氨基酸离子液体-MDEA混合水溶液对CO_2的吸收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳的过量排放,给全球气候环境造成了严重的负面影响。二氧化碳的排放控制直接关系着工业生产、气候、人类健康和能源利用等方面,因此对脱碳技术的研究显得尤为重要和迫切。目前工业上使用较多的有机胺吸收法存在诸多的缺点,如MEA虽然吸收CO2速率快,但腐蚀性强且再生能耗高,MDEA有较高的CO2吸收负荷,但吸收速率较慢。离子液体的特殊优良性能使其可作为一种环境友好的脱碳吸收剂,其中氨基酸离子液体对CO2有较高的吸收速率。为了改进有机胺类C02吸收剂的应用性能,研究新型的脱碳吸收剂,本文合成了四甲基铵甘氨酸([N1111][Gly])离子液体,并与MDEA水溶液配制成三种不同浓度的吸收剂,分别为5%[N1111][Gly]+15%MDEA,10%[N1111][Gly]+15%MDEA和15%[N1111][Gly]+15MDEA,分别研究不同分压下CO2在其中的溶解性能,以及降膜过程中的吸收传质性能。
     首先在双釜吸收装置中用恒定容积法研究了混合吸收剂吸收CO2的性能,通过分析和比较证实提高CO2分压和增大离子液体[N1111][Gly]浓度都能使混合吸收剂对CO2的单位体积吸收容量得到提高,平衡摩尔吸收率也随着CO2分压的提高而增大,但其与[N1111][Gly]的浓度无关。
     本文设计并搭建了一套逆流降膜吸收装置,并利用该装置测定了混合吸收剂对纯CO2以及CO2-N2混合气体(20%CO2+80%N2)的降膜吸收性能,实验发现[N1111][Gly]浓度、气相和混合吸收剂的流动状况都对吸收传质系数造成影响。对于纯CO2气体的降膜吸收,气体或混合吸收剂的流量加大均提高了传质吸收效果,吸收剂中[N1111][Gly]离子液体的浓度增大也使吸收效果提高;对于CO2-N2混合气体的降膜吸收,气体流量加大能够提高传质吸收效果,但当气体流量大于一定流量后,气体流量继续增大反而会使吸收效果降低,混合吸收剂流量及吸收剂中[N1(?)][Gly]浓度的加大均对传质吸收效果带来正面的影响。综合各影响因素,通过量纲分析方法得到了吸收系数的准数关联式:纯CO2:Sh=5.637×10-11ReL1.225ReG0.695ScL2.085上式计算值与实验值之间的平均相对偏差为8.46%。C02-N2混合气体:Sh=0.0247ReL0.495ReG0.371ScL0.065上式计算值与实验值之间的平均相对偏差为10.03%。
     通过与30%MDEA水溶液的降膜吸收实验对比发现,加入[N1111][Gly]的吸收剂对CO2的降膜吸收效果明显提高,证实了季铵型氨基酸离子液体对改进传统MDEA吸收剂有潜在的应用价值。
     本文的还设计合成了一批新型的双季铵型的氨基酸离子液体,并对产物进行了1HNMR表征。选择了一种产物四甲基二丁基乙二铵二甘氨酸(C2(N114)2Gly2)配制成不同浓度的水溶液,用于CO2吸收实验中。实验结果显示,对于不同浓度的双季铵型的氨基酸离子液体溶液,浓度和吸收剂粘度均对吸收速率有影响,增大吸收剂中离子液体的浓度可以提高吸收速率,但离子液体浓度过大会使吸收剂黏度增大,反而降低吸收速率。
     本文的工作将氨基酸离子液体-MDEA混合水溶液用于了与工业实际相近的降膜吸收过程中,所取得的实验结果为氨基酸离子液体-MDEA混合水溶液吸收CO2的进一步探索和研究,为日后的工业应用模拟实验打下了一定基础。
Excessive emissions of carbon dioxide has caused serious negative impact in many aspects of society. The removal of carbon dioxide is directly related to industrial production, climate, human health and utility of energy sources, thus the research about decarbonization technology is particularly important and urgent. At present, the main absorbents for removing carbon dioxide in industry are alkanolamines solutions which have many disadvantages, for instance, MEA absorbs CO2 rapidly, but the corrosion is strong and energy consumption of regeneration is high; MDEA has a higher load of CO2 absorption, but the slower absorption rate. Ionic liquids (ILs) have some special properties. It can be used as a good environmentally friendly decarburization absorbent and amino acid ionic liquids have a higher CO2 absorption rate. To improve the properties of alkanolamines absorbent and develop new decarbonization absorbent, tetramethylammonium glycinate ([N1111][Gly]) was synthesized and mixed with N-methyldiethanolamine (MDEA) aqueous solutions to bring complex absorbents at three different concentrations:5%[N1111][Gly]+ 15%MDEA,10%[N1111][Gly]+15%MDEA and 15%[N1111][Gly]+15MDEA.
     First, the CO2 absorption capabilities of the three complex absorbents were measured with the Constant Volume Method. The Analysis and comparison indicated that the absorption capacity per volume increased with a rise in CO2 pressure and concentration of [N1111][Gly], while the mole absorptivity at absorption equilibrium was unrelated with concentration of [N1111][Gly] under different CO2 pressures.
     This work designed and built a set of countercurrent falling film column to investigate falling film absorption of pure CO2 and CO2-N2 gas mixture (20%CO2+80%N2). The result showed that the concentration of [N1111][Gly], flow characteristics of gas and absorbents all influenced the mass transfer coefficient. Taking all factors, the effect of these influence factors on mass transfer coefficient could be described as: Pure CO2:Sh= 5.637×10-11ReL1.225ReG0.695ScL2.085 The correlation predicts the experimental data with a mean deviation of 8.46% CO2-N2 gas mixture:Sh= 0.0247ReL0.495ReG0.371ScL0.065 The correlation predicts the experimental data with a mean deviation of 10.03%
     By comparison with 30%MDEA in falling film absorption experiment, it was found that [N1111][Gly] could greatly enhance the absorption of MDEA aqueous solution, confirming that amino acid ionic liquid had potential to improve MDEA absorbent.
     This article has also designed and synthesized a new type of Dicationic Ionic Liquid (DIL), Di-tetraalkylammonium amino acid ionic liquids which were analyzed by 1HNMR. C2(N114)2Gly2 was mixed with water to bring aqueous solutions at different concentrations for CO2 absorption. The results indicated that the absorption rate was based on the concentration and the viscosity.
     In the present, the results lay a certain foundation for further exploration and research of CO2 absorption by aqueous solution of MDEA and amino acid ionic liquid for industrial applications in the future.
引文
1.吴兑编,温室气体与温室效应[M],气相出版社,2003年7月第一版,2009年6月第三次印刷
    2.王明星,杨听,人类活动对气候影响的研究-Ⅰ温室气体和气溶胶[J],气候与环境研究,2002,7(2):247-254
    3.二氧化碳捕集技术[简讯],化学工业与工程技术,2010,(2):53
    4.金三林,我国二氧化碳排放的特点、趋势及政策取向[J],经济研究参考,2010,36(总2308):4-9
    5.蔡博峰,刘春兰,陈操操等编著,城市温室气体清单研究[M],化学工业出版社,2009年8月第一版第一次印刷
    6.黄汉生,温室效应气体二氧化碳的回收与利用[J],现代化工,2001,21(9):53-57
    7. Derks PWJ, Dijkstra HBS, Hogendoorn JA, et al., Solubility of carbon dioxide in aqueous piperazine solutions[J], AIChE J.,2005, (51):2311-2327
    8. Aroua MK, Salleh RM, Solubility of CO2 in aqueous piperazine and its modeling using the Kent-Eisenberg approach[J], Chem. Eng. Technol.,2004, (27):65-70
    9. Jones AP, et al., Indoor air quality and health[J], Atmospheric Environment,1999, (33):4535-4564
    10.骆培成,室内空气中微量酸性气体(CO、NO2、SO2)的净化研究[D],南京大学博士论文,2004
    11.齐彦军,浅谈二氧化碳的回收与利用[J],商场现代化,1993,(8):27
    12.贾德森·金著,分离过程(第2版),大连工学院化工原理和化学工程教研所译,北京,化学工业出版社,1987
    13.王泉清,有机胺溶液吸收CO2的研究评述[J],山东师范大学学报(自然科学版),2008.3,23(1):81-83
    14.栗肖红,李建广,吴新勇,二乙醇胺催化热钾碱法脱除二氧化碳概述[J],化学工程与装备,2008,(1):49-55
    15.张学模,储政,古俊智,脱CO2技术进展及评价[J],化学工业与工程技,2001,22(2):14-24
    16.李桂林,碳酸丙烯酯脱碳技术的应用[J],辽宁化工,1998.3,27(2):115-117
    17.秦旭东,李正西,宋洪强,吴锡章,低温甲醇洗和聚乙二醇二甲醚工艺的技术经济对比[J],化工技术经济,2007.1,25(1):44-52
    18.张永军,苑慧敏,万书宝,李影辉,张志翔,李文鹏,天然气中二氧化碳脱除技术[J],化工中间体2008,(9):1-3
    19.郭庆杰主编,温室气体二氧化碳捕集和利用技术进展[M],化学工业出版社,2010年10月第一版第一次印刷
    20.梁国仑,吸附技术在特种气体制造中的应用[J],化工科技动态,1992,(11):14-18
    21.费维扬,艾宁等,温室气体的捕集和分离-分离技术面临的挑战与机遇[J],化工进展,2005,24(1):1-4
    22. Chengtung C, Chihlung W, Anthong S T,.A complementary pressure swing adsorption process configuration for air separation[J], Separat Tech,1994, (4): 93-101
    23. Alpay E D, Chatsiriweeh I S, Kershenbaum C, et al., Combined reaction and separation in pressure swing processes[J], Chem. Eng. Sci.,1994, (49):5845-5851
    24. Colin A, Scholes, Sandra E, Kentish, Geoff W. Stevens, Carbon dioxide separation through polymeric membrane systems for flue gas application [J], Recent patents on Chemical Engineering,2008, (1):52-66.
    25. Ward W J, Robb W L, Carbon dioxide-oxygen separation:facilitated transport of carbon dioxide across a liquid film[J], Science,1967, (156):1481-1484
    26. Leblanc O H, Ward W J, et al., Facilitated transport in ion-exchange membranes[J], J Membr Sci.,1980, (6):339-343
    27. Ying-Ying Jiang, Z.Zhou, Z.Jiao, L.Li, Zhi-Bing Zhang, Y.T. Wu, SO2 gas separation using supported ionic liquid membranes [J], Journal of Physical Chemistry B,2007,111(19):5058-5061
    28. Astarita G, Savage D.W., Bisio A, Gas treating with chemicial solvents[J], John Wiley & Sons,1983
    29.肖九高,烟道气中二氧化碳回收技术的研究[J],现代化工,2004,24(5):47-49
    30. Ho-Jun S, Seungmoon L, et al., Solubilities of carbon dioxide in aqueous solution of sodium glycinate[J], Fluid Phase Equilibria,2006,246(1-2):1-5
    31.施耀,项菲等,混合有机胺吸收烟道气中C02的交互作用机理[J],中国环境科学,2003,23(2):201-205
    32.项菲,施耀等,混合有机胺吸收烟道气C02的实验研究[J],环境污染与防治,2003,25(4):206-225
    33. Kohl A L, Nielsen R, Gas Purification[M],5th Ed, Gulf Publishing:houston,1997, 39-41
    34. Blauwhoff P.M.M, Versteeg GF, et al., A study on the reaction between CO2 and alkanolamines aqueous solutions[J], Chem. Eng. Sci.,1984, (39):207-225
    35.黎四芳,任铮伟,李盘生等,MDEA-MEA混合有机胺水溶液吸收C02[J],化工学报,1994,45(6):698-703
    36.李汝雄,离子液体—走向工业化的绿色容积[J],现代化工,2003,23(10):17-21
    37. Wiles JS, Zaworotko JM, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J], Chem Commun.,1992, (13):965-966
    38. Ngo HL, LeCompte K, et al., Thermal properties of imidazolium ionic liquids[J], Thermochim Acta.,2000, (357):97-102
    39.李汝雄,绿色溶剂—离子液体的制备与应用[J],化工进展,2002,21(1):43-48
    40. Wasserscheid P, Keim W, et al., Ionic liquids-New "solutions" for transition metal catalysis[J], Chem. Int. Ed.,2000, (39):3773-3789
    41. Hurley F.H, US patent 4[P],1948,446,331
    42. Jr. Weir T.P, Hurley F.H, US patent 4[P],1948,446,349
    43. Wilkes J.S, Zaworotko J.M, Air and water stable 1-efhyl-3-methylimidazolium based ionic liquids[J], Chem. Commun.,1992, (13):965-966
    44. Welton T, et al., Temperature Ionic Liquids'Solvents for Synthesis and Catalysis [J], Chemical Review,1999, (99):2071-2083
    45. Blanchard LA, Hancu D, Beckman EJ, et al., Nature,1999, (399):28-29
    46. Anthony JL, Maginn EJ, et al., Solubilities and thermodynamic prooerties of gases in the ionic liquids 1-n-butyl-3-methylimidazolium hexafluorophosphate[J], J. Phys. Chem. B,2002,106(29):7315-7320
    47. Aki SNV, Mellein BR, et al., High-pressure phase behavior of carbon dioxide with imidazlium-based ionic liquids[J], J. Phys. Chem. B,2004, (108):20355-20365
    48. Finotello A, Bara JE, et al., Room-temperature ionic liquids temperature dependence of gas solubility selectivity[J], Ind. Eng. Chem. Res.,2008,47(10): 3453-3459
    49. Husson-Borg P, Majer V, et al., Solubility of oxygen and carbon dioxide in butylmethyl imidazolium tetrafluoroborate as a function of temperature and at pressure close to atmospheric pressure[J], J. Chem. Eng. Data,2003,48(3): 480-485
    50. Shariati A, Peters CJ, High-pressure phase equilibria of systems with ionic liquids [J], Journal of Supercritical Fluids,2005,32(2):171-176
    51. Schilderman AM, Raeissi S, et al., Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide[J], Fluid Phase Equilibria,2007,260(1):19-22
    52. Bara JE, Gabriel CJ, et al., Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids[J], Ind. Eng. Chem. Res., 2007,46(16):5380-5386
    53. Tang J, TangH, SunW, et al., Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s[J], Polymer,2005, (46):12460-12467
    54. Tang J, SunW, et al., Enhanced CO2 absorption of poly(ionic liquid)s[J], Macromolecules,2005,38(6):2037-2039
    55. Lee H, Demberelnyamba D, Yoon SJ, et al., New epoxide molten salts:key intermediates for designing novel ionic liquids[J], Chem. Lett.,2004,33(5): 560-561
    56. Blasig A, Tang J, et al., Carbon dioxide solubility in polymerized ionic liquids containing ammonium and imidazolium cations from magnetic suspension balance P[VBTMA][BF4] and P[VBMI][BF4] [J], Ind. Eng. Chem. Res.,2007, 46(17):5542-5547
    57. Zhang JM, Zhang SJ, Dong K, Shen Y, et al., Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J], Chem. Eur. J.,2006, (12): 4021-4026
    58.王冠楠,肖峰,吕学铭,方诚刚,张志炳,离子液体吸收CO2的研究进展[J],化工时刊,2010.3,24(3):61-69
    59. Brennecke JF, Maginn E, Purification of gas with liquid ionic compounds[P], US: 0189444,2002
    60. Scovazzo P, Kieft J, Finan DA, et al., Gas separations non-hexafluorophosphate [PF6]-anion supported ionic liquid membranes [J], J. of Membrane Science,2004, (238):57-63
    61. Bates ED, Mayton RD, et al., CO2 capture by a task-specific ionic liquid[J], J. Am. Chem. Soc.,2002,124(6):926-927
    62. Camper D, Bara JE, et al., Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO2[J], Ind. Eng. Chem. Res.,2008,47(21):8496-8498
    63. Bara JE, Carlisle TK, et al., Guide to CO2 separations in imidazolium-based room-temperature ionic liquids[J], Ind. Eng. Chem. Res.,2009,48(6):2739-2751
    64. Gordon CM, Appl. Catal. A.:Gen.,2001, (222):101-117
    65. Liu Y, Shi L, Wang M, et al., Green Chemistry,2005, (7):655-658
    66. Branco LC, Crespo JG, Alfonso CAM, Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids [J], Angew. Chem. Int. Ed.,2002,41(15):2771-2773
    67. Li M, Ma C, et al, Electrochemistry Communication,2005, (7):209-212
    68. Itoh H, Naka K, et al., Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cationm[J], J. Am. Chem. Soc.,2004, (126): 3026-3027
    69. Jared L Anderson, Rongfang Ding, Arkady Ellern, Daniel W Armstrong, Structure and Properties of High Stability Geminal Dicationic Ionic Liquids[J], JACS,2005, 127(2):593-604
    70. Tharanga Payagala, Junmin Huang, Zachary S Breitbach, Pritesh S Sharma, Daniel W Armstrong, Unsymmetrical Dicationic Ionic Liquids:Manipulation of Physicochemical Properties Using Specific Structural Architectures [J], Chem. Mater.,2007,19:5848-5850
    71. Guiqin Yu, Shiqiang Yan, Feng Zhou, Xuqing Liu, Weimin Liu, Yongmin Liang, Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films[J], Tribology Letters,2007,25(3): 197-205
    72. Zhengxi Zhang, Li Yang, Shichun Luo, Miao Tian, Kazuhiro Tachibana, Kouichi Kamijima, Ionic liquids based on aliphatic tetraalkylammonium dications and TFSI anion as potential electrolytes[J], Journal of Power Sources 2007,167(1): 217-222
    73. Xiaoju Li, Duncan W Bruce, Jean'ne M Shreeve, Dicationic imidazolium-based ionic liquids and ionic liquid crystals with variously positioned fluoro substituents [J], Journal of Materials Chemistry,2009,19(43):8232-8238
    74. Whitman WG, Chem. And Met Eng.,1923, (29):147
    75. Higbie R, Trans. Am. Inst. Chem. Eng.,1935, (31):365
    76. Danckwerts PV, Significance of Liquid Film Coefficients in Gas Absorption[J], Ind. Eng. Chem.,1951, (43):1460-1467
    77. ER Gilliland, TK Sherwood, Diffusion of vapors into air streams [J], Ind. Eng. Chem.,1934, (26):516-523
    78. HF Johnstone, RL Pigford, Distillation in a Wetted-Wall Column[J], Trans. AIChE.,1942, (38):25-36
    79. R Kafesjian, CA Plank, et al., Liquid flow and gas phase mass transfer in wetted-wall towers[J], AIChE. J.,1961, (7):463-466
    80. C Strumillo, KE Porter, The evaporation of carbon tetrachloride in a wetted-wall column[J], AIChE. J.,1965,(11):1139-1142
    81. D Braun, JW Hiby, Der gasseitige Stoffubergangskoeffizient an Rieselfilm[J], Chem. Ing. Technol.,1970, (42):345-349. (in German)
    82. GR Johnson, BL Crynes, Modeling of thin-film sulpur trioxide sulphonation reactor[J], Ind. Eng. Chem. Process Des. Develop.,1974, (13):6-14
    83. J Gutierrez, C Mans, et al., Improved mathematical model for sulphonation reactor[J], Ind. Eng. Chem. Res.,1988, (27):1701-1707
    84. A Dudukovic, V Milosevic, et al., Gas-solid and gas-liquid mass-transfer coefficients[J], AIChE. J., (42):269-270
    85. CHE Nielsen, S Kill, et al., Mass transfer in wetted-wall columns:Correlations at high Reynolds numbers[J], Chem. Eng. Sci.,1998, (53):495-503
    86. JE Vivian, DW Peaceman, Liquid-side resistance in gas absorption [J], AIChE. J., 1956, (2):437-443
    87. F Yoshida, S Arakawa, Pressure dependence of liquid phase mass transfer coefficients[J], AIChE. J.,1968, (14):962-963
    88. AP Lamourelle, OC Sandall, Gas absorption into a turbulent liquid[J], Chem. Eng. Sci.,1972, (27):1035-1043
    89. WH Henstock, TJ Hanratty, Gas absorption by a liquid layer following on the wall of a pipe[J], AIChE. J.,1979,(25):122-131
    90. S Yih, K Chen, Gas absorption into wavy and turbulent falling liquid films in a wetted-wall column[J], Chem. Eng. Commun.,1982, (17):123-136
    1.谭大志,范文杰,张永春,吴浪,李一尘,DEA溶液吸收/再生CO2的研究[J],化学工程师,2005,116(5):62-64
    2.孙剑,夏剑忠,施云海,MDEA-MEA混合醇胺脱硫脱碳的模拟计算[J],化学反应工程与工艺,2007,23(3):279-283
    3.王泉清,有机胺溶液吸收C02的研究评述[J],山东师范大学学报(自然科学版),2008,23(1):81-83
    4.王波,杨立明,索继栓,温和条件下离子液体/水两相体系中α,β-不饱和羰基化合物的环氧化反应研究[J],化学学报,2003,61(2):285-290
    5.顾彦龙,石峰,邓友全,离子液体在催化反应和萃取分离中的研究和应用进展[J],化工学报,2004,55(12):1957-1963
    6. Jiang Yingying, Wang Guannan, Zhou zheng, Wu Youting, Geng Jiao, Zhang Zhibing, Tetraalkylammoninm amino acids as functionalized ionic liquids of low viscosity[J], Chem. Commun.,2008,4:505-507
    7. Zhang Jianmin, Zhang Suojiang, Dong Kun, Zhang Yanqiang, Shen Youqing, Lv Xingmei, Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J], Chem. Eur. J.,2006,12:4021-4026
    8. Bates ED, Mayton RD, Ntai I, James H, Davis Jr. CO2 capture by a task-specific ionic liquid[J], J. Am. Chem. Soc.,2002,124(6):926-927
    9. Fukumoto K, Ohno H, Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids[J], Chem. Commun., 2006,29:2081-3083
    10.王渊涛,方诚刚,张锋,吴有庭,耿皎,张志炳,氨基酸离子液体-MDEA混合水溶液的CO2吸收性能[J],化工学报,2009,60(11):2781-2786
    11. DR MacFarlane, J Sun, et al., Golding.High conductivity molten salts based on the imide ion[J], Electrochim. Acta,2000, (45):1271-1278
    12. XU Hui, CUI Lin, Research on Absorption Method and Mechanism of Carbon Dioxide[J], Environmental Science and Management,2006,31:79-81
    13. Hameed MS, Muhammed MS, Mass transfer into liquid falling film in straight and helically coiled tubes[J], International Journal of Heat and Mass Transfer,2003, 46:1715-1724
    14. Hoist J van, Versteeg GF, Brilman DWF, Hogendoorn JA, Kinetic study of CO2 with various amino acid salts in aqueous solution[J], Chemical Engineering Science,2009,64:59-68
    15. Christian HE Nielsen, Soren Kiil, Henrik W Thomsen, Kim Dam-Johansen, Mass transfer in wetted-wall columns:Correlation at high Reynolds numbers [J], Chemical Engineering Science,1998,53(3):495-503
    16. Akanksha, Pant KK, Srivastava VK, Mass transport correlation for CO2 absorption in aqueous monoethanolamine in a continuous film contactor [J], Chemical Engineering and Processing,2008,47:920-928
    17.马沛生著,化工数据[M],中国石化出版社,283-284
    18.波林(美),气液物性估算手册[M],化学工业出版社,334-339
    1. Anthony JL, Maginn EJ, Brennecke JF, Solubilities and thermodynamic prooerties of gases in the ionic liquids 1-n-butyl-3-methylimidazolium hexafluorophosphate [J], J. Phys. Chem. B,2002, (106):7315-7320
    2. Aki SNV, Mellein BR, Saurer EM, et al., High-pressure phase behavior of carbon dioxide with imidazlium-based ionic liquids[J], J. Phys. Chem. B,2004, (108): 20355-20365
    3. Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc.,2002,124:926-927
    4. Zhang Jianmin, Zhang Suojiang, Dong Kun, Zhang Yanqiang, Shen Youqing, Lv Xingmei, Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J], Chem. Eur. J.,2006,12:4021-4026
    5. Jiang Yingying, Wang Guannan, Zhou zheng, Wu Youting, Geng Jiao, Zhang Zhibing, Tetraalkylammoninm amino acids as functionalized ionic liquids of low viscosity[J], Chem. Commun.,2008,4:505-507
    6. Jared L Anderson, Rongfang Ding, Arkady Ellern, Daniel W Armstrong, Structure and Properties of High Stability Geminal Dicationic Ionic Liquids[J], JACS,2005, 127(2):593-604
    7. Tharanga Payagala, Junmin Huang, Zachary S Breitbach, Pritesh S Sharma, Daniel W Armstrong, Unsymmetrical Dicationic Ionic Liquids:Manipulation of Physicochemical Properties Using Specific Structural Architectures [J], Chem. Mater.,2007,19:5848-5850
    8. Xiaoju Li, Duncan W Bruce, Jean'ne M Shreeve, Dicationic imidazolium-based ionic liquids and ionic liquid crystals with variously positioned fluoro substituents [J], Journal of Materials Chemistry,2009,19(43):8232-8238
    9. Zhengxi Zhang, Li Yang, Shichun Luo, Miao Tian, Kazuhiro Tachibana, Kouichi Kamijima, Ionic liquids based on aliphatic tetraalkylammonium dications and TFSI anion as potential electrolytes [J], Journal of Power Sources,2007,167(1): 217-222
    10. Cadours R, Bouallou C, Gaunand A, et al., Kinetics of CO2 desorption from highly concentrated and CO2 loaded MDEA aqueous solutions in the range 312-383K[J], Ind. Eng. Chem. Res.,1997,36:5384-5391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700