]. Int J Biol Macromol, 2001,28(4):305-313.
    [16] Arakawa T, Hoist P, Narhi LO, etal. The importance of Arg40 and 45 in the mitogenic activity and structural stability of basic fibroblast growth factor:effects of acidic aminoacid substitutions.[J]. J Protein Chem, 1995,14(5):263-274.
    [17] Yao Zhonglin, Song Yiyao, Hawiger J. Role of nucler localization sequence in fibroblast growth factor 1-stimulated mitogenic pathways. [J]. J Biol Chem, 1996, 271:5303-5308.
    [18] Thorns V, Licastro F, Masliah E. Locally reduced levels of acidic FGF lead to decreased expression of 28-kda calbindin and contribute to the selective vulnerability of the neurons in the entorhinal cortex in Alzheimer's disease. Neuropathology. 2001,21:203-211.
    [19] Thorns V, Masliah E. Evidence for neuroprotective effects of acidic fibroblast growth factor in alzheimer disease. J Neuropathol Exp Neurol, 1999, 58 :296-306.
    [20] Mattson MP, Cheng B. Growth factors protect neurons against excitotoxic/ischemic damage by stabilizing calcium homeostasis.Stroke, 1993, 24:136-140.
    [21] Kinukawa H, Jikou T, Nitta A, Furukawa Y, Hashimoto M, Fukumitsu H, Nomoto H, Furukawa S. Cyclic AMP/protein kinase a signal attenuates Ca~(2+)-induced fibroblast growth factor-1 synthesis in rat cortical neurons. J Neurosci Res. 2004 Aug 15;77(4):487-97.
    [22] Figueiredo BC, Pluss K, Skup M, et al. Acidic FGF induces NGF and its mRNA in the injured neocortex of adult animals.[J] . Brain Res Mol Brain Res,1995, 33
    [23] Li JM, Brackman DE, Hitselberger WE, et al. Coexpression of neurotrophic rowth factors and their receptors in human facial motor neurons. [J]. Anntol Rhinol Laryngol, 1999,108 : 903-908.
    [24] Jchnson DE, Williams LT. Structural and functional diversity in FGF receptor multigene family. Adv Cancer Res,1993, 60 : 1-41.
    [25] Kage M, Yang Q, Sato H, et al. Acidic fibroblast growth factor (FGF21) in the anterior horn cells of ALS and control cases. Neuroreport, 2001, 12 (17):3799-3803.
    [26] Reimers D, Lopez-Toledano MA, Mason I, et al. Developmental expression of fibroblast growth factor (FGF) receptors in neural stem cell progeny: modulation of neuronal and glial lineages by basic FGF treatment [J]. Neurol Res, 2001,23(6): 612-621.
    [27] Lee YS, Baratta J, Yu J, et al. aFGF promotes axonal growth in rat spinal cord organotypic slice co-cultures. [J]. J Neurotrauma, 2002,19(3) :357-367.
    [28] Kerekes N, Marc L, Karin L, et al. Effect of NGF, BDNF, bFGF, aFGF and cell density on NPYexpression in cultured rat dorsal root ganglion neurons. [J]. J Auto Nerv System, 2000,81 :128-138.
    [29] Malecki, J, Wiedlocha, A, Wesche, J, Olsnes, S. Vesicle transmembrane potential is required for translocation to the cytosol of externally added growth factor. EMBO J. 2002,21 (17), 1-11.
    [30] Ribatti D,Conconi MT, Nico B, et al. Angiogenic response induced by acellular brain scaffolds grafted onto the chick embryo chorioalantoic embrane. [J]. Brain Res, 2003, 989 (1) :9-15.
    [31] Uriel S, Brey EM, Greisler HP. Sustained low levels of fibroblast growth factor-1 promote persistent microvascular network formation. Am J Surg. 2006 Nov;192(5):604-609.
    [32] Cuevas P et al. Spasmolytic effect of acidic fibroblast growth factor in early cerebral vasospasm in the rat. Surg Neurol, 1998, 49 :176- 184.
    [33] P. Cuevas, F. Carceller, R.M. Lozano, A. Crespo, M. Zazo, G.Gimenez-Gallego, Protection of rat myocardium by mitogenic and non-mitogenic Wbroblast growth factor during post-ischemic reperfusion, Growth Factors, 1997, 15 (1): 29-40.
    [34] P. Cuevas, F. Carceller, I. Munoz-Willery, G. Gimenez-Gallego, Intravenous Wbroblast growth factor penetrates the blood-brain barrier and protects hippocampal neurons against ischemia-reperfusion injury, Surg. Neurol. 49 (1) (1998) 77-83.
    
    [35] Cuevas P, Carceller F, Munoz Willery I, et al. Intravenous fibroblastgrowth factor penetrates the blood-brain barrier and protects hippocampal neurons against ischemia-reperfusion injury. Surg Neurol, 1998,49 :77-83.
    
    [36] Li AJ, Oomura Y, Sasaki K, Suzuki K, Hori T. Protective effect of acidic fibroblast growth factor against ischemia-induced learning and memory deficits in two tasks in gerbils. Physiol Behav. 1999 Jun;66 (4):577-83.
    
    [37] Yamagata H, Chen Y, Akatsu H, Kamino K, Ito J, Yokoyama S, Yamamoto T, Kosaka K, Miki T, Kondo I. Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite Alzheimer's disease. Biochem Biophys Res Commun. 2004 Aug 20;321(2):320-323.
    
    [38] Saito A, Okano H, Bamba H, Hisa Y, Oomura Y, Imamura T, Tooyama I. Low expression of FGF1 (fibroblast growth factor-1) in rat parasympathetic preganglionic neurons. Histol Histopathol. 2007 Dec;22(12):1327-1335.
    
    [39] Cassina P, Pehar M, Vargas MR, Castellanos R, Barbeito AG, Estévez AG, Thompson JA, Beckman JS, Barbeito L. Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem. 2005 Apr; 93(1):38-46.
    
    [40] X.-L. Li, S. Aou, T. Hori, N. Hori, K. Sasaki, Ikuo Tooyama,Y. Oomura Chronic subcutaneous injection of [Ala]16-aFGF(1-29) improves behavior deficit of OLETF rats. Abstracts / Frontiers in Neuroendocrinology 27 (2006) 20-22.
    
    [41] Nicolaj S. Christophersen, Xia Meijer, Jesper R. J0rgensen, Ulrica Englund, Mette Granborg , A° ke Seiger, Patrik Brundin, Lars U. Wahlberg. Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain. Brain Research Bulletin 70 (2006) 457-466.
    
    [42] N ish izuka Y. Protein kinases C and lipid signaling for sustained cellular responses. [J]. FA SEB J, 1995, 9: 484 -490.
    
    [43] Everall IP, Trillo-Pazos G, Bell C , et al. Amelioration of neurotoxic effects of HIV envelope protein gp120 by fibroblast growth factor: a strategy for neuroprotection [J] J Neuropathol Exp Neurol, 2001, 60 (3): 293-301.
    [44] La Spada AR. Huntington's disease and neurogensis:FGF-2 to the rescue? Proc Natl Acad Sci USA, 2005, 102:17889-17890.
    [45] Jin K, LaFevre-Bernt M, Sun Y, et al. FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington's dease. Proc Natl Acad Sci USA, 2005,102:18189-18194.
    [46] Lee.Y-S; Hsiao.I; Lin.V. Peripheral nerve graft and aFGF restore partial hindlimb function in adult paraplegic rats. J. Neurotrauma, 2002, 19:1203-1216.
    [47] Liang-Ming Lee, Ming-Chao Huang, Tien-Yow Chuang, Liang-Shong Lee, Henrich Cheng, I-Hui Lee. provide a useful tool in evaluating such regeneration. Life Sciences 74 (2004) 1937-1943.
    [48] Lin PH, Cheng H, Huang WC, Chuang TY. Spinal cord implantation with acidic fibroblast growth factor as a treatment for root avulsion in obstetric brachial plexus palsy. J Chin Med Assoc. 2005 Aug; 68(8):392-396.
    [49] Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: from biology through engineering to potential medical applications. Crit Rev Clin Lab Sci. 2008;45(1):91-135.
    [50] Chen GJ, Forough R. Fibroblast growth factors, fibroblast growth factor receptors, diseases, and drugs. Recent Patents Cardiovasc Drug Discov. 2006 Jun;1(2):211-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700