自然纳米结构的光功能特性及仿生应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大自然是创造的宝库,是人类赖以生存的基础和智慧的源泉。在长达亿万年的进化过程中,大自然中的各种生物为了更好地适应环境,在激烈的生存竞争中胜出,进化出了及其丰富的纳米身体结构来满足其对于特殊光功能的需求。仿生学是一门古老的学科,从人类诞生以来我们就不断地汲取着大自然智慧的养分。进入新世纪以来,由于能源问题和人口问题等危机日益突出,探索和制备新型的光功能纳米结构的需求越来越迫切,一系列自然光功能纳米结构的发现和深入研究为解决这个问题提供了新的可能性。
     基于此认识,本研究在以下方面做出了尝试。一方面,对Ornithoptera goliath,Troides aeacus和Papilio helenus Linnaeus三种蝴蝶黑色翅膀背部鳞片的微结构和光学性能进行了研究,并进行了三维时域有限差分法的建模计算和理论分析;另一方面,利用在Ornithoptera goliath翅膀背部黑色鳞片中发现的高效纳米减反结构制备了超黑超薄的非晶碳薄膜;除了以上两个方面之外,还对植物叶片中的分级纳米多孔结构对所制备的发光材料的光性能的影响进行了研究和计算。所得的主要研究结论如下:
     1.在三种黑色蝴蝶翅膀背部鳞片中发现了三种不同的可以有效增加光吸收的纳米结构,分别为Ornithoptera goliath中类似微波暗室吸波体的尖劈形结构、Troides aeacus中脊隔交错纳米双排孔结构以及Papilio helenus Linnaeus中的类蜂窝状亚波长纳米孔阵列。以上纳米结构使黑色鳞片实现了99%的光吸收和1%的光反射,其中对于反射的衰减达到92%。
     2.基于Ornithoptera goliath中的倒V型尖劈纳米结构,通过真空烧结法制备了超黑超薄的非晶碳薄膜。薄膜的厚度只有5μm,只有之前报道的超黑才老的1/6左右,但是对于光线的吸收性能却与之相近。薄膜中倒V型的纳米减反结构使得反射的能量只有平板结构碳膜的1/14。除此之外,本研究还第一次计算出了生物质资源转化的非晶碳材料在可见光波段的复折射率。
     3.通过对比继承自树叶结构的具有纳米分级多孔的硅酸钙发光材料以及不具有纳米分级多孔结构的硅酸钙发光材料的发光性能,并进行相关的实验和理论计算,发现纳米分级多孔结构可以在材料表面形成折射率递增的高效减反层,同时有效增加材料的比表面积和孔容,使材料有更高的光吸收和发光效率。
Fast-developing technology and industry place urgent calls on novel high-efficient and environment-friendly optical nano-materials, which contribute to better life and sustainable living. Distinct novel optical properties can be achieved by applying carefully designed nanostructures into appropriate materials due to the nanometer confinement of radiation.
     Compared with our finite knowledge, nature provides us millions of years of research that can help us. With a goal to achieve high performance nanophotonic design in a biomimetic manner, this study has been carried out with emphasis on three sections.
     Section?I mainly reports the discovery of three different types of novel nano-scale antireflection architectures in the dorsal scales of the black wings of butterfly Ornithoptera goliath, Troides aeacus and Papilio helenus Linnaeus respectively. The corrugated and porous architectures help reduce additive reflective energy loss from 14% in visible light for a planar scale to merely ~1% or even less, and contribute more than 10% increase in absorption, which can improve the competitiveness of the butterflies for survival.
     Section II mainly describes an ultrathin but super black a-C film which is inspired by the anti-reflection inverse-V type architecture in black wings of butterfly Onithoptera goliath. This film achieved super blackness of an average of 99% light absorption and less than 1% reflection in the visible light spectrum (380nm-795nm). Compared with the flat plate amorphous carbon film, reflection reduces approximately 12 times. Reflection of the V-type surface a-C also reduces 7 times than that of glassy carbon whose reflection is about 8%.
     SectionⅢmainly discusses the effects of the natural hierarchical nano-pores on light harvesting efficiency and light emitting efficiency of the leaf-templated Eu3+ doped calcium silicate phosphor. The hierarchical nano-pores are arranged in layers which are characterized by the average pore size. The layered structure acts as a graded refractive index interface which greatly reduced wanted reflective radiation. The nano-pores also create much larger surface area and pore-volume, which also increase the light emitting property of the materials.
引文
[1] PARKER A R, Natural photonics for industrial inspiration, 2009, Phil. Trans. R. Soc. A 264: 1759-1782
    [2] GU Z, WEI H, ZHANG R, et al. Artificial silver ragwort surface, 2005, Applied Physics Letters 86 : 201915
    [3] EHLERINGER J R, BJORKMAN O, Pubescence and leaf spectral characteristics in a desert shrub Encelia farinosa, 1978, Oecologia 36 : 151-162
    [4] VIGNERON J P, RASSART M, VERTESY Z, et al. Optical structure and function of the white filamentary hair dorsaling the edelweiss bracts, 2005, Physical Review E 71: 011906
    [5] HEBANT C, LEE D W, Ultrastructural basis and developmental control of blue iridescence in Selaginella leaves, 1984, Amer. J. Bot. 71(2): 216-219
    [6] GERWICK W H, LANG N J, Structural color, chemical and ecological studies on iridescence in Iridaea (Rhodophyta), 1977, J. Phycol. 13:121-127
    [7] PEDERSON M, ROOMANS G M, HOFSTEN A, Blue iridescence and bromine in the cuticle of the red alga Chondrus crispus Stackh, 1980, Bot. Mar. 23: 193-196
    [8] VUKUSIC P, SAMBLES J R, Photonic structures in biology, 2003, Nature, 424: 852-856
    [9] LEE D W, On iridescent plants, 1977, Gardens Bulletin (Singapore) 30: 21-29
    [10] LEE D W, Unusual strategies of light absorption in rain forest herbs.,1986, In T. Givnish [ed.], On the economy of plant form and function, 105-131. Cambridge University Press, Cambridge
    [11] LEE D W, LOWRY J B, Physical basis and ecological significance in blue plants, 1975, Nature 254: 50-51
    [12] GRAHAM R M, LEE D W, NORSTOG K, Physical and ultrastructural basis of blue leaf iridescence in two neotropical ferns, 1993, American Journal of Botany 80: 198-203
    [13] HEBANT C W, LEE D W, Ultrastructural basis and development control of blue iridescence in Selganella leaves, 1984, American Journal of Botany 71: 216-219
    [14] NEVILLE A C, VAVENEY S C, Scarabaeid beetle exocuticle as an optical analogue o f cholesteric liquid crystal, 1969, Biological Reviews 44: 531-562
    [15] BROUILLARD R, 1983,The in vivo expression of anthocyanin colour in plants, Phytochemistry 22: 1311-1323
    [16] LEE D W, Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus, 1991, Nature 349: 260-262
    [17] WHITNEY H M, KOLLE M, ANDREW P, et al. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators, 2009, Science 323: 130-133
    [18] van BLAADEREN A, Opals in a new light, 1998, Science 282: 887-888
    [19] BAIER S, Die optik der edelopale, 1932, Z. Krist 81: 183
    [20] RAMAN C V, JAYARAMAN A, The structure and optical behavior of iridescent opal, 1953, Proc. Indian Acad. Sci. A. 38: 101
    [21] SANDERS J V, Colour of precious opal, 1964, Nature 204: 1151-1153
    [22] SANDERS J V, DARRAGH P J, The microstructure of precious opal, 1971, The Mineralogical Record 2: 261-268
    [23] BREWSTER D, Treatise on optics, 1953, 137-149
    [24] PFUND A, The colors of mother-of-pearl, 1917, J. Franklin Inst. 103: 453-464
    [25] RAYLEIGH F, Studies of iridescent colour, and the structure producing it.--Ⅱ. Mother of pearl, 1923, Royal Society of London Proceedings A 102: 673-677
    [26] RAMAN C, KRISHNAMURTI, The structure of optical behavior of pearls, 1954, Proceedings Indian Academy of Sciences 39A: 215-222
    [27] ALEXANDER A, SHERWOOD H, Gemmology of beginners, 1940, Germmologist 10: 48-52
    [28] SMITH H, Gemstones ( Methuen, London, 11th ed, 1944) 440
    [29] FRITSCH E, ROSSMAN G, An update on color in gems, part 3: Colors caused by band gaps and physical phenomena, 1988, Gems and Gemology 24: 81-102
    [30] LIU Y, SHIGLEY J E, HURWIT K N, Iridescence color of a shell of the mollusk Pinctada Margaritifera caused by diffraction, Optics Express 4: 177-182
    [31] NAGAISHI H, OSHIMA N, FUJII R, Light-reflecting properties of the iridophores of the neon tetra, Paracheirodon innesi, 1990, Comp. Biochem. Physiol. 95A: 337-341
    [32] NAGAISHI H, OSHIMA N, Ultrastructure of the motile iridophores of the neon tetra, 1992, Zoological Science, 9: 65-75
    [33] MATHGER L M, LAND M F, SIEBECK U E, MARSHALL N J, Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus, 2003, The Journal of Experimental Biology 206: 3607-3613
    [34] FUJII R, HAYASHI H, TOYOHARA J, NISHI H, Analysis of the reflection of light from the motile iridophores of the dark sleeper Odontobutis obscura obscura, 1991, Zool. Sci. 8: 461-470
    [35] FUJII R, KASUKAWA G, MIYAJI K, Mechanisms of the skin coloration and its changes in the blue-green damselfish, Chromis viridis, 1989, Zool. Sci. 6: 477-486
    [36] GODA M, FUJII R, The blue coloration of the common surgeonfish, Paracanthurus hepatus-Ⅱ. Color revelation and color changes, 1998, Zool. Sci. 15: 323-333
    [37] BIRNBAUMER L, et al. Structures and functions of the calcium channel beta subunits, 1998, J. Bioenergy. Biomembr. 30: 357-375
    [38] ARIKKATH J, CAMPBELL K P, Auxiliary subunits: essential components of the voltage-gated calcium channel complex, 2003, Curr. Opin. Neurobiol 13: 298-307
    [39] DOLPHIN A C,βsubunits of the voltage-gated calcium channels, 2003, J. Bioenergy. Biomembr. 55: 607-627
    [40] PARKER A R, McPHEDRAN R C, McKenzie D R, et al. Aphrodite’s iridescence, Nature 409 :36-37
    [41] KNIGHT J C, BROENG J, BIRKS T A, RUSSELL P St J, Photonic band gap guidance in optical fibers, 1998, Science 282: 1476-1478
    [42] KINOSHITA S, YOSHIOKA S, Structural colors in nature: the role of regularity an irregularity in the structure, 2005, Chem. Phys. Chem. 6: 1442-1459
    [43] NEWTON I, 1704, Treatise Opt. Royal Society, London, UK, 2: 55
    [44] GREENEWALT C H, BRANDT W, FRIEL D D, The iridescent colors of hummingbird feathers, 1960, J. Opt. Soc. Am. 50: 1005-1013
    [45] DURRER H, VILLIGER W, Schillerfarben der Nektarvogel, 1962, Rev. Suise De Zool. 69 : 801-818
    [46] DURRER H, VILLIGER W, Schillerfarben der Trogoniden, 1966, J. Orn. 107: 1-27
    [47] DURRER H, VILLIGER W, Bildung der Schillerstrukture beim Glanztar, 1970, Z. Zellforsch. 109 : 407-413
    [48] OSORIO D, HAM A D, Spectral reflectance and directional properties of structura l coloration in bird plumage, 2002, J. Exp. Biol. 205: 2017-2027
    [49] PRUM R O, TORRES R, WILLIANSOM S, DYCK J, Two-dimensional fourier analysis of the spongy medullary keratin of the structurally coloured feather barbs, 1999, Proc. R. Soc. Lond. B 266: 13-22
    [50] DYCK J, Structure and spectral reflectance of green and blue feathers of the lovebird (Agapornis roseicollis), 1971, Biol. Skr. 18: 1-67
    [51] HACKER V, MEYER G, Die blaue farbe der voelfedern, 1902, Zool. Jb. Abt. Syst. Geog. Biol. Tiere. 15: 267-294
    [52] YOUNG A T, Rayleigh scattering, 1982, Physics Today 35: 42-48
    [53] RAMAN C V, The origin of the colours in the plumage of the birds, 1935, Proc. Indian Acad. Sci. A. 1: 1-7
    [54] DYCK J, Olive green feathers: reflection of light from the rami and their structure, 1978, Anser. Suppl. 3: 57-75
    [55] PRUM R O, TORRES R H, WILLIAMSON S, DYCK J, Coherent light scattering by blue feather barbs, 1998, Nature 396: 28-29
    [56] SHAWKEY M D, HILL G E, Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller’s jay (Cyanocitta stelleri), 2006, The Journal of Experimental Biology 209: 1245-1250
    [57] LAND M F, The physics and biology of animal reflectors, 1972, Prog. Biophys. Mol. Biol. 24: 77-106
    [58] BRINK D J, van der BERG N G, Structural colours from the feather of the bird Bostrychiahagedash, 2004, J. Phys. D Appl. Phys. 37: 813-818
    [59] DOUCET S M, SHAWKEY M D, HILL G E, MONTGOMERIE R, Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour, 2006, The Journal of Experimental Biology 209: 380-390
    [60] ZI J, et al. Coloration strategies in peacock feathers, 2003, PNAS 100: 12576-12578
    [61] ERWIN T, Tropical forests: their richness in Coleoptera and other arthropod species, 1982, Coleopterists Bull. 36: 74-75
    [62] LAWRENCE J, BRITTON E, Australian beetles, 1994, Carlton, Australia: Melbourne University Press
    [63] GALUSHA J W, et al. Disdorsaly of a diamond-based photonic crystal structure in beetle scales, 2008, Phys. Rev. E 77: 050 904
    [64] SEAGO A E, BRADY P, VIGNERON J P, SCHULTZ T D, 2008, Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera), J. R. Soc. Interface 6: 165-184
    [65] MASON C W, Structural colors in insects, 1927, S. Phys. Chem. 31: 1856-1872
    [66] DURRER H, VILLIGER W, Schillerfarben von Euchroma ginantea (L) : (Coleoptera: Buprestidae) : elektronenmikroskopische Untersuchung der Elytra, 1972, Int. J. Insect Morphol. Embryol. 1: 233-240
    [67] MOSSAKOWSKI D, Reflection measurements used in the analysis of structural colours of beetles, 1979, J. Microsc. 116: 350-364
    [68] SCHULTZ T D, RANKIN M A, The ultrastructure of epicuticular interference reflectors of tiger beetles (Cicindela), 1985, J. Exp. Biol. 117: 88-110
    [69] PARKER A R, McKENZIE D, The cause of 50 million-year old colour, 2003, Proc. R. Soc. B, 270: 151-153
    [70] WELCH V, VIGNERON J, Beyond butterflies-the diversity of biological photonic crystals, 2007, Opt. Quantum Electron, 39: 295-303
    [71] ANDERSON T, RICHARDS Jr A, An electron microscope study of some structural colors of insects, 1942, J. Appl. Phys. 13: 748-758
    [72] HILTON H E, Some little known surface structures, 1970, In Insect ultrastructure (ed. A. C. Neville), London, UK, Royal Entomological Society, 41-58
    [73] VUKUSIC P, HALLAM B, NOYES J, Brilliant whiteness in ultrathin beetle scales, 2007, Science 315: 348
    [74] HADLEY N F, Wax secretion and color phases of the desert tenebrionid beetle Cryptoglossus verrucosa (LeConte), 1979, Science 203: 367-369
    [75] MILLER W H, MOLLER A R, BERNHARD C C, The corneal nipple array, 1966, In Thefunctional organization of the compound eye (ed. BERNHARD C C), Oxford, Pergamon Press, 21-33
    [76] YOSHIDA A, MOTOYAMA M, KOSAKU A, MIYAMOTO K, Antireflective nanoproturberance array in the transparent wing of a hawkmoth Cephanodes hylas, 1997, Zool. Sci. 14: 737-741
    [77] MAYER A G, On the color and color-patterns of the moths and butterflies, 1896, Bull. Museum Comp. Zool. 30: 169-256
    [78] ONSLOW H, On a periodic structure in many insect scales, and the cause of their iridescent colours, 1921, Phil. Trans. R. Soc. B, 211: 1-74
    [79] MASON C W, Structural colours in insects,ⅢInt. J. Phys. Chem. 1927, 31: 1856-1872
    [80] SUFFERT F, Morphologie und optic der schmetterlingsschuppen, 1924, Z. Morphol. Okol. Tierre, 1: 171-308
    [81] GENTIL K, Elektronenmikrosckopische unetersuchung des feinbaues schillernder leisten von Morph-Schup-pen, 1942, Z. Morphol. Okol. Tiere, 38: 344
    [82] ANDERSON T F, RICHARDS A G, An electron microscope study of some structural colours of insects, 1942, J. Appl. Phys. 13: 748-758
    [83] SUFFERT F, Elektronenmikroskopische untersuchung des feinbaues schillernder leisten von Morpho-schuppen, 1942, Zeitschr. Morphol. Okol. Tierre 38: 344-355
    [84] LIPPERT W, GENTIL K, Elektronenmikroskopische studien uber micellare strukturen bei schmetterlingsschuppen vom Morpho-typ, 1951, Z. wiss. Mikr. 61: 95-100
    [85] TABATA H, et al. Microstructures and optical properties of the scales of butterfly wings, 1996, Opt. Rev. 3: 139-145
    [86] TADA H, MANN S E, MIAOULIS I N, WONG P Y, Effects of a butterfly scale microstructure on the iridescent color observed at different angles, 1998, Appl. Opt. 37: 1579-1584
    [87] ARGYROS A, et al, Electron tomography and computer visualization of a three-dimensional photonic cystal in a butterfly wing-scale, 2002, Micron 33: 483-487
    [88] INGRAM A L, PARKER A R, A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (the Natural History Museum, London from 1961-1990), 2008, Phil. Trans. R. Soc. B 363: 2465-2480
    [89] GHIRADELLA H, Hairs, bristles and scales, 1998, In Microscopic anatomy of invertebrates (ed. M. Locke), New York, Wiley-Liss Publishers, 257-287
    [90] VUKUSIC P, SAMBLES J R, LAWRENCE C R, WOOTTON R J, Quantified interference and diffraction in single Morpho butterfly scales, 1999, Proc. R. Soc. B 266: 1403-1411
    [91] GHIRADELLA H, Development of ultraviolet-reflecting butterfly scales: how to make aninterference filter, 1974, J. Morphol. 142: 395-410
    [92] ALLYN A C, DOWNEY J C, Diffraction structures in the wing scales of Callophrys (Mitoura) siva siva (Lycaenidae), 1976, Bull. Allyn Museum 40: 1-6
    [93] BERTHIER S, CHARRON E, DA S A, Determination of the cuticle index of the scales of the iridescent butterfly Morpho Menelaus, 2003, Optics Commun. 228: 349-356
    [94] YOSHIOKA S, KINOSHITA S, Polarization-sensitive color mixing in the wing of the Madagascan sunset moth, 2007, Opt. Express 15: 2691-2701
    [95] STAVENGA D G, et al. Butterfly wings colours: scales beads make white pierid wings brighter, 2004, Proc. R. Soc. B 271: 1577-1584
    [96] VUKUSIC P, HOOPER I, Directionally controlled fluorescence emission in butterflies, 2005, Science 310: 1151
    [97] PARKER A R, Conservative photonic crystals imply indirect transcription from genotype to phenotype, 2006, Recent Res. Dev. Entomol. 5: 1-10
    [98] PARKER A R, TOWNLEY H E, Biomimetics of photonic nanostructures, 2007, Nat. Nanotechnol. 2: 347-353
    [99] JENKINS F A, WHITE H E, 1981, Fundamentals of optics, Singapore, McGraw-Hill International Editions
    [100] LAND M F, The physics and biology of animal reflectors, 1972, Prog. Biophs. Mol. Biol. 24: 75-106
    [101] YABLONOVITCH E, Inhibited spontaneous emission in solid-state physics and electronics, 1987, Phys. Rev. Lett. E 58: 2059-2062
    [102] TILLEY R J D, Scale structure and blue colour in the chalkhill blue butterfly, Lysandra coridon (Poda): (Lepidoptera: Lycaenidae), 1988, Entomologist 107: 82-89
    [103] BIRO L P, et al. Rol of photonic crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair, 2003, Phys. Rev. E 67: 0219071-0219077
    [104] VERTESY Z, et al. Modifications to wing scale microstructures in lycaenid butterflies, 2004, Microsc. Anal. 18: 25-27
    [105] BALINT Z, VERTESY Z, BIRO L P, Microstructures and nanostructures of high Andean Penaincisalia lycaenid butterfly scales ( Lepidoptera: Lycaenidae): descriptions and interpretations, 2005, J. Nat. Hist. 39: 2935-2952
    [106] KERTESZ K, et al. Gleaming and dull surface textures from photonic crystal type nanostructures in the butterfly Cyanophrys remus, 2006, Phys. Rev. E 74: 15
    [107] VUKUSIC P, SAMBLES J R, LAWRENCE C R, WOOTTON R J, Limited-view iridescence in the butterfly Ancyluris meliboeus, 2002, Proc. R. Soc. B 269: 7-14
    [108] VUKUSIC P, SAMBLES J R, LAWRENCE C R, WOOTTON R J, Quantified interferenceand diffraction in single Morpho butterfly scales, 1999, Proc. R. Soc. B 266: 1403-1411
    [109] YOSHIOKA S, KINOSHITA S, Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly, 2004, Proc. R. Soc. B 271: 581-587
    [110] MORRIS R B, Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstrak, 1975, J. Entomol. 49: 149-154
    [111] GHIRADELLA H, Structure of iridescent lepidopteran scales-variations on several themes, 1984, Ann. Entomol. Soc. Am. 77: 637-645
    [112] WICKHAM S, et al. Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours, 2006, J. R. Soc. Interface 3: 99-109
    [113] KERTESZ K, et al. Gleaming and dull surface textures from photonic crystal type nanostructures in the buttefly Cyanophrys remus, 2006, Phys. Rev. E 74: 15
    [114] VERTESY Z, et al. Modifications to wing scale microstructrues in lycaenid butteflies, 2004, Microsc. Anal. 18: 25-27
    [115] VUKUSIC P, SAMBLES J R, LAWRENCE C R, Structurally assisted blackness in butterfly scales, 2004, Proc. R. Soc. Lond. B 271: 237-239
    [116] VINCENT J F V, et al. Biomimetics: its practice and theory, 2006, J. R. Soc. Interface 3: 471-482
    [117] HO K M, CHAN C T, SOUKOULIS C M, Existence of a photonic gap in periodic dielectric structures, 1990, Phys. Rev. Lett. 65: 3152-3155
    [118] SOZUER H, HAUS J, INGUVA R, Photonic bands: convergence problems with plane-wave method, 1992, Phys. Rev. B. 45: 13962-13965
    [119] BRIAN T, et al. Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids, 1998, Science 281: 538-540
    [120] JUDITH E G J, WIJNHOVEN, WILLEM V L, Preparation of photonic crystals made of air spheres in Titania, 1998, Science 281: 802-804
    [121] BRAUN P V, PIERRE W, Electrochemically grown photonic crystals, 1999, Nature 402: 603-604
    [122] ANVAR A Z, et al. Carbon structures with three dimensional periodicity at optical wavelengths, 1998, Science 282: 897-901
    [123] YANG S, et al. Functional biomimetic microlens array with integrated pores, 2005, Advanced Materials 17: 435-438
    [124] ZAIDI S H, RUBY D S, GEE J M, Characterisation of random reactive ion etched-textured silicon solar cells, 2001, IEEE Trans. Electron Devices 48: 1200-1206
    [125] KANAMORI Y, ISHIMORI M, HANE K, High efficient light-emitting diodes with antireflection subwavelength gratings, 2002, IEEE Photon. Technol. Lett. 14: 1064-1066
    [126] GLASER T, et al. High temperature resistant antireflective moth-eye structures for infrared radiation sensors, 2005, Microsyst. Technol. 11: 86-90
    [127] YU Z, GAO H, WU W, GE H, CHOU S Y, Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff, 2003, J. Vac. Sci. Technol. B 21: 2874-2877
    [128] HUANG Y, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, 2007, Nature Nanotechnology 2: 770-774
    [129] SUN C, JIANG P, JIANG B, Broadband moth-eye antireflection coatings on silicon, 2008, Applied Physics Letters 28: 061112
    [130] DIEDENHOFEN S L, et al. Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods, 2009, Advanced Materials 21: 1-6
    [131] ZHANG W, et al. Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates, 2006, Bioinsp. Biomim. 1: 89-95
    [132] HUANG J, WANG X, WANG Z L, Controlled replication of butterfly wings for achieving tunable photonic properties, 2006, Nano Letters 6: 2325-2331
    [133] KUSTANDI T S, et al. Mimicking domino-like photonic nanostructures on butterfly wings, 2009, Small 5: 574-578
    [134] POTYRAILO R A, et al, Morpho butterfly wing scales demonstrate highly selective vapour response, 2007, Nature Photonics 1: 123-128 ?????
    [1] IBN-ELHAJ M, SCHADT M, Optical polymer thin films with isotropic and anisotropicnano-corrugated surface topologies, 2001, Nature 410: 796-799
    [2] HILLER J, MENDELSOHN J D, RUBNER M F, Reversible erasable nanoporous antireflection coatings from polyelectrolyte multilayers, 2002, Nature Materials 1: 59-63
    [3] BROWN J C, BREWER P J, MILTON M J T, The physical and chemical properties of electroless nickel-phosphorus alloy and low reflectance nickel-phosphorus black surfaces, 2002, Journal of Materials Chemistry 12: 2749-2754
    [4] LEE Y, RUBY D S, PETERS D W, McKENZIE B B, ZnO nanostructures as efficient antireflection layers in solar cells, 2008, Nano Letters 8: 1501-1505
    [5] DIVOCHIY A, et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths, 2008, Nature Photonics 2: 302-306
    [6] YOON J, et al. Ultrathin silicon solar microcells for semitransparent mechanically flexible and microconcentrator module designs, 2008, Nature Materials 7: 907-916
    [7] MACLEOD H A, Thin-Film Optical Filters, 1969, New York: Elsevier, USA
    [8] GEVAUX D, Reflection what reflection, 2007, Nature Photonics 1: 186
    [9] XI J Q, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection, 2007, Nature Photonics 1: 176-179
    [10] BORN M, WOLF E, Principles of optics: Electromagnetic theory of light, 7th edition, 1999, Cambridge, Cambridge Unviersity Press, UK
    [11] Huang Y, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, 2007, Nature Nanotechnology 2: 770-775
    [12] KANAMORI Y, HANE K, 100nm period silicon antireflection structures fabricated using a porous alumina membrane mask, 2000, Applied Physics Letters 78: 142-146
    [13] VUKUSIC P, SAMBLES J R, Photonic structures in biology, 2003, Nature 424: 852-855
    [14] YOSHIDA A, MOTOYAMA M, KOSAKU A, MIYAMOTO K, Antireflective nanoprotuberance array in the transparent wing of a Hawkmoth Cephonodes hylas, 1997, Zool. Sci. 14: 737-741
    [15] LAND M F, NILSSON D E, 2001, Animal Eyes, Oxford: Oxford Univ. UK
    [16] CLAPHAM P B, HUTLEY M C, Reduction of lens reflecxion by the moth eye principle, 1973, Nature 244: 281-282
    [17] PARKER A R, TOWNLEY H E, Biomimetics of photonic nanostructures, 2007, Nature Nanotechnology 2: 347-353
    [18] SWEENEY A, JIGGINS C, JOHNSEN S, Polarized light as a butterfly mating signal, 2003, Nature 423: 31-32.
    [19] SHAWKEY M D, MOREHOUSE N I, VUKUSIC P, A protean palette: colour materials and mixing in birds and butterflies, 2009, J. R. Soc. Interface 6: 221-231
    [20] KUSTANDI T S, et al. Mimicking domino-like photonic nanostructures on butterfly wings, 2009, Small 5: 574-578
    [21] VUKUSIC P, HOOPER I, Directionally Controlled Fluorescence Emission in Butterflies, 2005, Science 310: 2151.
    [22] PITMAN K C, LINDLEY M W, SIMKIN D, COOPER J F, Radar absorbers: better by design, 1991, IEE Proceedings-F 138: 223-228
    [23] ZONIOS G, DIMOU A, BASSUKAS I, Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection, 2008, Journal of Biomedical Optics 13: 14-17
    [24] DYCK H V, MATTHYSEN E, DHONDT A A, The effect of wing colour on male behavioural strategies in the speckled wood butterfly, 1997, Anim. Behav. 53: 39 -51.
    [25] VUKUSIC P, SAMBLES J R, LAWRENCE C R, Structurally assisted blackness in butterfly scales, 2004, Proc Biol Sci. 271: 237-239
    [26] MARTIN-PALMA R J, PANTANO C G, LAKHTAKIA A, Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics, 2008, Applied Physics Letters 93: 083901-1-4
    [27] YEE K S, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, 1966, IEEE Trans. Antennas Propagat. 14: 302-307.
    [28] Toflove A and Hagness S C 2005 Computational Electrodynamics: The Finite- Difference Time-Domain Method 2nd ed (Boston: Artech House).
    [29] YANG Z, et al. Experimental observation of an extremely dark material made by a low density nanotube array, 2008, Nano Letters 8: 446-451
    [30] CARROLL D O, LIEBERWIRTH I, REDMOND G, Microcavity effects and optically pumped lasing in single conjugated polymer nanowires, 2007, Nature Nanotechnology 2: 180-184
    [31] KONSTANTATOS G, Ultrasensitive solution-cast quantum dot photodetectors, 2006, Nature 442: 180-183
    [32] JONGSEUNG Y, et al. Ultrathin silicon solar microcells for semitransparent mechanically flexible and microconcentrator module designs, 2008, Nature Materials 7: 907-916
    [33] SARDAR D K, MAYO M L, GLICKMAN R D, Optical characterization of melanin, 2001, Journal of Biomedical Optics 6: 404-411
    [34] POTYRAILO R A, et al. Morpho butterfly wing scales demonstrate highly selective vapour response, 2007, Nature Photonics 1: 123-128
    [35] ZI J, et al. Coloration strategies in peacock feathers, 2003, Proc. Natl. Acad. Sci. 12: 576-578.
    [36] HOLLOWAY C L, et al. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices, 1997, IEEE Trans. Electromagnetic Compatibility 39: 33-37
    [37] DIEDENHOFEN S L, et al. Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods, 2009, Adv. Mater. 21: 973-978
    [1] ROBITAILLE P M, On the validity of Kirchhoff’s law of thermal emission, 2003, IEEE Trans. Plasma Sci. 31: 1263-1267.
    [2] PLANCK M, The Theory of Heat Radiation, 1912, Dover Publication. Inc, New York, USA
    [3] KODAMA S, HORIUCHI M, KUNII T, KURODA T, Ultra-black nichel-phosphorus alloy optical absorber, IEEE Trans. Instrum. Meas. 1990, 39: 230-232
    [4] LANDY N I, SAJUYIGBE S, MOCK J J, SMITH D R, PADILLA W J, Perfect metamaterial absorber, 2008, Physical Review Letters 4: 2074021-4
    [5] IBN-ELHAJ M, SCHADT M, Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies, 2001, Nature 410: 796-799
    [6] DIVOCHIY A, et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths, 2008, Nature Photonics 2: 302-306
    [7] FOX N P, Trap detectors and their properties, 1991, Metrologia 28: 197-202
    [8] YOON J, et al. Ultrathin silicon solar microcells for semitransparent mechanically flexible and microconcentrator module designs, 2008, Nature Materials 7: 907-916
    [9] JOHNSON P B, CHRISTY R W, Optical constants of the noble metals, 1972, Phys. Rev. B 6: 4370-4379
    [10] GEVAUX D, Reflection what reflection, 2007, Nature Photonics 1: 186
    [11] GARCIA-VIDAL F J, PITARKE J M, PENDRY J B, Effective medium theory of the optical properties of allgned carbon nanotubes, 1997, Phys. ReV. Lett. 78: 4289
    [12] BORN M, WOLF E,1999, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 7th edition. Cambridge Unviersity Press, Cambridge ,UK
    [13] XI J Q, et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection, 2007, Nature Photonics 1: 176
    [14] BROWN J C, BREWER P J, MILTON M J T, The physical and chemical properties of electroless nickel-phosphorus alloy and low reflectance nickel-phosphorus black surfaces, 2002, Journal of Materials Chemistry 12: 2749-2754
    [15] LEE Y, RUBY D S, PETERS D W, McKENZIE B B, ZnO nanostructures as efficient antireflection layers in solar cells, 2008, Nano Letters 8: 1501-1505
    [16] LI Y et al. Biomimetic surfaces for high perfornance optics, 2009, Advanced Materials 21: 1-4
    [17] PARKER A R, TOWNLEY H E, Biomimetics of photonic nanostructures, 2007, Nature Nanotechnology 2: 347-353
    [18] CLAPHAM P B, HUTLEY M C, Reduction of lens reflecxion by the moth eye principle, 1973, Nature 244: 281-282
    [19] VUKUSIC P, SAMBLES J R, LAWRENCE C R, Structurally assisted blackness in butterfly scales, 2004, Proc Biol Sci. 271: 237-239
    [20] MARON N, Optical properties of fine amorphous carbon grains in the infrared region, 1990, Astrophysics and Space Science, 172: 21-28
    [21] ANDREAE M O, GELENCSER A, Black carbon or brown carbon? The nature of light absorbing carbonaceous aerosols, 2006, Atmos. Chem. Phys. 6: 3131-3148
    [22] BEEMAN D, SILVERMAN J, LYNDS R, ANDERSON M R, Modeling studies of amorphous carbon, 1984, Physical Review B 30: 870-875
    [23] ROBERSON J, Electronic and atomic structure of amorphous carbon, 1987, Physical Review B 35: 2946-2957
    [24] YANG Z, et al. Experimental observation of an extremely dark material made by a low density nanotube array, 2008, Nano Letters 8: 446-451
    [25] RINAUDO M, Chitin and chitosan properties and applications, 2006, Progress in Polymer Science 31: 603-632
    [26] TAMOR M A, VASSELL W C, Raman fingerprinting of amorphous carbon films, 1994, Journal of Applied Physics 76: 3823-3827
    [27] SCHWAN J, ULRICH S, BATORI V, EHRHARDT H, SILVA S R P, Raman spectroscopy on amorphous carbon films, 1996, Journal of Applied Physics 80: 440-445
    [28] NISTOR L C, et al. Direct observation of laser-induced crystallization of a-C:H films, 1994, Applied Physics A 58: 137-144
    [29] LANNIN J S, 1997, Amorphous and Liquid Semiconductors, ed. by W. E. Spear. Univ. of Edinburgh Press, Edinburgh, UK
    [30] FERRARI A C, ROBERTSON J, Interpretation of Raman spectra of disordered and amorphous carbon, 2000, Physical Review B 61: 14095-14107
    [31] YEE K S, Numerical solution of initial boundary value problems involving Maxwell’s equations, 1966, IEEE Trans. Antennas Propagat. 14: 302-307
    [32] VUKUSIC P, SAMBLES J R, Photonic structures in biology, 2003, Nature 424, 852-855
    [1] AITASALO T, DEREN P, HOLSA J, et al. Persistent luminescence phenomena in materials doped with rare earth ions, 2003, J. Solid State Chem. 171: 114-122.
    [2] ZOU W, YANG Z, LV M, et al.掺Eu3+,Dy3+的Zn3(BO3)2纳米材料的发光特性, 2006,山东大学学报(工学版), 36: 9.
    [3] LIAN S X, REN M, LIN J H, et al. On the afterglow of the cerium doped silicate glasses, 2000, J. Mater. Sci. Lett.19: 1603-1605
    [4] KODAMA N, SASAKI N, YAMAGA M, et al. Long-lasting phosphorescence of Eu2+ in melilite, 2001, J. Lumin. 19: 94-95
    [5] SAKAI R, KATSUMATA T, KOMURO S, et al. Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals, 1999, J. Lumin. 85: 149-154.
    [6] FAN T, LI X, LIU Z, et al. Microstructure and infrared absorption of biomorphic chromium oxides templated by wood tissues, 2006, J. Am. Ceram. Soc. 89: 3511-3515.
    [7] LI X, FAN T, ZHANG D, et al. Assembly of metallic nanoparticles with controllable size in nanopores of biomorphic oxide fibers templated by cotton tissue, 2007, J. Mater. Res. 22: 755-762.
    [8] ZHANG W, ZHANG D, FAN T, et al. Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales, 2006, Nanotechnology 17: 840-844.
    [9] ZHOU H, FAN T, ZHANG D, et al. Novel bacteria-templated sonochemical route for the in-situ one-step synthesis of ZnS hollow nanostructures, 2007, Chem. Mater. 19: 2144
    [10] LI X, FAN T, LIU Z, et al. Synthesis and hierarchical pore structure of biomorphic manganese oxide derived from woods, 2006, J. Eur. Ceram. Soc. 26: 3657-3664.
    [11] MENG Q, LIN J, FU L, et al. Sol–gel deposition of calcium silicate red-emitting luminescent films doped with Eu 3+, 2001, J. Mater. Chem. 11: 3382-3386.
    [12] SEATON N A, Determination of the connectivity of porous solids from nitrogen sorption measurements, 1991, Chem. Eng. Sci. 46: 1895-1909.
    [13] SEATON N A, LIU H L, Determination of the connectivity of porous solids from nitrogen sorption measurements—III. Solids containing large mesopores, 1994, Chem. Eng. Sci. 49: 1869-1878.
    [14] MURRAY K L, SEATON N A, DAY M A, An adsorption-based method for the characterization of pore networks containing both mesopores and macropores, 1999, Langmuir 15: 6728-6737.
    [15] MATTHEWS L R, WANG X J, KNOBBE E T, Luminescence behavior of inorganic and metalorganic europium(III) dopants incorporated into silica and epoxy-diol ORMOSIL sol-gel hosts, 1994, J. Sol-Gel Sci. Technol. 2: 627-634.
    [16] ZAREBA-GRODZ I, PAZIK R, TYLUS W, et al. Europium-doped silica–titania thin films obtained by the sol–gel method, 2007, Opt. Mater. 29: 1103-1106.
    [17] TAKASAKI H, TANABE S, HANADA T. Long-lasting afterglow characterization of Eu, Dy co-doped SrO–Al2O3 phosphors, 1996, J. Ceram. Soc. Jpn 104: 322.
    [18] KATSUMATA T, TOYOMANE S, SAKAI R, et al. Trap levels in Eu-doped SrAl2O4 phosphor crystals co-doped with rare-earth elements, 2006, J. Am. Ceram. Soc. 89: 932-936.
    [19] CHEN R. Methods for kinetic analysis of thermally stimulated processes, 1976, J. Mater. Sci. 11: 1521-1541. ???

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700